Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
In the title compound, C21H21N3O2, the three fused rings of the 1-benzofuro[3,2-d]pyrimidine system are almost coplanar. The packing of the mol­ecules in the crystal structure is mainly governed by π–π inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536805040377/sj6175sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536805040377/sj6175Isup2.hkl
Contains datablock I

CCDC reference: 296663

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.060
  • wR factor = 0.145
  • Data-to-parameter ratio = 15.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

The derivatives of benzofuropyrimidines are of great importance because of their remarkable biological properties (Bodke & Sangapure, 2003). In recent years, we have been engaged in the preparation of the derivatives of heterocycles via an aza-Wittig reaction (Ding et al., 2004a,b). The heterocyclic title compound, (I), may be used as a new precursor for obtaining bioactive molecules and its structure is presented here (Fig. 1). The three fused rings of the benzofuro[3,2-d]pyrimidine system are almost coplanar, with a maximum deviation of −0.079 (2) Å for C9. This plane is at an angle of 63.79 (11)° to the substituted benzene ring. Bond lengths and angles (Table 1) are in agreement with reported literature values (Allen et al.,1987). [NB: the scheme is for a different compound; please replace]

The centroid-to-centroid distances are 3.5173 (2) for rings A (O1, C1 C6, C7, C8) and Bi (C1, C2, C3, C4, C5, C6) [symmetry code: (i) = 2 − x, 2 − y, 2 − z] and 3.6726 (3) Å for rings B and Aii [symmetry code: (ii) = 2 − x, 1 − y, 2 − z]. The corresponding dihedral angles are 0.03 (2) and 1.26 (2)°, respectively. The contribution of ππ stacking interactions to the stability of the crystal is further demonstrated by the angles between the ring-centroid vectors [7.84 (2) for A to Bi and 20.42 (3)° for B to Aii] and the angles between the ring normals [8.58 (3) and 20.87 (2)° (Janiak, 2000)].

Experimental top

To a solution of iminophosphorane (1.40 g, 3 mmol) in dry dichloromethane (15 ml) was added phenyl isocyanate (3 mmol) under nitrogen at room temperature. After standing for 10 h at 273–278 K, the solvent was removed under reduced pressure and ether/petroleum ether (1:2, 20 ml) was added to precipitate triphenylphosphine oxide. After filtration the solvent was removed to give the carbodiimide, (II), which was used directly without further purification. To the solution of (II) prepared above in dichloromethane (15 ml) was added diethylamine (3 mmol). After the reaction mixture was allowed to stand for 0.5 h, the solvent was removed and anhydrous ethanol (10 ml) and several drops of EtONa in EtOH were added. The mixture was stirred for 3 h at room temperature, concentrated under reduced pressure and the residue recrystallized from ethanol to give the title compound (I) (yield 0.81 g, 78%, m.p. 420 K). Suitable crystals were obtained by vapor diffusion of ethanol and dichloromethane at room temperature. Spectroscopic analysis:1H NMR (CDCl3, 400 MHz): 0.84–0.88(t, 6H, CH3, J=7.2 Hz), 2.42 (s, 3H, CH3), 3.12–3.17 (q, 4H, CH2, J = 6.8 Hz), 7.14–8.03 (m, 8H, Ar—H). MS (EI 70 eV) m/z(%): 347 (M+, 62), 318 (86), 275 (65), 130 (84), 91 (100). Elemental analysis: calculated for C21H21N3O2: C 72.60, H 6.09, N 12.10%; found: C 72.52, H 6.16, N 12.07%.

Refinement top

The H atoms were positioned geometrically [0.93 (CH), 0.97 (CH2) and 0.96 Å (CH3)] and constrained to ride on their parent atoms with Uiso(H) = 1.2 (1.5 for methyl) Ueq(C).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the 50% probability level. H-atoms are represented by circles of arbitrary size.
[Figure 2] Fig. 2. Packing diagram for (I), showing the ππ stacking interactions.
2-Diethylamino-3-(3-methylphenyl)-1-benzofuro[3,2-d]pyrimidin-4(3H)-one top
Crystal data top
C21H21N3O2F(000) = 736
Mr = 347.41Dx = 1.262 Mg m3
Monoclinic, P21/nMelting point: 420 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 16.164 (2) ÅCell parameters from 1397 reflections
b = 7.0063 (9) Åθ = 2.5–21.6°
c = 17.627 (2) ŵ = 0.08 mm1
β = 113.685 (2)°T = 292 K
V = 1828.1 (4) Å3Block, colorless
Z = 40.30 × 0.20 × 0.16 mm
Data collection top
Bruker CCD area-detector
diffractometer
1941 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.069
Graphite monochromatorθmax = 26.0°, θmin = 2.5°
ϕ and ω scansh = 1919
11487 measured reflectionsk = 88
3590 independent reflectionsl = 1921
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 0.94 w = 1/[σ2(Fo2) + (0.0572P)2]
where P = (Fo2 + 2Fc2)/3
3590 reflections(Δ/σ)max = 0.001
238 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C21H21N3O2V = 1828.1 (4) Å3
Mr = 347.41Z = 4
Monoclinic, P21/nMo Kα radiation
a = 16.164 (2) ŵ = 0.08 mm1
b = 7.0063 (9) ÅT = 292 K
c = 17.627 (2) Å0.30 × 0.20 × 0.16 mm
β = 113.685 (2)°
Data collection top
Bruker CCD area-detector
diffractometer
1941 reflections with I > 2σ(I)
11487 measured reflectionsRint = 0.069
3590 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.145H-atom parameters constrained
S = 0.94Δρmax = 0.20 e Å3
3590 reflectionsΔρmin = 0.16 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.95360 (17)0.7410 (3)0.98052 (16)0.0438 (6)
C20.87591 (18)0.7069 (4)0.99426 (19)0.0570 (8)
H20.81970.69660.95040.068*
C30.8853 (2)0.6889 (4)1.0754 (2)0.0694 (9)
H30.83460.66541.08650.083*
C40.9698 (3)0.7056 (4)1.1407 (2)0.0711 (9)
H40.97380.69451.19460.085*
C51.0471 (2)0.7376 (4)1.12877 (18)0.0586 (8)
H51.10320.74851.17280.070*
C61.03678 (18)0.7524 (3)1.04780 (16)0.0457 (6)
C70.97333 (15)0.7684 (3)0.90768 (16)0.0408 (6)
C81.06472 (15)0.7894 (3)0.93737 (16)0.0429 (6)
C91.11201 (17)0.8024 (4)0.88575 (17)0.0494 (7)
C100.95607 (15)0.8036 (3)0.77603 (16)0.0418 (6)
C110.81104 (16)0.7555 (4)0.66205 (18)0.0625 (8)
H11A0.77800.79990.60570.075*
H11B0.78320.81140.69640.075*
C120.8040 (2)0.5421 (5)0.6641 (2)0.0952 (12)
H12A0.82830.48640.62770.143*
H12B0.74170.50620.64640.143*
H12C0.83740.49730.71950.143*
C130.91523 (18)0.9989 (4)0.65194 (16)0.0583 (8)
H13A0.97351.05530.68500.070*
H13B0.86881.08820.65070.070*
C140.9083 (2)0.9687 (5)0.56471 (18)0.0911 (11)
H14A0.95800.89170.56610.137*
H14B0.91001.09000.54000.137*
H14C0.85250.90530.53260.137*
C151.09034 (16)0.7812 (4)0.74123 (16)0.0457 (6)
C161.14573 (17)0.9188 (4)0.73121 (17)0.0579 (8)
H161.15641.03170.76140.069*
C171.18547 (18)0.8880 (5)0.67595 (19)0.0664 (9)
H171.22260.98080.66850.080*
C181.17019 (19)0.7215 (5)0.63244 (19)0.0667 (9)
H181.19770.70270.59580.080*
C191.11495 (17)0.5793 (4)0.64104 (17)0.0544 (7)
C201.07530 (16)0.6136 (4)0.69651 (16)0.0499 (7)
H201.03770.52130.70370.060*
C211.0999 (2)0.3947 (5)0.5943 (2)0.0851 (10)
H21A1.08080.42070.53630.128*
H21B1.05400.32230.60310.128*
H21C1.15510.32290.61370.128*
N10.91649 (13)0.7793 (3)0.82638 (13)0.0443 (5)
N21.04982 (12)0.8066 (3)0.80046 (12)0.0436 (5)
N30.90515 (13)0.8210 (3)0.69147 (13)0.0476 (6)
O11.10616 (11)0.7816 (2)1.02253 (10)0.0494 (5)
O21.19323 (11)0.8035 (3)0.90580 (11)0.0702 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0516 (15)0.0299 (14)0.0528 (18)0.0072 (11)0.0241 (14)0.0018 (12)
C20.0572 (17)0.0525 (18)0.068 (2)0.0084 (13)0.0316 (16)0.0056 (15)
C30.089 (2)0.055 (2)0.089 (3)0.0060 (17)0.062 (2)0.0077 (18)
C40.110 (3)0.051 (2)0.064 (2)0.0071 (18)0.048 (2)0.0059 (16)
C50.083 (2)0.0458 (18)0.0457 (19)0.0045 (15)0.0242 (16)0.0022 (14)
C60.0590 (17)0.0345 (15)0.0423 (17)0.0043 (12)0.0191 (14)0.0003 (12)
C70.0405 (14)0.0335 (15)0.0453 (17)0.0036 (11)0.0140 (13)0.0007 (12)
C80.0400 (14)0.0449 (16)0.0363 (16)0.0022 (11)0.0076 (12)0.0021 (12)
C90.0379 (14)0.0582 (19)0.0455 (18)0.0008 (13)0.0097 (14)0.0025 (13)
C100.0355 (13)0.0394 (15)0.0421 (17)0.0007 (11)0.0067 (13)0.0029 (12)
C110.0404 (15)0.069 (2)0.056 (2)0.0023 (14)0.0035 (14)0.0012 (15)
C120.071 (2)0.069 (2)0.105 (3)0.0172 (18)0.007 (2)0.007 (2)
C130.0553 (17)0.0578 (19)0.0468 (18)0.0031 (14)0.0049 (14)0.0060 (14)
C140.107 (3)0.104 (3)0.044 (2)0.006 (2)0.0106 (19)0.0175 (19)
C150.0423 (14)0.0521 (18)0.0384 (16)0.0030 (12)0.0118 (12)0.0041 (13)
C160.0499 (16)0.065 (2)0.056 (2)0.0104 (14)0.0187 (15)0.0002 (15)
C170.0541 (18)0.080 (2)0.067 (2)0.0060 (16)0.0263 (16)0.0140 (18)
C180.0565 (18)0.092 (3)0.057 (2)0.0103 (18)0.0284 (16)0.0110 (19)
C190.0451 (15)0.067 (2)0.0501 (18)0.0096 (14)0.0176 (14)0.0012 (15)
C200.0423 (15)0.0549 (19)0.0500 (18)0.0047 (13)0.0159 (14)0.0074 (14)
C210.090 (2)0.086 (3)0.085 (3)0.013 (2)0.040 (2)0.012 (2)
N10.0365 (11)0.0484 (14)0.0432 (14)0.0034 (9)0.0109 (11)0.0003 (10)
N20.0345 (11)0.0543 (14)0.0382 (13)0.0006 (9)0.0105 (10)0.0002 (10)
N30.0400 (12)0.0493 (14)0.0416 (14)0.0010 (10)0.0038 (11)0.0029 (11)
O10.0493 (10)0.0553 (12)0.0365 (11)0.0003 (8)0.0098 (9)0.0008 (8)
O20.0339 (10)0.1161 (18)0.0540 (13)0.0010 (10)0.0106 (9)0.0058 (11)
Geometric parameters (Å, º) top
C1—C21.392 (3)C12—H12A0.9600
C1—C61.393 (3)C12—H12B0.9600
C1—C71.455 (3)C12—H12C0.9600
C2—C31.381 (4)C13—N31.469 (3)
C2—H20.9300C13—C141.511 (3)
C3—C41.394 (4)C13—H13A0.9700
C3—H30.9300C13—H13B0.9700
C4—C51.365 (4)C14—H14A0.9600
C4—H40.9300C14—H14B0.9600
C5—C61.373 (3)C14—H14C0.9600
C5—H50.9300C15—C161.374 (3)
C6—O11.378 (3)C15—C201.380 (3)
C7—N11.359 (3)C15—N21.449 (3)
C7—C81.363 (3)C16—C171.382 (4)
C8—O11.378 (3)C16—H160.9300
C8—C91.407 (3)C17—C181.363 (4)
C9—O21.215 (3)C17—H170.9300
C9—N21.434 (3)C18—C191.386 (4)
C10—N11.297 (3)C18—H180.9300
C10—N31.389 (3)C19—C201.388 (3)
C10—N21.399 (3)C19—C211.500 (4)
C11—N31.470 (3)C20—H200.9300
C11—C121.501 (4)C21—H21A0.9600
C11—H11A0.9700C21—H21B0.9600
C11—H11B0.9700C21—H21C0.9600
C2—C1—C6119.5 (2)N3—C13—H13A109.0
C2—C1—C7135.2 (3)C14—C13—H13A109.0
C6—C1—C7105.4 (2)N3—C13—H13B109.0
C3—C2—C1117.7 (3)C14—C13—H13B109.0
C3—C2—H2121.2H13A—C13—H13B107.8
C1—C2—H2121.2C13—C14—H14A109.5
C2—C3—C4120.7 (3)C13—C14—H14B109.5
C2—C3—H3119.6H14A—C14—H14B109.5
C4—C3—H3119.6C13—C14—H14C109.5
C5—C4—C3122.7 (3)H14A—C14—H14C109.5
C5—C4—H4118.7H14B—C14—H14C109.5
C3—C4—H4118.7C16—C15—C20119.8 (2)
C4—C5—C6115.9 (3)C16—C15—N2120.8 (2)
C4—C5—H5122.1C20—C15—N2119.3 (2)
C6—C5—H5122.1C15—C16—C17119.5 (3)
C5—C6—O1124.9 (3)C15—C16—H16120.3
C5—C6—C1123.6 (3)C17—C16—H16120.3
O1—C6—C1111.5 (2)C18—C17—C16120.0 (3)
N1—C7—C8124.6 (2)C18—C17—H17120.0
N1—C7—C1130.0 (2)C16—C17—H17120.0
C8—C7—C1105.3 (2)C17—C18—C19122.2 (3)
C7—C8—O1113.1 (2)C17—C18—H18118.9
C7—C8—C9123.1 (2)C19—C18—H18118.9
O1—C8—C9123.7 (2)C18—C19—C20116.9 (3)
O2—C9—C8128.1 (2)C18—C19—C21122.0 (3)
O2—C9—N2121.7 (2)C20—C19—C21121.1 (3)
C8—C9—N2110.2 (2)C15—C20—C19121.6 (3)
N1—C10—N3120.2 (2)C15—C20—H20119.2
N1—C10—N2124.2 (2)C19—C20—H20119.2
N3—C10—N2115.5 (2)C19—C21—H21A109.5
N3—C11—C12112.4 (2)C19—C21—H21B109.5
N3—C11—H11A109.1H21A—C21—H21B109.5
C12—C11—H11A109.1C19—C21—H21C109.5
N3—C11—H11B109.1H21A—C21—H21C109.5
C12—C11—H11B109.1H21B—C21—H21C109.5
H11A—C11—H11B107.9C10—N1—C7114.8 (2)
C11—C12—H12A109.5C10—N2—C9122.6 (2)
C11—C12—H12B109.5C10—N2—C15121.6 (2)
H12A—C12—H12B109.5C9—N2—C15115.05 (18)
C11—C12—H12C109.5C10—N3—C13116.9 (2)
H12A—C12—H12C109.5C10—N3—C11115.8 (2)
H12B—C12—H12C109.5C13—N3—C11113.2 (2)
N3—C13—C14112.8 (2)C8—O1—C6104.81 (19)
C6—C1—C2—C31.0 (4)C18—C19—C20—C150.2 (4)
C7—C1—C2—C3179.9 (3)C21—C19—C20—C15178.5 (3)
C1—C2—C3—C40.3 (4)N3—C10—N1—C7178.6 (2)
C2—C3—C4—C50.9 (5)N2—C10—N1—C74.0 (3)
C3—C4—C5—C60.0 (4)C8—C7—N1—C103.0 (3)
C4—C5—C6—O1179.0 (2)C1—C7—N1—C10179.6 (2)
C4—C5—C6—C11.5 (4)N1—C10—N2—C96.6 (4)
C2—C1—C6—C52.0 (4)N3—C10—N2—C9175.9 (2)
C7—C1—C6—C5178.7 (2)N1—C10—N2—C15162.6 (2)
C2—C1—C6—O1178.4 (2)N3—C10—N2—C1514.8 (3)
C7—C1—C6—O11.0 (3)O2—C9—N2—C10179.4 (2)
C2—C1—C7—N14.2 (5)C8—C9—N2—C101.8 (3)
C6—C1—C7—N1176.6 (2)O2—C9—N2—C159.5 (4)
C2—C1—C7—C8178.0 (3)C8—C9—N2—C15168.1 (2)
C6—C1—C7—C81.2 (3)C16—C15—N2—C10121.6 (3)
N1—C7—C8—O1176.9 (2)C20—C15—N2—C1060.6 (3)
C1—C7—C8—O11.0 (3)C16—C15—N2—C968.4 (3)
N1—C7—C8—C97.9 (4)C20—C15—N2—C9109.4 (3)
C1—C7—C8—C9174.2 (2)N1—C10—N3—C13120.2 (3)
C7—C8—C9—O2172.5 (3)N2—C10—N3—C1362.2 (3)
O1—C8—C9—O22.2 (4)N1—C10—N3—C1117.2 (3)
C7—C8—C9—N24.9 (3)N2—C10—N3—C11160.4 (2)
O1—C8—C9—N2179.6 (2)C14—C13—N3—C10145.1 (2)
C20—C15—C16—C170.4 (4)C14—C13—N3—C1176.5 (3)
N2—C15—C16—C17178.1 (2)C12—C11—N3—C1071.8 (3)
C15—C16—C17—C180.6 (4)C12—C11—N3—C13149.3 (3)
C16—C17—C18—C190.4 (5)C7—C8—O1—C60.5 (3)
C17—C18—C19—C200.0 (4)C9—C8—O1—C6174.7 (2)
C17—C18—C19—C21178.7 (3)C5—C6—O1—C8179.2 (2)
C16—C15—C20—C190.0 (4)C1—C6—O1—C80.4 (3)
N2—C15—C20—C19177.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N20.972.592.971 (3)104

Experimental details

Crystal data
Chemical formulaC21H21N3O2
Mr347.41
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)16.164 (2), 7.0063 (9), 17.627 (2)
β (°) 113.685 (2)
V3)1828.1 (4)
Z4
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.30 × 0.20 × 0.16
Data collection
DiffractometerBruker CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11487, 3590, 1941
Rint0.069
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.145, 0.94
No. of reflections3590
No. of parameters238
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.20, 0.16

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
C1—C21.392 (3)C10—N31.389 (3)
C1—C61.393 (3)C10—N21.399 (3)
C1—C71.455 (3)C11—N31.470 (3)
C5—C61.373 (3)C13—N31.469 (3)
C6—O11.378 (3)C15—C161.374 (3)
C7—N11.359 (3)C15—C201.380 (3)
C7—C81.363 (3)C15—N21.449 (3)
C8—O11.378 (3)C16—C171.382 (4)
C8—C91.407 (3)C17—C181.363 (4)
C9—O21.215 (3)C18—C191.386 (4)
C9—N21.434 (3)C19—C201.388 (3)
C10—N11.297 (3)C19—C211.500 (4)
C2—C1—C6119.5 (2)C7—C8—C9123.1 (2)
C2—C1—C7135.2 (3)O1—C8—C9123.7 (2)
C6—C1—C7105.4 (2)O2—C9—C8128.1 (2)
C3—C2—C1117.7 (3)O2—C9—N2121.7 (2)
C2—C3—C4120.7 (3)C8—C9—N2110.2 (2)
C5—C4—C3122.7 (3)N1—C10—N3120.2 (2)
C5—C6—O1124.9 (3)N1—C10—N2124.2 (2)
C5—C6—C1123.6 (3)N3—C10—N2115.5 (2)
O1—C6—C1111.5 (2)C16—C15—N2120.8 (2)
N1—C7—C8124.6 (2)C20—C15—N2119.3 (2)
N1—C7—C1130.0 (2)C10—N3—C13116.9 (2)
C8—C7—C1105.3 (2)C10—N3—C11115.8 (2)
C7—C8—O1113.1 (2)C8—O1—C6104.81 (19)
C6—C1—C2—C31.0 (4)C2—C1—C7—C8178.0 (3)
C7—C1—C2—C3179.9 (3)C6—C1—C7—C81.2 (3)
C4—C5—C6—O1179.0 (2)C1—C7—C8—O11.0 (3)
C4—C5—C6—C11.5 (4)O1—C8—C9—O22.2 (4)
C2—C1—C6—C52.0 (4)O1—C8—C9—N2179.6 (2)
C7—C1—C6—C5178.7 (2)C1—C7—N1—C10179.6 (2)
C2—C1—C6—O1178.4 (2)O2—C9—N2—C10179.4 (2)
C7—C1—C6—O11.0 (3)C8—C9—N2—C101.8 (3)
C6—C1—C7—N1176.6 (2)C8—C9—N2—C15168.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13A···N20.972.592.971 (3)104
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds