Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807021496/sj2312sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807021496/sj2312Isup2.hkl |
CCDC reference: 650584
Key indicators
- Single-crystal X-ray study
- T = 292 K
- Mean (C-C) = 0.004 Å
- R factor = 0.031
- wR factor = 0.086
- Data-to-parameter ratio = 15.9
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 200 Deg. PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C11 PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors for C16 PLAT331_ALERT_2_C Small Average Phenyl C-C Dist. C16 -C18 1.36 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ni1 (2) 2.07 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 2
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
For a background to chemical vapour deposition (CVD) and the synthesis of metal–organic (MO) CVD precursors, see: Williams (1989), Dharmaprakash et al. (2006, and references therein); Neelgund et al. (2007).
The compound was synthesized by dissolving Ni(NO3)2.6H2O (2.9 g, 10 mmol) in 30% ethanol (30 ml). To this solution, (3.26 ml, 20 mmol) tert-butyl-3-oxobutanoate was added, maintaining the pH at 6.5 by adding KOH dissolved in 30% ethanol and the mixture was stirred for 30 minutes at 4 °C. The precipitate formed was filtered off, suction-dried and recrystallized to obtain block shaped crystals from a mixture of pyridine and benzene (2:1 v/v).
Hydrogen atoms were fixed geometrically and treated as riding atoms, with C—H distance of 0.93Å (Csp2), 0.96Å (Csp3) and with Uiso(H) = 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for other H atoms. The disordered benzene solvent was subjected to restrained refinement using DFIX 1.400 0.002 command for the distances C16—C17 and C16—C18 respectively.
Based on the methodology suggested for making thin films via chemical vapour deposition (CVD) by Williams (1989), several metal-organic (MO) CVD precursors have been synthesized and characterized (Dharmaprakash et al., 2006; Neelgund et al., 2007). In our attempts to synthesize less volatile hydrate precursors, the title compound has been prepared and its structure determined by X-ray diffraction.
The Ni atom is six co-ordinated with the participation of the ketonic O atoms of two bidentate tert-butyl-3-oxobutanoate ligands in the basal plane and with the N atoms of the two pyridine molecules in anti positions to each other, resulting in a distorted octahedral geometry [Fig. 1]. The Ni atom and solvent benzene molecule lie on the inversion centres at (0 0 0) and (0 1/2 1/2) respectively. Selected bond Ni—O/Ni—N distances are Ni1—O1 [2.024 (1) Å], Ni1—O2 [2.062 (1) Å] and Ni1—N1 [2.104 (1) Å].
Pairs of centrosymmetrically related pyridine ligands are involved in intermolecular π···π interactions [Cg···Cg = 3.896 (1)Å Cg = centroid of the pyridine ring (N1/C1/C2/C3/C4/C5), symmetry code (-x, 1 - y, -z)], with each such pair linked to a solvent benzene molecule via C18—H18···π interactions [H18···Cg = 3.021 (4) Å, symmetry code (-x + 1, -y, -z)], stabilizing the crystal packing in (I) [Fig. 2]. The supramolecular assembly is thus brought by an infinite chain of C—H···π and π···π interactions along the c axis [Fig. 2].
For a background to chemical vapour deposition (CVD) and the synthesis of metal–organic (MO) CVD precursors, see: Williams (1989), Dharmaprakash et al. (2006, and references therein); Neelgund et al. (2007).
Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS86 (Sheldrick, 1985); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006) and CAMERON (Watkin et al., 1993); software used to prepare material for publication: PLATON (Spek, 2003).
[Ni(C8H13O3)2(C5H5N)2]·C6H6 | Z = 1 |
Mr = 609.37 | F(000) = 324 |
Triclinic, P1 | Dx = 1.257 Mg m−3 |
Hall symbol: -P 1 | Melting point: 124 K |
a = 8.3748 (11) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 8.8057 (12) Å | Cell parameters from 622 reflections |
c = 12.5949 (17) Å | θ = 0.9–28.0° |
α = 99.205 (2)° | µ = 0.65 mm−1 |
β = 93.504 (2)° | T = 292 K |
γ = 117.338 (2)° | Block, pale blue |
V = 804.81 (19) Å3 | 0.54 × 0.43 × 0.21 mm |
Bruker SMART APEX CCD area-detector diffractometer | 3031 independent reflections |
Radiation source: fine-focus sealed tube | 2913 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.020 |
φ and ω scans | θmax = 25.7°, θmin = 2.7° |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | h = −10→10 |
Tmin = 0.722, Tmax = 0.876 | k = −10→10 |
8193 measured reflections | l = −15→15 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.10 | w = 1/[σ2(Fo2) + (0.0481P)2 + 0.1788P] where P = (Fo2 + 2Fc2)/3 |
3031 reflections | (Δ/σ)max < 0.001 |
191 parameters | Δρmax = 0.27 e Å−3 |
2 restraints | Δρmin = −0.32 e Å−3 |
[Ni(C8H13O3)2(C5H5N)2]·C6H6 | γ = 117.338 (2)° |
Mr = 609.37 | V = 804.81 (19) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.3748 (11) Å | Mo Kα radiation |
b = 8.8057 (12) Å | µ = 0.65 mm−1 |
c = 12.5949 (17) Å | T = 292 K |
α = 99.205 (2)° | 0.54 × 0.43 × 0.21 mm |
β = 93.504 (2)° |
Bruker SMART APEX CCD area-detector diffractometer | 3031 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) | 2913 reflections with I > 2σ(I) |
Tmin = 0.722, Tmax = 0.876 | Rint = 0.020 |
8193 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 2 restraints |
wR(F2) = 0.086 | H-atom parameters constrained |
S = 1.10 | Δρmax = 0.27 e Å−3 |
3031 reflections | Δρmin = −0.32 e Å−3 |
191 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Ni1 | 0.0000 | 0.0000 | 0.0000 | 0.03488 (11) | |
O1 | 0.23256 (15) | 0.17167 (15) | −0.04472 (10) | 0.0424 (3) | |
O2 | 0.14118 (16) | 0.04802 (16) | 0.15216 (10) | 0.0437 (3) | |
N1 | 0.06342 (19) | −0.20147 (18) | −0.05506 (12) | 0.0405 (3) | |
O3 | 0.16353 (19) | 0.06159 (19) | 0.33340 (10) | 0.0563 (3) | |
C9 | 0.0652 (2) | 0.0073 (2) | 0.23278 (14) | 0.0415 (4) | |
C6 | 0.2545 (2) | 0.1808 (2) | −0.14322 (15) | 0.0411 (4) | |
C8 | −0.1222 (3) | −0.0968 (2) | 0.23407 (15) | 0.0482 (4) | |
H8 | −0.1596 | −0.1099 | 0.3016 | 0.058* | |
C5 | −0.0671 (3) | −0.3621 (2) | −0.10124 (16) | 0.0500 (4) | |
H5 | −0.1875 | −0.3844 | −0.1075 | 0.060* | |
C1 | 0.2349 (2) | −0.1730 (3) | −0.04644 (16) | 0.0496 (4) | |
H1 | 0.3272 | −0.0617 | −0.0136 | 0.059* | |
C11 | 0.3635 (3) | 0.1579 (3) | 0.35310 (17) | 0.0591 (5) | |
C2 | 0.2816 (3) | −0.3003 (3) | −0.08382 (19) | 0.0611 (5) | |
H2 | 0.4028 | −0.2755 | −0.0770 | 0.073* | |
C4 | −0.0311 (3) | −0.4962 (3) | −0.1399 (2) | 0.0661 (6) | |
H4 | −0.1256 | −0.6070 | −0.1716 | 0.079* | |
C7 | 0.4466 (3) | 0.3003 (3) | −0.15884 (19) | 0.0603 (5) | |
H7A | 0.4866 | 0.4157 | −0.1164 | 0.090* | |
H7B | 0.4496 | 0.3050 | −0.2344 | 0.090* | |
H7C | 0.5256 | 0.2563 | −0.1357 | 0.090* | |
C12 | 0.4337 (4) | 0.3310 (3) | 0.3181 (2) | 0.0760 (7) | |
H12A | 0.4097 | 0.3104 | 0.2402 | 0.114* | |
H12B | 0.5624 | 0.3991 | 0.3423 | 0.114* | |
H12C | 0.3736 | 0.3933 | 0.3497 | 0.114* | |
C14 | 0.4380 (4) | 0.0438 (4) | 0.2969 (2) | 0.0771 (7) | |
H14A | 0.3888 | −0.0649 | 0.3209 | 0.116* | |
H14B | 0.5682 | 0.1029 | 0.3148 | 0.116* | |
H14C | 0.4041 | 0.0210 | 0.2196 | 0.116* | |
C3 | 0.1455 (4) | −0.4647 (3) | −0.1313 (2) | 0.0699 (6) | |
H3 | 0.1728 | −0.5536 | −0.1574 | 0.084* | |
C13 | 0.4045 (4) | 0.1869 (4) | 0.4768 (2) | 0.0907 (9) | |
H13A | 0.3537 | 0.2568 | 0.5107 | 0.136* | |
H13B | 0.5338 | 0.2461 | 0.4994 | 0.136* | |
H13C | 0.3519 | 0.0760 | 0.4980 | 0.136* | |
C16 | 0.9918 (6) | 0.3375 (5) | 0.4840 (3) | 0.1279 (14) | |
H16 | 0.9844 | 0.2273 | 0.4716 | 0.153* | |
C17 | 0.9913 (8) | 0.4253 (8) | 0.5856 (3) | 0.155 (2) | |
H17 | 0.9879 | 0.3752 | 0.6457 | 0.186* | |
C18 | 1.0046 (8) | 0.4301 (8) | 0.4024 (3) | 0.155 (2) | |
H18 | 1.0105 | 0.3795 | 0.3330 | 0.186* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Ni1 | 0.02993 (16) | 0.03302 (17) | 0.03890 (18) | 0.01287 (12) | 0.00500 (11) | 0.00705 (12) |
O1 | 0.0350 (6) | 0.0391 (6) | 0.0473 (7) | 0.0129 (5) | 0.0073 (5) | 0.0088 (5) |
O2 | 0.0375 (6) | 0.0467 (7) | 0.0421 (6) | 0.0167 (5) | 0.0035 (5) | 0.0089 (5) |
N1 | 0.0383 (7) | 0.0375 (7) | 0.0453 (8) | 0.0177 (6) | 0.0073 (6) | 0.0088 (6) |
O3 | 0.0547 (8) | 0.0633 (9) | 0.0406 (7) | 0.0211 (7) | 0.0011 (6) | 0.0088 (6) |
C9 | 0.0478 (9) | 0.0370 (8) | 0.0395 (9) | 0.0212 (8) | 0.0037 (7) | 0.0058 (7) |
C6 | 0.0393 (9) | 0.0341 (8) | 0.0550 (10) | 0.0197 (7) | 0.0149 (7) | 0.0130 (7) |
C8 | 0.0506 (10) | 0.0490 (10) | 0.0448 (10) | 0.0216 (9) | 0.0145 (8) | 0.0137 (8) |
C5 | 0.0447 (10) | 0.0395 (9) | 0.0582 (11) | 0.0151 (8) | 0.0078 (8) | 0.0062 (8) |
C1 | 0.0402 (9) | 0.0475 (10) | 0.0613 (11) | 0.0215 (8) | 0.0073 (8) | 0.0104 (8) |
C11 | 0.0554 (12) | 0.0583 (12) | 0.0532 (11) | 0.0224 (10) | −0.0076 (9) | 0.0045 (9) |
C2 | 0.0577 (12) | 0.0687 (14) | 0.0743 (14) | 0.0420 (11) | 0.0181 (10) | 0.0206 (11) |
C4 | 0.0702 (14) | 0.0413 (10) | 0.0772 (14) | 0.0224 (10) | 0.0109 (11) | 0.0008 (10) |
C7 | 0.0438 (10) | 0.0610 (12) | 0.0724 (14) | 0.0174 (9) | 0.0196 (10) | 0.0244 (11) |
C12 | 0.0670 (15) | 0.0547 (13) | 0.0864 (17) | 0.0168 (11) | −0.0042 (13) | 0.0073 (12) |
C14 | 0.0720 (15) | 0.0850 (17) | 0.0809 (16) | 0.0476 (14) | −0.0065 (13) | 0.0095 (13) |
C3 | 0.0892 (17) | 0.0598 (13) | 0.0805 (16) | 0.0514 (13) | 0.0237 (13) | 0.0125 (11) |
C13 | 0.0869 (19) | 0.106 (2) | 0.0571 (14) | 0.0357 (17) | −0.0196 (13) | 0.0033 (14) |
C16 | 0.115 (3) | 0.143 (4) | 0.121 (3) | 0.069 (3) | −0.003 (2) | 0.000 (3) |
C17 | 0.229 (6) | 0.184 (5) | 0.093 (3) | 0.126 (5) | 0.039 (3) | 0.042 (3) |
C18 | 0.217 (6) | 0.206 (6) | 0.078 (2) | 0.131 (5) | 0.037 (3) | 0.019 (3) |
Ni1—O1 | 2.0243 (11) | C2—C3 | 1.370 (3) |
Ni1—O1i | 2.0243 (11) | C2—H2 | 0.9300 |
Ni1—O2i | 2.0626 (12) | C4—C3 | 1.368 (3) |
Ni1—O2 | 2.0626 (12) | C4—H4 | 0.9300 |
Ni1—N1 | 2.1041 (14) | C7—H7A | 0.9600 |
Ni1—N1i | 2.1041 (14) | C7—H7B | 0.9600 |
O1—C6 | 1.275 (2) | C7—H7C | 0.9600 |
O2—C9 | 1.245 (2) | C12—H12A | 0.9600 |
N1—C5 | 1.332 (2) | C12—H12B | 0.9600 |
N1—C1 | 1.333 (2) | C12—H12C | 0.9600 |
O3—C9 | 1.353 (2) | C14—H14A | 0.9600 |
O3—C11 | 1.470 (3) | C14—H14B | 0.9600 |
C9—C8 | 1.411 (3) | C14—H14C | 0.9600 |
C6—C8i | 1.380 (3) | C3—H3 | 0.9300 |
C6—C7 | 1.512 (2) | C13—H13A | 0.9600 |
C8—C6i | 1.380 (3) | C13—H13B | 0.9600 |
C8—H8 | 0.9300 | C13—H13C | 0.9600 |
C5—C4 | 1.371 (3) | C16—C17 | 1.387 (6) |
C5—H5 | 0.9300 | C16—C18 | 1.391 (6) |
C1—C2 | 1.375 (3) | C16—H16 | 0.9300 |
C1—H1 | 0.9300 | C17—C18ii | 1.243 (6) |
C11—C12 | 1.512 (3) | C17—H17 | 0.9300 |
C11—C14 | 1.517 (3) | C18—C17ii | 1.243 (6) |
C11—C13 | 1.529 (3) | C18—H18 | 0.9300 |
O1—Ni1—O1i | 180.00 (7) | C3—C2—C1 | 118.5 (2) |
O1—Ni1—O2i | 90.70 (5) | C3—C2—H2 | 120.8 |
O1i—Ni1—O2i | 89.30 (5) | C1—C2—H2 | 120.8 |
O1—Ni1—O2 | 89.30 (5) | C3—C4—C5 | 119.1 (2) |
O1i—Ni1—O2 | 90.70 (5) | C3—C4—H4 | 120.4 |
O2i—Ni1—O2 | 180.00 (8) | C5—C4—H4 | 120.4 |
O1—Ni1—N1 | 89.06 (5) | C6—C7—H7A | 109.5 |
O1i—Ni1—N1 | 90.94 (5) | C6—C7—H7B | 109.5 |
O2i—Ni1—N1 | 89.84 (5) | H7A—C7—H7B | 109.5 |
O2—Ni1—N1 | 90.16 (5) | C6—C7—H7C | 109.5 |
O1—Ni1—N1i | 90.94 (5) | H7A—C7—H7C | 109.5 |
O1i—Ni1—N1i | 89.06 (5) | H7B—C7—H7C | 109.5 |
O2i—Ni1—N1i | 90.16 (5) | C11—C12—H12A | 109.5 |
O2—Ni1—N1i | 89.84 (5) | C11—C12—H12B | 109.5 |
N1—Ni1—N1i | 180.00 (7) | H12A—C12—H12B | 109.5 |
C6—O1—Ni1 | 123.90 (11) | C11—C12—H12C | 109.5 |
C9—O2—Ni1 | 123.11 (11) | H12A—C12—H12C | 109.5 |
C5—N1—C1 | 117.60 (16) | H12B—C12—H12C | 109.5 |
C5—N1—Ni1 | 120.88 (12) | C11—C14—H14A | 109.5 |
C1—N1—Ni1 | 121.52 (12) | C11—C14—H14B | 109.5 |
C9—O3—C11 | 122.78 (15) | H14A—C14—H14B | 109.5 |
O2—C9—O3 | 120.71 (16) | C11—C14—H14C | 109.5 |
O2—C9—C8 | 127.34 (16) | H14A—C14—H14C | 109.5 |
O3—C9—C8 | 111.94 (15) | H14B—C14—H14C | 109.5 |
O1—C6—C8i | 126.91 (16) | C4—C3—C2 | 119.06 (19) |
O1—C6—C7 | 114.90 (16) | C4—C3—H3 | 120.5 |
C8i—C6—C7 | 118.18 (17) | C2—C3—H3 | 120.5 |
C6i—C8—C9 | 125.26 (17) | C11—C13—H13A | 109.5 |
C6i—C8—H8 | 117.4 | C11—C13—H13B | 109.5 |
C9—C8—H8 | 117.4 | H13A—C13—H13B | 109.5 |
N1—C5—C4 | 122.65 (19) | C11—C13—H13C | 109.5 |
N1—C5—H5 | 118.7 | H13A—C13—H13C | 109.5 |
C4—C5—H5 | 118.7 | H13B—C13—H13C | 109.5 |
N1—C1—C2 | 123.11 (18) | C17—C16—C18 | 113.6 (4) |
N1—C1—H1 | 118.4 | C17—C16—H16 | 123.2 |
C2—C1—H1 | 118.4 | C18—C16—H16 | 123.2 |
O3—C11—C12 | 111.15 (18) | C18ii—C17—C16 | 120.9 (4) |
O3—C11—C14 | 109.53 (18) | C18ii—C17—H17 | 119.5 |
C12—C11—C14 | 112.4 (2) | C16—C17—H17 | 119.5 |
O3—C11—C13 | 101.87 (19) | C17ii—C18—C16 | 125.4 (4) |
C12—C11—C13 | 110.6 (2) | C17ii—C18—H18 | 117.3 |
C14—C11—C13 | 110.8 (2) | C16—C18—H18 | 117.3 |
O2i—Ni1—O1—C6 | −16.16 (13) | C11—O3—C9—C8 | 174.11 (17) |
O2—Ni1—O1—C6 | 163.84 (13) | Ni1—O1—C6—C8i | 9.6 (2) |
N1—Ni1—O1—C6 | 73.67 (13) | Ni1—O1—C6—C7 | −171.77 (12) |
N1i—Ni1—O1—C6 | −106.33 (13) | O2—C9—C8—C6i | 3.9 (3) |
O1—Ni1—O2—C9 | 163.87 (13) | O3—C9—C8—C6i | −175.27 (17) |
O1i—Ni1—O2—C9 | −16.13 (13) | C1—N1—C5—C4 | −0.4 (3) |
N1—Ni1—O2—C9 | −107.07 (13) | Ni1—N1—C5—C4 | 178.80 (16) |
N1i—Ni1—O2—C9 | 72.93 (13) | C5—N1—C1—C2 | 0.7 (3) |
O1—Ni1—N1—C5 | −144.94 (14) | Ni1—N1—C1—C2 | −178.42 (16) |
O1i—Ni1—N1—C5 | 35.06 (14) | C9—O3—C11—C12 | 62.2 (2) |
O2i—Ni1—N1—C5 | −54.24 (14) | C9—O3—C11—C14 | −62.7 (2) |
O2—Ni1—N1—C5 | 125.76 (14) | C9—O3—C11—C13 | 179.96 (19) |
O1—Ni1—N1—C1 | 34.18 (14) | N1—C1—C2—C3 | −0.6 (3) |
O1i—Ni1—N1—C1 | −145.82 (14) | N1—C5—C4—C3 | −0.2 (3) |
O2i—Ni1—N1—C1 | 124.88 (14) | C5—C4—C3—C2 | 0.3 (4) |
O2—Ni1—N1—C1 | −55.12 (14) | C1—C2—C3—C4 | 0.0 (4) |
Ni1—O2—C9—O3 | −171.36 (12) | C18—C16—C17—C18ii | 2.4 (10) |
Ni1—O2—C9—C8 | 9.6 (2) | C17—C16—C18—C17ii | −2.6 (10) |
C11—O3—C9—O2 | −5.1 (3) |
Symmetry codes: (i) −x, −y, −z; (ii) −x+2, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Ni(C8H13O3)2(C5H5N)2]·C6H6 |
Mr | 609.37 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 292 |
a, b, c (Å) | 8.3748 (11), 8.8057 (12), 12.5949 (17) |
α, β, γ (°) | 99.205 (2), 93.504 (2), 117.338 (2) |
V (Å3) | 804.81 (19) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.65 |
Crystal size (mm) | 0.54 × 0.43 × 0.21 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector |
Absorption correction | Multi-scan (SADABS; Sheldrick, 1996) |
Tmin, Tmax | 0.722, 0.876 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 8193, 3031, 2913 |
Rint | 0.020 |
(sin θ/λ)max (Å−1) | 0.610 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.086, 1.10 |
No. of reflections | 3031 |
No. of parameters | 191 |
No. of restraints | 2 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.27, −0.32 |
Computer programs: SMART (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS86 (Sheldrick, 1985), SHELXL97 (Sheldrick, 1997), DIAMOND (Brandenburg, 2006) and CAMERON (Watkin et al., 1993), PLATON (Spek, 2003).
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
Based on the methodology suggested for making thin films via chemical vapour deposition (CVD) by Williams (1989), several metal-organic (MO) CVD precursors have been synthesized and characterized (Dharmaprakash et al., 2006; Neelgund et al., 2007). In our attempts to synthesize less volatile hydrate precursors, the title compound has been prepared and its structure determined by X-ray diffraction.
The Ni atom is six co-ordinated with the participation of the ketonic O atoms of two bidentate tert-butyl-3-oxobutanoate ligands in the basal plane and with the N atoms of the two pyridine molecules in anti positions to each other, resulting in a distorted octahedral geometry [Fig. 1]. The Ni atom and solvent benzene molecule lie on the inversion centres at (0 0 0) and (0 1/2 1/2) respectively. Selected bond Ni—O/Ni—N distances are Ni1—O1 [2.024 (1) Å], Ni1—O2 [2.062 (1) Å] and Ni1—N1 [2.104 (1) Å].
Pairs of centrosymmetrically related pyridine ligands are involved in intermolecular π···π interactions [Cg···Cg = 3.896 (1)Å Cg = centroid of the pyridine ring (N1/C1/C2/C3/C4/C5), symmetry code (-x, 1 - y, -z)], with each such pair linked to a solvent benzene molecule via C18—H18···π interactions [H18···Cg = 3.021 (4) Å, symmetry code (-x + 1, -y, -z)], stabilizing the crystal packing in (I) [Fig. 2]. The supramolecular assembly is thus brought by an infinite chain of C—H···π and π···π interactions along the c axis [Fig. 2].