Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, [Co(C11H9ClN3O2)2]·2.5H2O, the CoII atom, which lies on a twofold rotation axis, is coordinated by four N atoms and two O atoms from two ligands in a distorted octa­hedral geometry. In the crystal structure, mol­ecules are linked together by inter­molecular O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807050623/sg2193sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807050623/sg2193Isup2.hkl
Contains datablock I

CCDC reference: 665037

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • R factor = 0.041
  • wR factor = 0.130
  • Data-to-parameter ratio = 13.2

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

In recent years, there has been an increasing interest in the coordination chemistry due to the increased recognition of it's role in catalysis enzymatic reactions, magnetism and molecular architectures (Costamagna et al., 1992; Bhatia et al., 1981). We report here the crystal structure of a new cobalt(II) complex with the ligand 6-(3-chloro- (3,5-dimethyl-1H-pyrazol-1-yl)) picolinic acid(CDPA).(I) (Fig.1).

The title compound, (I), consists of a central mononuclear cobalt(II) complex together with two uncoordinated water molecules. The Co atom is coordinated by four N atoms and two O atoms from the two CDPA ligands. The CoII atom is a slightly distorted octahedral environment. The Co—O bond length is 2.090 (2) Å, The Co—N distances range from 2.071 (2) to 2.129 (3) Å, i.e. normal values. The C1—C2 bond length is 1.529 (5) Å, being in the normal C—C ranges in cobalt carboxylate complexes.The angles around CoII atom are from 74.49 (10) to 167.64 (15)°. The CDPA molecule acts as a bidentate ligand.

In the title compound, the oxygen atoms contribute to the formation of intermolecular hydrogen bonds involving water O3w atom, as well as carboxyl O2 atom and carboxyl O1 atom (Table 2).

Related literature top

For related literature, see: Bhatia et al. (1981); Costamagna et al. (1992).

Experimental top

3-Chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl)picolinic acid, and CoCl2. 6H2O were available commercially and were used without further purification. Equimolar 6-(3-chloro-(3,5-dimethyl-1H-pyrazol-1-yl))picolinic acid (1 mmol, 217 mg) was dissolved in anhydrous alcohol (15 ml). The mixture was stirred to give a clear solution, To this solution was added CoCl2.6H2O (0.5 mmol, 119 mg) in anhydrous alcohol (10 ml). After keeping the resulting solution in air to evaporate about half of the solvents, dark red prisms of the title compound were formed. The crystals were isolated, washed with alcohol three times and dried in a vacuum desiccator using silica gel (Yield 75%). Elemental analysis: found: C, 53.708; H, 4.20; N, 17.04; O, 13.22; calc. for C22H20CoN6O4: C, 53.78; H, 4.10; N, 17.10; O, 13.02

Refinement top

All the H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms with N—H and C—H distances of 0.90 Å and 0.96 Å, respectively. They were treated as riding atoms, with Uiso(H) = 1.2Ueq(C), Uiso(H) = 1.2Ueq(N) and Uiso(H) = 1.5Ueq(O).

Computing details top

Data collection: SMART (Siemens, 1996); cell refinement: SMART (Siemens, 1996); data reduction: SAINT (Siemens, 1996); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL (Sheldrick, 1997b).

Figures top
[Figure 1] Fig. 1. The structure of the title compound (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme.
[Figure 2] Fig. 2. Crystal packing of (I) showing the hydrogen bonded interactions as dashed lines.
Bis[3-chloro-6-(3,5-dimethyl-1H-pyrazol-1-yl-κN2)picolinato- κ2N,O]cobalt(II) 2.5-hydrate top
Crystal data top
[Co(C11H9ClN3O2)2]·2.5H2OF(000) = 1240
Mr = 605.29Dx = 1.532 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 3006 reflections
a = 20.207 (3) Åθ = 2.2–28.0°
b = 11.7918 (13) ŵ = 0.91 mm1
c = 14.3531 (16) ÅT = 293 K
β = 129.875 (2)°Block, red
V = 2624.6 (5) Å30.52 × 0.39 × 0.37 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
2305 independent reflections
Radiation source: fine-focus sealed tube1847 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2423
Tmin = 0.649, Tmax = 0.730k = 149
6384 measured reflectionsl = 1617
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0624P)2 + 4.5881P]
where P = (Fo2 + 2Fc2)/3
2305 reflections(Δ/σ)max < 0.001
175 parametersΔρmax = 0.71 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
[Co(C11H9ClN3O2)2]·2.5H2OV = 2624.6 (5) Å3
Mr = 605.29Z = 4
Monoclinic, C2/cMo Kα radiation
a = 20.207 (3) ŵ = 0.91 mm1
b = 11.7918 (13) ÅT = 293 K
c = 14.3531 (16) Å0.52 × 0.39 × 0.37 mm
β = 129.875 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
2305 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1847 reflections with I > 2σ(I)
Tmin = 0.649, Tmax = 0.730Rint = 0.025
6384 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 1.09Δρmax = 0.71 e Å3
2305 reflectionsΔρmin = 0.48 e Å3
175 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.00000.88230 (5)0.25000.0405 (2)
Cl10.25684 (7)0.64296 (9)0.28440 (10)0.0700 (3)
N10.12695 (15)0.8634 (2)0.3226 (2)0.0400 (6)
N20.15784 (15)1.0115 (2)0.4471 (2)0.0435 (6)
N30.06995 (15)1.0112 (2)0.3844 (2)0.0450 (7)
O10.00805 (14)0.7608 (2)0.1370 (2)0.0584 (7)
O20.0689 (2)0.6276 (3)0.1374 (4)0.0981 (12)
O30.0520 (3)0.4551 (4)0.4323 (5)0.160 (2)
H3A0.01560.50850.40530.192*
H3B0.06050.42610.49340.192*
O40.00000.3204 (11)0.25000.118 (4)0.50
H4A0.01670.36260.30960.142*0.50
C10.0613 (2)0.7152 (3)0.1753 (3)0.0539 (9)
C20.1436 (2)0.7766 (3)0.2794 (3)0.0430 (7)
C30.2279 (2)0.7541 (3)0.3311 (3)0.0489 (8)
C40.2934 (2)0.8222 (4)0.4251 (3)0.0614 (10)
H40.35030.80780.45950.074*
C50.2752 (2)0.9103 (4)0.4677 (3)0.0578 (10)
H50.31860.95700.53000.069*
C60.18908 (19)0.9271 (3)0.4139 (3)0.0427 (7)
C70.2919 (3)1.1245 (4)0.6132 (4)0.0785 (14)
H7A0.30351.19000.66140.118*
H7B0.31021.13870.56690.118*
H7C0.32271.06040.66540.118*
C80.1967 (2)1.1000 (3)0.5284 (3)0.0519 (9)
C90.1331 (2)1.1555 (4)0.5161 (3)0.0591 (10)
H90.13941.21960.55890.071*
C100.0553 (2)1.0985 (3)0.4266 (3)0.0503 (8)
C110.0344 (3)1.1244 (4)0.3785 (4)0.0714 (12)
H11A0.07081.05980.33480.107*
H11B0.05651.18850.32500.107*
H11C0.03331.14130.44480.107*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0225 (3)0.0521 (4)0.0380 (4)0.0000.0152 (3)0.000
Cl10.0582 (6)0.0774 (7)0.0825 (7)0.0267 (5)0.0489 (6)0.0137 (5)
N10.0260 (12)0.0485 (16)0.0385 (14)0.0019 (11)0.0175 (11)0.0032 (11)
N20.0247 (12)0.0551 (17)0.0372 (14)0.0030 (12)0.0137 (11)0.0024 (12)
N30.0254 (13)0.0600 (18)0.0404 (14)0.0003 (12)0.0169 (11)0.0028 (13)
O10.0334 (12)0.0703 (17)0.0556 (15)0.0012 (11)0.0212 (11)0.0165 (12)
O20.0618 (19)0.095 (2)0.125 (3)0.0092 (17)0.054 (2)0.056 (2)
O30.135 (4)0.127 (4)0.243 (6)0.037 (3)0.133 (4)0.064 (4)
O40.084 (7)0.139 (10)0.111 (8)0.0000.053 (7)0.000
C10.042 (2)0.059 (2)0.056 (2)0.0016 (17)0.0292 (17)0.0095 (17)
C20.0363 (16)0.0491 (19)0.0426 (17)0.0051 (14)0.0247 (15)0.0072 (14)
C30.0405 (18)0.058 (2)0.0521 (19)0.0134 (16)0.0315 (16)0.0133 (16)
C40.0261 (16)0.083 (3)0.063 (2)0.0117 (18)0.0236 (17)0.011 (2)
C50.0263 (16)0.079 (3)0.052 (2)0.0006 (17)0.0179 (16)0.0035 (19)
C60.0285 (15)0.0522 (19)0.0378 (16)0.0001 (14)0.0168 (14)0.0042 (14)
C70.039 (2)0.084 (3)0.081 (3)0.020 (2)0.024 (2)0.026 (2)
C80.0371 (18)0.057 (2)0.0472 (19)0.0088 (16)0.0204 (16)0.0071 (16)
C90.051 (2)0.061 (2)0.056 (2)0.0064 (18)0.0305 (19)0.0133 (18)
C100.0389 (18)0.060 (2)0.0471 (19)0.0011 (16)0.0254 (16)0.0026 (16)
C110.048 (2)0.085 (3)0.073 (3)0.004 (2)0.035 (2)0.020 (2)
Geometric parameters (Å, º) top
Co1—N12.071 (2)C1—C21.529 (5)
Co1—N1i2.071 (2)C2—C31.380 (4)
Co1—O12.090 (2)C3—C41.388 (5)
Co1—O1i2.090 (2)C4—C51.371 (6)
Co1—N32.129 (3)C4—H40.9300
Co1—N3i2.129 (3)C5—C61.393 (4)
Cl1—C31.735 (4)C5—H50.9300
N1—C61.323 (4)C7—C81.504 (5)
N1—C21.346 (4)C7—H7A0.9600
N2—C81.375 (4)C7—H7B0.9600
N2—N31.384 (3)C7—H7C0.9600
N2—C61.414 (4)C8—C91.350 (5)
N3—C101.321 (4)C9—C101.408 (5)
O1—C11.252 (4)C9—H90.9300
O2—C11.221 (4)C10—C111.499 (5)
O3—H3A0.8500C11—H11A0.9600
O3—H3B0.8502C11—H11B0.9600
O4—H4A0.8500C11—H11C0.9600
N1—Co1—N1i167.64 (15)C2—C3—Cl1122.9 (3)
N1—Co1—O176.79 (9)C4—C3—Cl1117.7 (3)
N1i—Co1—O194.64 (10)C5—C4—C3120.7 (3)
N1—Co1—O1i94.64 (10)C5—C4—H4119.6
N1i—Co1—O1i76.79 (9)C3—C4—H4119.6
O1—Co1—O1i93.49 (16)C4—C5—C6117.2 (3)
N1—Co1—N374.49 (10)C4—C5—H5121.4
N1i—Co1—N3114.91 (10)C6—C5—H5121.4
O1—Co1—N3150.26 (9)N1—C6—C5121.5 (3)
O1i—Co1—N396.33 (11)N1—C6—N2112.9 (3)
N1—Co1—N3i114.91 (10)C5—C6—N2125.6 (3)
N1i—Co1—N3i74.49 (10)C8—C7—H7A109.5
O1—Co1—N3i96.33 (11)C8—C7—H7B109.5
O1i—Co1—N3i150.26 (9)H7A—C7—H7B109.5
N3—Co1—N3i88.88 (15)C8—C7—H7C109.5
C6—N1—C2122.0 (3)H7A—C7—H7C109.5
C6—N1—Co1121.3 (2)H7B—C7—H7C109.5
C2—N1—Co1116.4 (2)C9—C8—N2106.2 (3)
C8—N2—N3110.5 (3)C9—C8—C7129.0 (4)
C8—N2—C6133.1 (3)N2—C8—C7124.8 (3)
N3—N2—C6116.3 (2)C8—C9—C10107.5 (3)
C10—N3—N2105.8 (3)C8—C9—H9126.3
C10—N3—Co1139.3 (2)C10—C9—H9126.3
N2—N3—Co1114.9 (2)N3—C10—C9110.0 (3)
C1—O1—Co1116.5 (2)N3—C10—C11120.5 (3)
H3A—O3—H3B108.2C9—C10—C11129.5 (3)
O2—C1—O1126.4 (4)C10—C11—H11A109.5
O2—C1—C2117.8 (3)C10—C11—H11B109.5
O1—C1—C2115.8 (3)H11A—C11—H11B109.5
N1—C2—C3119.0 (3)C10—C11—H11C109.5
N1—C2—C1112.0 (3)H11A—C11—H11C109.5
C3—C2—C1129.0 (3)H11B—C11—H11C109.5
C2—C3—C4119.4 (3)
N1i—Co1—N1—C6137.3 (2)Co1—N1—C2—C15.0 (3)
O1—Co1—N1—C6175.8 (3)O2—C1—C2—N1172.3 (4)
O1i—Co1—N1—C691.7 (3)O1—C1—C2—N17.8 (5)
N3—Co1—N1—C63.6 (2)O2—C1—C2—C37.4 (6)
N3i—Co1—N1—C684.9 (3)O1—C1—C2—C3172.4 (3)
N1i—Co1—N1—C236.9 (2)N1—C2—C3—C40.9 (5)
O1—Co1—N1—C210.1 (2)C1—C2—C3—C4179.4 (3)
O1i—Co1—N1—C282.4 (2)N1—C2—C3—Cl1178.8 (2)
N3—Co1—N1—C2177.7 (2)C1—C2—C3—Cl10.9 (5)
N3i—Co1—N1—C2101.0 (2)C2—C3—C4—C50.8 (6)
C8—N2—N3—C100.1 (4)Cl1—C3—C4—C5179.0 (3)
C6—N2—N3—C10177.7 (3)C3—C4—C5—C60.8 (6)
C8—N2—N3—Co1177.8 (2)C2—N1—C6—C52.4 (5)
C6—N2—N3—Co10.0 (3)Co1—N1—C6—C5176.2 (3)
N1—Co1—N3—C10174.9 (4)C2—N1—C6—N2178.4 (3)
N1i—Co1—N3—C1013.7 (4)Co1—N1—C6—N24.6 (4)
O1—Co1—N3—C10159.4 (3)C4—C5—C6—N12.4 (5)
O1i—Co1—N3—C1092.1 (4)C4—C5—C6—N2178.5 (3)
N3i—Co1—N3—C1058.6 (3)C8—N2—C6—N1174.4 (3)
N1—Co1—N3—N21.7 (2)N3—N2—C6—N12.8 (4)
N1i—Co1—N3—N2169.7 (2)C8—N2—C6—C54.8 (6)
O1—Co1—N3—N217.2 (4)N3—N2—C6—C5178.0 (3)
O1i—Co1—N3—N291.4 (2)N3—N2—C8—C90.3 (4)
N3i—Co1—N3—N2118.0 (2)C6—N2—C8—C9177.0 (3)
N1—Co1—O1—C115.0 (3)N3—N2—C8—C7178.8 (4)
N1i—Co1—O1—C1156.0 (3)C6—N2—C8—C73.9 (6)
O1i—Co1—O1—C179.0 (3)N2—C8—C9—C100.4 (4)
N3—Co1—O1—C130.3 (4)C7—C8—C9—C10178.7 (4)
N3i—Co1—O1—C1129.1 (3)N2—N3—C10—C90.1 (4)
Co1—O1—C1—O2163.4 (4)Co1—N3—C10—C9176.7 (3)
Co1—O1—C1—C216.8 (4)N2—N3—C10—C11180.0 (3)
C6—N1—C2—C30.7 (5)Co1—N3—C10—C113.3 (6)
Co1—N1—C2—C3174.8 (2)C8—C9—C10—N30.3 (5)
C6—N1—C2—C1179.1 (3)C8—C9—C10—C11179.8 (4)
Symmetry code: (i) x, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.851.982.825 (8)172
O3—H3B···O2ii0.852.062.907 (8)172
O4—H4A···O30.851.792.636 (8)178
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2.

Experimental details

Crystal data
Chemical formula[Co(C11H9ClN3O2)2]·2.5H2O
Mr605.29
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)20.207 (3), 11.7918 (13), 14.3531 (16)
β (°) 129.875 (2)
V3)2624.6 (5)
Z4
Radiation typeMo Kα
µ (mm1)0.91
Crystal size (mm)0.52 × 0.39 × 0.37
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.649, 0.730
No. of measured, independent and
observed [I > 2σ(I)] reflections
6384, 2305, 1847
Rint0.025
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.130, 1.09
No. of reflections2305
No. of parameters175
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.71, 0.48

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SHELXS97 (Sheldrick, 1997a), SHELXL97 (Sheldrick, 1997a), SHELXTL (Sheldrick, 1997b).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3A···O2i0.8501.9812.825 (8)171.52
O3—H3B···O2ii0.8502.0632.907 (8)171.96
O4—H4A···O30.8501.7862.636 (8)178.10
Symmetry codes: (i) x, y, z+1/2; (ii) x, y+1, z+1/2.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds