Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The asymmetric unit of the title compound, [Cu2(C12H17N2O2)2(N3)(μ-N3)(H2O)]·H2O, consists of a dinuclear complex mol­ecule and a solvent water mol­ecule. One Cu atom is six-coordinated by the phenol O atom and by one imine and one amine N atoms from one Schiff base ligand, the phenol and ether O atoms of the second Schiff base, together with a terminal N atom of the bridging azide ligand, in an octa­hedral geometry. The coordination environment of the second Cu atom contains a phenol O and imine and amine N atoms from one Schiff base ligand, two further N atoms, one from the bridging and the other from a terminal azide ligand, and a coordinated water mol­ecule, also in an octa­hedral geometry. The crystal structure involves O—H...N and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807043267/sj2351sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807043267/sj2351Isup2.hkl
Contains datablock I

CCDC reference: 663578

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.008 Å
  • R factor = 0.066
  • wR factor = 0.177
  • Data-to-parameter ratio = 17.6

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95 PLAT220_ALERT_2_B Large Non-Solvent C Ueq(max)/Ueq(min) ... 4.16 Ratio PLAT220_ALERT_2_B Large Non-Solvent N Ueq(max)/Ueq(min) ... 4.11 Ratio PLAT222_ALERT_3_B Large Non-Solvent H Ueq(max)/Ueq(min) ... 4.33 Ratio PLAT241_ALERT_2_B Check High Ueq as Compared to Neighbors for C22 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N4 PLAT242_ALERT_2_B Check Low Ueq as Compared to Neighbors for N6 PLAT420_ALERT_2_B D-H Without Acceptor O5W - H5WB ... ? PLAT420_ALERT_2_B D-H Without Acceptor O6W - H6WB ... ?
Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. deep REFLT03_ALERT_3_C Reflection count < 95% complete From the CIF: _diffrn_reflns_theta_max 28.31 From the CIF: _diffrn_reflns_theta_full 28.31 From the CIF: _reflns_number_total 6982 TEST2: Reflns within _diffrn_reflns_theta_max Count of symmetry unique reflns 7364 Completeness (_total/calc) 94.81% PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.94 PLAT230_ALERT_2_C Hirshfeld Test Diff for N4 - C22 .. 5.76 su PLAT230_ALERT_2_C Hirshfeld Test Diff for N8 - N9 .. 5.16 su PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for N9 PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 8 PLAT480_ALERT_4_C Long H...A H-Bond Reported H5WB .. N10 .. 2.69 Ang. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 4
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.944 Tmax scaled 0.567 Tmin scaled 0.522 PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.21 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.24 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 6
0 ALERT level A = In general: serious problem 9 ALERT level B = Potentially serious problem 9 ALERT level C = Check and explain 6 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 10 ALERT type 2 Indicator that the structure model may be wrong or deficient 6 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check

Comment top

Polynuclear complexes play an important role in the development of coordination chemistry (Eshel et al., 2000; Jiang et al., 2005; Escuer et al., 2000; El-Behairy et al., 1997; Manhas et al., 2005). Some of the complexes have been found to have pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). A prime strategy for designing these molecular materials is to use suitable bridging ligands (Salem, 2005; Dohlakiya & Patel, 2005; Dey et al., 2004). The azide ligand displays a number of coordination modes and has become one of the most extensively studied building blocks in the field. We recently reported the structure of an azide-bridged polynuclear copper(II) complex (Diao, 2007) and we report herein the crystal structure of the related title complex (I), Fig 1.

The complex is an azide-bridged dinuclear copper(II) complex. One Cu atom is six-coordinated by the phenolic O atom, one imine, and one amine N atoms from one Schiff base ligand, the phenolic and ether O atoms of the second Schiff base, together with a terminal N atom of the bridging azide ligand, in an octahedral geometry. The coordination sphere of the second Cu atom contains a phenolic O, imine and amine N atoms from one Schiff base ligand, two N atoms one from the bridging and the other from a terminal azide ligand, and a coordinated water molecule, also in an octahedral geometry.

Related literature top

For background on the chemistry of polynuclear complexes, see: Eshel et al. (2000); Jiang et al. (2005); Escuer et al. (2000); El-Behairy et al. (1997); Manhas et al. (2005). For their biological activity, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For polynuclear complexes involving bridging ligands, see: Salem (2005); Dohlakiya & Patel (2005); Dey et al. (2004). For a related structure, see: Diao (2007).

Experimental top

2-Hydroxy-3-methoxybenzaldehyde (0.2 mmol, 30.5 mg), N,N-dimethylethane-1,2-diamine (0.2 mmol, 17.5 mg), NaN3 (0.2 mmol, 13.0 mg), and Cu(CH3COO)2.H2O (0.2 mmol, 40.0 mg) were dissolved in an 95% ethanol solution (30 ml). The mixture was stirred at room temperature for 30 min to give a deep blue solution. After keeping the solution in air for a few days, deep blue crystals were formed.

Refinement top

The crystals were very weakly diffracting and few high angle reflections were obtained. This explains the low measured fraction of data in this determination. Water H atoms were located from a difference Fourier map and refined isotropically. All other H atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.93 Å, Uiso = 1.2Ueq (C) for aromatic, 0.97 Å, Uiso = 1.2Ueq (C) for CH2 and 0.96 Å, Uiso = 1.5Ueq (C) for CH3 atoms.

Structure description top

Polynuclear complexes play an important role in the development of coordination chemistry (Eshel et al., 2000; Jiang et al., 2005; Escuer et al., 2000; El-Behairy et al., 1997; Manhas et al., 2005). Some of the complexes have been found to have pharmacological and antitumor properties (Brückner et al., 2000; Harrop et al., 2003; Ren et al., 2002). A prime strategy for designing these molecular materials is to use suitable bridging ligands (Salem, 2005; Dohlakiya & Patel, 2005; Dey et al., 2004). The azide ligand displays a number of coordination modes and has become one of the most extensively studied building blocks in the field. We recently reported the structure of an azide-bridged polynuclear copper(II) complex (Diao, 2007) and we report herein the crystal structure of the related title complex (I), Fig 1.

The complex is an azide-bridged dinuclear copper(II) complex. One Cu atom is six-coordinated by the phenolic O atom, one imine, and one amine N atoms from one Schiff base ligand, the phenolic and ether O atoms of the second Schiff base, together with a terminal N atom of the bridging azide ligand, in an octahedral geometry. The coordination sphere of the second Cu atom contains a phenolic O, imine and amine N atoms from one Schiff base ligand, two N atoms one from the bridging and the other from a terminal azide ligand, and a coordinated water molecule, also in an octahedral geometry.

For background on the chemistry of polynuclear complexes, see: Eshel et al. (2000); Jiang et al. (2005); Escuer et al. (2000); El-Behairy et al. (1997); Manhas et al. (2005). For their biological activity, see: Brückner et al. (2000); Harrop et al. (2003); Ren et al. (2002). For polynuclear complexes involving bridging ligands, see: Salem (2005); Dohlakiya & Patel (2005); Dey et al. (2004). For a related structure, see: Diao (2007).

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2000); program(s) used to refine structure: SHELXTL (Bruker, 2000); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. The structure of the complex with displacement parameters drawn at the 30% probability level. Hydrogen atoms have been omitted for clarity.
Aqua(azido)(µ-azido)bis{2-[(2-dimethylaminoethylimino)methyl]- 6-methoxyphenolato}dicopper(II) monohydrate top
Crystal data top
[Cu2(C12H17N2O2)2(N3)2(H2O)]·H2OF(000) = 1432
Mr = 689.72Dx = 1.548 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2127 reflections
a = 16.232 (3) Åθ = 2.4–25.3°
b = 13.540 (2) ŵ = 1.49 mm1
c = 13.997 (3) ÅT = 293 K
β = 105.821 (2)°Block, deep blue
V = 2959.7 (9) Å30.45 × 0.40 × 0.38 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6982 independent reflections
Radiation source: fine-focus sealed tube4183 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.083
ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
h = 2020
Tmin = 0.553, Tmax = 0.601k = 1718
25203 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.066Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.082P)2]
where P = (Fo2 + 2Fc2)/3
6982 reflections(Δ/σ)max < 0.001
397 parametersΔρmax = 0.85 e Å3
6 restraintsΔρmin = 0.53 e Å3
Crystal data top
[Cu2(C12H17N2O2)2(N3)2(H2O)]·H2OV = 2959.7 (9) Å3
Mr = 689.72Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.232 (3) ŵ = 1.49 mm1
b = 13.540 (2) ÅT = 293 K
c = 13.997 (3) Å0.45 × 0.40 × 0.38 mm
β = 105.821 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6982 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
4183 reflections with I > 2σ(I)
Tmin = 0.553, Tmax = 0.601Rint = 0.083
25203 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0666 restraints
wR(F2) = 0.178H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.85 e Å3
6982 reflectionsΔρmin = 0.53 e Å3
397 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.22488 (4)0.59328 (4)0.30915 (4)0.03150 (18)
Cu20.28782 (4)0.41861 (4)0.46588 (4)0.03647 (19)
O10.3838 (2)0.7739 (2)0.5713 (2)0.0438 (9)
O20.2983 (2)0.6832 (2)0.4120 (2)0.0352 (8)
O30.1096 (2)0.6710 (2)0.3377 (2)0.0392 (8)
O40.19356 (19)0.5165 (2)0.4158 (2)0.0304 (7)
O5W0.3560 (2)0.5452 (2)0.5539 (3)0.0452 (9)
O6W0.1580 (5)0.9882 (5)0.3801 (7)0.138 (3)
N10.2379 (2)0.6839 (3)0.2025 (3)0.0325 (9)
N20.1402 (2)0.5160 (3)0.1842 (3)0.0353 (9)
N30.2400 (3)0.3880 (3)0.5808 (3)0.0411 (10)
N40.3881 (3)0.3180 (3)0.5377 (3)0.0473 (11)
N50.2209 (4)0.3096 (4)0.3707 (3)0.0614 (14)
N60.1723 (3)0.2499 (4)0.3811 (4)0.0616 (14)
N70.1258 (4)0.1903 (5)0.3929 (7)0.134 (3)
N80.3252 (3)0.4832 (3)0.3445 (3)0.0370 (9)
N90.3824 (3)0.4609 (3)0.3142 (3)0.0497 (11)
N100.4393 (4)0.4366 (5)0.2847 (5)0.094 (2)
C10.3224 (3)0.7735 (3)0.3996 (3)0.0292 (10)
C20.3684 (3)0.8273 (3)0.4848 (4)0.0358 (11)
C30.3930 (3)0.9227 (4)0.4769 (4)0.0477 (13)
H30.42140.95710.53380.057*
C40.3763 (4)0.9686 (4)0.3858 (5)0.0549 (15)
H40.39301.03380.38160.066*
C50.3355 (4)0.9186 (3)0.3019 (4)0.0473 (13)
H50.32560.94960.24060.057*
C60.3079 (3)0.8201 (3)0.3068 (4)0.0345 (11)
C70.4359 (4)0.8197 (5)0.6593 (4)0.0646 (18)
H7A0.49020.83730.64930.097*
H7B0.44460.77440.71390.097*
H7C0.40780.87800.67360.097*
C80.2659 (3)0.7731 (3)0.2133 (3)0.0351 (11)
H80.25850.81080.15600.042*
C90.1970 (3)0.6477 (4)0.1016 (3)0.0418 (12)
H9A0.23590.60470.07930.050*
H9B0.18190.70270.05580.050*
C100.1179 (3)0.5917 (4)0.1052 (4)0.0413 (12)
H10A0.07600.63700.11840.050*
H10B0.09290.56030.04160.050*
C110.1836 (4)0.4311 (4)0.1517 (4)0.0564 (16)
H11A0.14540.40070.09470.085*
H11B0.19990.38380.20460.085*
H11C0.23380.45400.13470.085*
C120.0606 (4)0.4801 (4)0.2041 (4)0.0552 (15)
H12A0.03300.53360.22820.083*
H12B0.07400.42870.25310.083*
H12C0.02290.45460.14390.083*
C130.1423 (3)0.5545 (3)0.4650 (3)0.0301 (10)
C140.0934 (3)0.6376 (3)0.4233 (3)0.0341 (11)
C150.0346 (3)0.6781 (4)0.4664 (4)0.0455 (13)
H150.00130.73130.43630.055*
C160.0250 (3)0.6399 (5)0.5546 (4)0.0545 (16)
H160.01470.66760.58370.065*
C170.0733 (3)0.5619 (5)0.5986 (4)0.0510 (14)
H170.06710.53790.65840.061*
C180.1334 (3)0.5161 (4)0.5550 (4)0.0404 (12)
C190.0756 (4)0.7652 (4)0.2999 (5)0.0628 (17)
H19A0.01430.76160.27850.094*
H19B0.09700.78300.24470.094*
H19C0.09280.81400.35120.094*
C200.1824 (3)0.4335 (4)0.6068 (4)0.0444 (13)
H200.17010.41220.66450.053*
C210.2859 (4)0.3068 (5)0.6420 (5)0.0649 (18)
H21A0.28250.31370.70980.078*
H21B0.26040.24400.61630.078*
C220.3736 (5)0.3103 (6)0.6392 (6)0.089 (2)
H22A0.40220.25120.67110.107*
H22B0.40090.36640.67830.107*
C230.4751 (4)0.3570 (5)0.5539 (6)0.087 (2)
H23A0.51430.31740.60270.130*
H23B0.47690.42390.57700.130*
H23C0.49090.35510.49270.130*
C240.3826 (6)0.2214 (5)0.4905 (7)0.121 (4)
H24A0.38640.22900.42370.182*
H24B0.32890.19110.48960.182*
H24C0.42870.18050.52710.182*
H5WA0.339 (5)0.595 (4)0.516 (5)0.146*
H5WB0.398 (4)0.564 (5)0.603 (4)0.146*
H6WB0.193 (5)0.960 (5)0.351 (7)0.146*
H6WA0.163 (6)1.0516 (10)0.377 (8)0.146*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0369 (3)0.0282 (3)0.0286 (3)0.0004 (2)0.0074 (2)0.0004 (2)
Cu20.0433 (4)0.0298 (3)0.0350 (3)0.0013 (3)0.0084 (3)0.0036 (2)
O10.047 (2)0.045 (2)0.0332 (19)0.0109 (16)0.0007 (16)0.0076 (16)
O20.0448 (19)0.0294 (17)0.0280 (17)0.0084 (14)0.0039 (15)0.0026 (14)
O30.0408 (19)0.0353 (18)0.042 (2)0.0120 (15)0.0128 (16)0.0020 (15)
O40.0332 (17)0.0309 (17)0.0282 (17)0.0033 (13)0.0104 (14)0.0050 (13)
O5W0.054 (2)0.037 (2)0.038 (2)0.0076 (17)0.0005 (17)0.0050 (16)
O6W0.136 (6)0.104 (5)0.193 (8)0.007 (5)0.078 (5)0.027 (6)
N10.035 (2)0.031 (2)0.029 (2)0.0001 (17)0.0049 (17)0.0046 (16)
N20.044 (2)0.033 (2)0.026 (2)0.0020 (18)0.0043 (18)0.0004 (17)
N30.054 (3)0.036 (2)0.033 (2)0.004 (2)0.011 (2)0.0099 (18)
N40.053 (3)0.038 (2)0.045 (3)0.009 (2)0.005 (2)0.010 (2)
N50.088 (4)0.041 (3)0.044 (3)0.011 (3)0.000 (3)0.003 (2)
N60.046 (3)0.037 (3)0.088 (4)0.005 (2)0.004 (3)0.001 (3)
N70.075 (5)0.067 (5)0.252 (10)0.018 (4)0.034 (6)0.017 (6)
N80.038 (2)0.037 (2)0.040 (2)0.0066 (18)0.017 (2)0.0013 (18)
N90.059 (3)0.040 (3)0.055 (3)0.005 (2)0.023 (3)0.003 (2)
N100.103 (5)0.099 (5)0.103 (5)0.030 (4)0.067 (4)0.012 (4)
C10.026 (2)0.025 (2)0.036 (3)0.0001 (18)0.008 (2)0.0030 (19)
C20.039 (3)0.032 (3)0.037 (3)0.000 (2)0.011 (2)0.001 (2)
C30.049 (3)0.038 (3)0.053 (3)0.013 (2)0.008 (3)0.014 (3)
C40.068 (4)0.031 (3)0.068 (4)0.016 (3)0.022 (3)0.005 (3)
C50.064 (4)0.032 (3)0.051 (3)0.005 (2)0.024 (3)0.007 (2)
C60.036 (3)0.026 (2)0.041 (3)0.002 (2)0.011 (2)0.002 (2)
C70.057 (4)0.087 (5)0.041 (3)0.030 (3)0.003 (3)0.006 (3)
C80.038 (3)0.036 (3)0.034 (3)0.002 (2)0.014 (2)0.006 (2)
C90.058 (3)0.039 (3)0.028 (3)0.006 (2)0.011 (2)0.003 (2)
C100.044 (3)0.048 (3)0.029 (2)0.000 (2)0.003 (2)0.002 (2)
C110.083 (5)0.040 (3)0.039 (3)0.004 (3)0.005 (3)0.008 (2)
C120.052 (3)0.058 (4)0.050 (3)0.024 (3)0.006 (3)0.003 (3)
C130.024 (2)0.036 (3)0.029 (2)0.0091 (19)0.0049 (19)0.009 (2)
C140.030 (2)0.038 (3)0.033 (3)0.005 (2)0.005 (2)0.010 (2)
C150.032 (3)0.050 (3)0.056 (4)0.002 (2)0.014 (3)0.016 (3)
C160.043 (3)0.070 (4)0.057 (4)0.006 (3)0.024 (3)0.025 (3)
C170.044 (3)0.075 (4)0.038 (3)0.015 (3)0.018 (3)0.015 (3)
C180.036 (3)0.050 (3)0.039 (3)0.015 (2)0.016 (2)0.011 (2)
C190.073 (4)0.049 (4)0.065 (4)0.027 (3)0.016 (3)0.015 (3)
C200.047 (3)0.056 (3)0.031 (3)0.018 (3)0.012 (2)0.004 (2)
C210.080 (5)0.062 (4)0.057 (4)0.004 (3)0.025 (4)0.028 (3)
C220.087 (6)0.089 (6)0.086 (6)0.028 (4)0.013 (4)0.050 (4)
C230.047 (4)0.071 (5)0.139 (7)0.019 (3)0.018 (4)0.016 (5)
C240.122 (7)0.062 (5)0.142 (8)0.048 (5)0.027 (6)0.029 (5)
Geometric parameters (Å, º) top
Cu1—N11.987 (4)C5—C61.414 (6)
Cu1—O41.995 (3)C5—H50.9300
Cu1—O22.010 (3)C6—C81.448 (6)
Cu1—N82.163 (4)C7—H7A0.9600
Cu1—N22.176 (4)C7—H7B0.9600
Cu1—O32.275 (3)C7—H7C0.9600
Cu2—O42.001 (3)C8—H80.9300
Cu2—N32.010 (4)C9—C101.503 (7)
Cu2—N52.085 (5)C9—H9A0.9700
Cu2—N82.140 (4)C9—H9B0.9700
Cu2—N42.150 (4)C10—H10A0.9700
Cu2—O5W2.222 (3)C10—H10B0.9700
O1—C21.373 (6)C11—H11A0.9600
O1—C71.431 (6)C11—H11B0.9600
O2—C11.310 (5)C11—H11C0.9600
O3—C141.372 (6)C12—H12A0.9600
O3—C191.432 (6)C12—H12B0.9600
O4—C131.319 (5)C12—H12C0.9600
O5W—H5WA0.86 (6)C13—C181.407 (6)
O5W—H5WB0.86 (6)C13—C141.409 (7)
O6W—H6WB0.87 (8)C14—C151.373 (6)
O6W—H6WA0.866 (10)C15—C161.387 (7)
N1—C81.285 (6)C15—H150.9300
N1—C91.472 (6)C16—C171.358 (8)
N2—C121.476 (6)C16—H160.9300
N2—C101.478 (6)C17—C181.425 (7)
N2—C111.483 (6)C17—H170.9300
N3—C201.253 (7)C18—C201.448 (7)
N3—C211.467 (7)C19—H19A0.9600
N4—C241.456 (8)C19—H19B0.9600
N4—C231.466 (7)C19—H19C0.9600
N4—C221.506 (8)C20—H200.9300
N5—N61.166 (7)C21—C221.437 (9)
N6—N71.146 (7)C21—H21A0.9700
N8—N91.161 (6)C21—H21B0.9700
N9—N101.157 (7)C22—H22A0.9700
C1—C61.405 (6)C22—H22B0.9700
C1—C21.422 (6)C23—H23A0.9600
C2—C31.366 (6)C23—H23B0.9600
C3—C41.377 (8)C23—H23C0.9600
C3—H30.9300C24—H24A0.9600
C4—C51.360 (7)C24—H24B0.9600
C4—H40.9300C24—H24C0.9600
N1—Cu1—O4169.90 (14)O1—C7—H7A109.5
N1—Cu1—O290.00 (14)O1—C7—H7B109.5
O4—Cu1—O290.10 (12)H7A—C7—H7B109.5
N1—Cu1—N8111.68 (15)O1—C7—H7C109.5
O4—Cu1—N878.43 (14)H7A—C7—H7C109.5
O2—Cu1—N889.51 (14)H7B—C7—H7C109.5
N1—Cu1—N282.33 (15)N1—C8—C6125.7 (4)
O4—Cu1—N296.73 (13)N1—C8—H8117.1
O2—Cu1—N2171.31 (13)C6—C8—H8117.1
N8—Cu1—N297.11 (15)N1—C9—C10107.5 (4)
N1—Cu1—O396.18 (14)N1—C9—H9A110.2
O4—Cu1—O373.73 (12)C10—C9—H9A110.2
O2—Cu1—O387.11 (13)N1—C9—H9B110.2
N8—Cu1—O3151.94 (14)C10—C9—H9B110.2
N2—Cu1—O389.64 (14)H9A—C9—H9B108.5
O4—Cu2—N389.51 (15)N2—C10—C9109.8 (4)
O4—Cu2—N591.72 (17)N2—C10—H10A109.7
N3—Cu2—N596.77 (19)C9—C10—H10A109.7
O4—Cu2—N878.84 (13)N2—C10—H10B109.7
N3—Cu2—N8166.90 (16)C9—C10—H10B109.7
N5—Cu2—N889.60 (18)H10A—C10—H10B108.2
O4—Cu2—N4172.95 (15)N2—C11—H11A109.5
N3—Cu2—N484.47 (17)N2—C11—H11B109.5
N5—Cu2—N492.64 (19)H11A—C11—H11B109.5
N8—Cu2—N4106.72 (16)N2—C11—H11C109.5
O4—Cu2—O5W84.30 (13)H11A—C11—H11C109.5
N3—Cu2—O5W87.57 (15)H11B—C11—H11C109.5
N5—Cu2—O5W174.10 (16)N2—C12—H12A109.5
N8—Cu2—O5W85.36 (14)N2—C12—H12B109.5
N4—Cu2—O5W91.76 (15)H12A—C12—H12B109.5
C2—O1—C7117.0 (4)N2—C12—H12C109.5
C1—O2—Cu1127.7 (3)H12A—C12—H12C109.5
C14—O3—C19118.0 (4)H12B—C12—H12C109.5
C14—O3—Cu1111.4 (3)O4—C13—C18123.9 (4)
C19—O3—Cu1126.8 (3)O4—C13—C14117.4 (4)
C13—O4—Cu1120.9 (3)C18—C13—C14118.8 (4)
C13—O4—Cu2127.3 (3)O3—C14—C15125.0 (5)
Cu1—O4—Cu2106.29 (14)O3—C14—C13113.8 (4)
Cu2—O5W—H5WA104 (5)C15—C14—C13121.2 (5)
Cu2—O5W—H5WB146 (5)C14—C15—C16120.1 (5)
H5WA—O5W—H5WB109 (8)C14—C15—H15119.9
H6WB—O6W—H6WA109 (8)C16—C15—H15119.9
C8—N1—C9118.6 (4)C17—C16—C15120.2 (5)
C8—N1—Cu1126.8 (3)C17—C16—H16119.9
C9—N1—Cu1113.8 (3)C15—C16—H16119.9
C12—N2—C10108.8 (4)C16—C17—C18121.5 (5)
C12—N2—C11108.5 (4)C16—C17—H17119.3
C10—N2—C11110.4 (4)C18—C17—H17119.3
C12—N2—Cu1113.6 (3)C13—C18—C17118.2 (5)
C10—N2—Cu1103.8 (3)C13—C18—C20123.8 (5)
C11—N2—Cu1111.7 (3)C17—C18—C20118.0 (5)
C20—N3—C21119.9 (5)O3—C19—H19A109.5
C20—N3—Cu2127.8 (4)O3—C19—H19B109.5
C21—N3—Cu2112.1 (4)H19A—C19—H19B109.5
C24—N4—C23109.3 (6)O3—C19—H19C109.5
C24—N4—C22111.1 (6)H19A—C19—H19C109.5
C23—N4—C22105.6 (5)H19B—C19—H19C109.5
C24—N4—Cu2114.3 (4)N3—C20—C18125.9 (5)
C23—N4—Cu2114.7 (4)N3—C20—H20117.1
C22—N4—Cu2101.1 (3)C18—C20—H20117.1
N6—N5—Cu2131.6 (5)C22—C21—N3108.0 (5)
N7—N6—N5178.5 (7)C22—C21—H21A110.1
N9—N8—Cu2127.7 (4)N3—C21—H21A110.1
N9—N8—Cu1136.3 (4)C22—C21—H21B110.1
Cu2—N8—Cu196.01 (16)N3—C21—H21B110.1
N10—N9—N8178.5 (6)H21A—C21—H21B108.4
O2—C1—C6124.1 (4)C21—C22—N4116.0 (6)
O2—C1—C2118.3 (4)C21—C22—H22A108.3
C6—C1—C2117.6 (4)N4—C22—H22A108.3
C3—C2—O1125.6 (4)C21—C22—H22B108.3
C3—C2—C1121.0 (5)N4—C22—H22B108.3
O1—C2—C1113.4 (4)H22A—C22—H22B107.4
C2—C3—C4120.9 (5)N4—C23—H23A109.5
C2—C3—H3119.5N4—C23—H23B109.5
C4—C3—H3119.5H23A—C23—H23B109.5
C5—C4—C3120.0 (5)N4—C23—H23C109.5
C5—C4—H4120.0H23A—C23—H23C109.5
C3—C4—H4120.0H23B—C23—H23C109.5
C4—C5—C6120.9 (5)N4—C24—H24A109.5
C4—C5—H5119.5N4—C24—H24B109.5
C6—C5—H5119.5H24A—C24—H24B109.5
C1—C6—C5119.5 (4)N4—C24—H24C109.5
C1—C6—C8123.9 (4)H24A—C24—H24C109.5
C5—C6—C8116.6 (4)H24B—C24—H24C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5WB···N10i0.86 (6)2.69 (4)3.481 (8)155 (8)
O5W—H5WA···O10.86 (6)2.59 (6)3.129 (5)122 (6)
O5W—H5WA···O20.86 (6)1.86 (6)2.702 (4)167 (8)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Cu2(C12H17N2O2)2(N3)2(H2O)]·H2O
Mr689.72
Crystal system, space groupMonoclinic, P21/c
Temperature (K)293
a, b, c (Å)16.232 (3), 13.540 (2), 13.997 (3)
β (°) 105.821 (2)
V3)2959.7 (9)
Z4
Radiation typeMo Kα
µ (mm1)1.49
Crystal size (mm)0.45 × 0.40 × 0.38
Data collection
DiffractometerBruker SMART CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2000)
Tmin, Tmax0.553, 0.601
No. of measured, independent and
observed [I > 2σ(I)] reflections
25203, 6982, 4183
Rint0.083
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.066, 0.178, 1.02
No. of reflections6982
No. of parameters397
No. of restraints6
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.85, 0.53

Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5W—H5WB···N10i0.86 (6)2.69 (4)3.481 (8)155 (8)
O5W—H5WA···O10.86 (6)2.59 (6)3.129 (5)122 (6)
O5W—H5WA···O20.86 (6)1.86 (6)2.702 (4)167 (8)
Symmetry code: (i) x+1, y+1, z+1.
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds