Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of the thermoelectric lamellar misfit cobalt oxide [Ca2CoO3][CoO2]1.62 was refined again using single-crystal X-ray diffraction data. A new commensurate intrinsic modulation was observed involving a modulation vector orthogonal to the misfit direction (⅔,0,−⅓). The five-dimensional superspace group is C2/m(1δ0)(α0γ)gm and the structure was solved using a commensurate approximation. A new model is given involving an occupation modulation of the split sites of the [CoO] layer. This [CoO] layer can be described by triple chains running along b. The residual disorder along b can then be explained by the assumption of a local ordering with two types of clusters: CoO2 and Co5O4. A powder neutron diffraction experiment confirmed the ordering evidenced by the single-crystal X-ray diffraction study, but was not sufficient by itself to deal with this double modulated scheme. The new intrinsic modulation is destroyed by partial metal substitutions in the [CoO] layer. The structural modifications of this layer directly influence the physical properties which are related to the electronic structure of the [CoO2] layers.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768108001213/sn5060sup1.cif
Contains datablocks global, (I)

Experimental top

(type here to add preparation details)

Refinement top

(type here to add refinement details)

Computing details top

Program(s) used to refine structure: Jana2000 (Petricek, Dusek & Palatinus, 2000); software used to prepare material for publication: Jana2000 (Petricek, Dusek & Palatinus, 2000).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
[Figure 11]
(I) top
Crystal data top
Ca2Co2.496O6.117Z = 2
Mr = 325.1F(000) = 313
Monoclinic, X2/mDx = 4.557 Mg m3
q1 = 0.66666a* + -0.33333c*; q2 = 1.62500b*‡Mo Kα radiation, λ = 0.71069 Å
a = 4.8395 ŵ = 10.80 mm1
b = 4.5531 ÅT = 300 K
c = 10.8583 ÅPlate
β = 98.124°0.20 × 0.15 × 0.03 mm
V = 236.86 Å3
† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x1, x2, −x3, −x4, 1/2+x5; (3) −x1, −x2, −x3, −x4, −x5; (4) x1, −x2, x3, x4, 1/2−x5; (5) 1/2+x1, 1/2+x2, x3, x4, 1/2+x5; (6) 1/2−x1, 1/2+x2, −x3, −x4, x5; (7) 1/2−x1, 1/2−x2, −x3, −x4, 1/2−x5; (8) 1/2+x1, 1/2−x2, x3, x4, −x5.

texobject1427811803.png; texobject1427811804.png

Data collection top
Bruker Kappa CCD
diffractometer
θmax = 45.0°, θmin = 5.8°
4288 measured reflectionsh = 99
2492 independent reflectionsk = 09
1673 reflections with I > 3σ(I)l = 021
Rint = 0.005
Refinement top
Refinement on F78 parameters
R[F2 > 2σ(F2)] = 0.033Weighting scheme based on measured s.u.'s w = 1/σ2(F)
wR(F2) = 0.032(Δ/σ)max = 0.016
S = 1.66Δρmax = 0.67 e Å3
2492 reflectionsΔρmin = 0.71 e Å3
Crystal data top
Ca2Co2.496O6.117β = 98.124°
Mr = 325.1V = 236.86 Å3
Monoclinic, X2/mZ = 2
q1 = 0.66666a* + -0.33333c*; q2 = 1.62500b*‡Mo Kα radiation
a = 4.8395 ŵ = 10.80 mm1
b = 4.5531 ÅT = 300 K
c = 10.8583 Å0.20 × 0.15 × 0.03 mm
† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x1, x2, −x3, −x4, 1/2+x5; (3) −x1, −x2, −x3, −x4, −x5; (4) x1, −x2, x3, x4, 1/2−x5; (5) 1/2+x1, 1/2+x2, x3, x4, 1/2+x5; (6) 1/2−x1, 1/2+x2, −x3, −x4, x5; (7) 1/2−x1, 1/2−x2, −x3, −x4, 1/2−x5; (8) 1/2+x1, 1/2−x2, x3, x4, −x5.

texobject1427811805.png; texobject1427811806.png

Data collection top
Bruker Kappa CCD
diffractometer
1673 reflections with I > 3σ(I)
4288 measured reflectionsRint = 0.005
2492 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03378 parameters
wR(F2) = 0.032Δρmax = 0.67 e Å3
S = 1.66Δρmin = 0.71 e Å3
2492 reflections
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ca0.43009 (6)00.27488 (3)0.00852 (6)
O10.0527 (2)00.66413 (10)0.0109 (2)
Co1a000.50.0039 (4)*0.279 (5)
Co1b0.0766 (7)0.0666 (8)0.50.0044 (2)*0.1685 (14)
O2a0.1072 (19)0.50.4996 (4)0.0099 (14)*0.268 (10)
O2b00.421 (2)0.50.0080 (15)*0.205 (8)
Co20.750.7500.00315 (4)0.9498
O30.38597 (15)0.750.09328 (7)0.00587 (14)0.9757
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ca0.00730 (10)0.00866 (12)0.00953 (10)00.00093 (8)0
O10.0109 (4)0.0109 (5)0.0109 (4)00.0011 (3)0
Co20.00219 (6)0.00285 (7)0.00444 (7)00.00057 (5)0
O30.0047 (2)0.0054 (3)0.0076 (3)00.00127 (19)0
Geometric parameters (Å, º) top
AverageMinimumMaximum
Co2—O31.9040 (12)1.9028 (17)1.9053 (18)
Co2—O3i1.9003 (9)1.8868 (6)1.9142 (6)
Co2—O3ii1.9003 (9)1.8868 (6)1.9142 (6)
Co2—O31iii1.9003 (6)1.8866 (6)1.9143 (6)
Co2—O311.9003 (6)1.8866 (6)1.9143 (6)
Co2—O31iv1.9040 (7)1.9028 (8)1.9053 (8)
O3—Co2—O3i85.37 (4)84.11 (3)86.65 (3)
O3—Co2—O3ii85.37 (4)84.11 (3)86.65 (3)
O3—Co2—O31iii94.62 (4)93.02 (3)96.26 (3)
O3—Co2—O3194.62 (4)93.02 (3)96.26 (3)
O3—Co2—O31iv179.43 (5)179.11 (7)179.89 (3)
O3i—Co2—O385.37 (4)84.11 (3)86.65 (4)
O3i—Co2—O3ii95.02 (4)94.17 (3)95.86 (3)
O3i—Co2—O31iii84.97 (3)84.95 (3)84.99 (4)
O3i—Co2—O31178.73 (4)178.01 (4)179.76 (5)
O3i—Co2—O31iv94.62 (4)93.00 (3)96.23 (3)
O3ii—Co2—O385.37 (4)84.11 (3)86.65 (4)
O3ii—Co2—O3i95.02 (4)94.17 (3)95.86 (3)
O3ii—Co2—O31iii178.73 (4)178.01 (4)179.76 (5)
O3ii—Co2—O3184.97 (3)84.95 (3)84.99 (4)
O3ii—Co2—O31iv94.62 (4)93.00 (3)96.23 (3)
O31iii—Co2—O3195.02 (3)94.14 (3)95.84 (3)
O31iii—Co2—O31iv85.37 (3)84.10 (3)86.63 (3)
O31—Co2—O31iii95.02 (3)94.14 (3)95.84 (3)
O31—Co2—O31iv85.37 (3)84.10 (3)86.63 (3)
O31iv—Co2—O31iii85.37 (3)84.10 (3)86.63 (3)
O31iv—Co2—O3185.37 (3)84.10 (3)86.63 (3)
Symmetry codes: (i) x1+1, x2+1, x3, x4, x5; (ii) x1+1, x2+2, x3, x4, x5; (iii) x1, x21, x3, x4, x5; (iv) x1+2, x2+2, x3, x4, x5.

Experimental details

Crystal data
Chemical formulaCa2Co2.496O6.117
Mr325.1
Crystal system, space groupMonoclinic, X2/m
Temperature (K)300
Wave vectorsq1 = 0.66666a* + -0.33333c*; q2 = 1.62500b*‡
a, b, c (Å)4.8395, 4.5531, 10.8583
β (°) 98.124
V3)236.86
Z2
Radiation typeMo Kα
µ (mm1)10.80
Crystal size (mm)0.20 × 0.15 × 0.03
Data collection
DiffractometerBruker Kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 3σ(I)] reflections
4288, 2492, 1673
Rint0.005
(sin θ/λ)max1)0.995
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.032, 1.66
No. of reflections2492
No. of parameters78
No. of restraints?
Δρmax, Δρmin (e Å3)0.67, 0.71

† Symmetry operations: (1) x1, x2, x3, x4, x5; (2) −x1, x2, −x3, −x4, 1/2+x5; (3) −x1, −x2, −x3, −x4, −x5; (4) x1, −x2, x3, x4, 1/2−x5; (5) 1/2+x1, 1/2+x2, x3, x4, 1/2+x5; (6) 1/2−x1, 1/2+x2, −x3, −x4, x5; (7) 1/2−x1, 1/2−x2, −x3, −x4, 1/2−x5; (8) 1/2+x1, 1/2−x2, x3, x4, −x5.

texobject1427811807.png; texobject1427811808.png

Computer programs: Jana2000 (Petricek, Dusek & Palatinus, 2000).

Selected geometric parameters (Å, º) top
AverageMinimumMaximum
Co2—O31.9040 (12)1.9028 (17)1.9053 (18)
Co2—O3i1.9003 (9)1.8868 (6)1.9142 (6)
Co2—O3ii1.9003 (9)1.8868 (6)1.9142 (6)
Co2—O31iii1.9003 (6)1.8866 (6)1.9143 (6)
Co2—O311.9003 (6)1.8866 (6)1.9143 (6)
Co2—O31iv1.9040 (7)1.9028 (8)1.9053 (8)
O3—Co2—O3i85.37 (4)84.11 (3)86.65 (3)
O3—Co2—O3ii85.37 (4)84.11 (3)86.65 (3)
O3—Co2—O31iii94.62 (4)93.02 (3)96.26 (3)
O3—Co2—O3194.62 (4)93.02 (3)96.26 (3)
O3—Co2—O31iv179.43 (5)179.11 (7)179.89 (3)
O3i—Co2—O385.37 (4)84.11 (3)86.65 (4)
O3i—Co2—O3ii95.02 (4)94.17 (3)95.86 (3)
O3i—Co2—O31iii84.97 (3)84.95 (3)84.99 (4)
O3i—Co2—O31178.73 (4)178.01 (4)179.76 (5)
O3i—Co2—O31iv94.62 (4)93.00 (3)96.23 (3)
O3ii—Co2—O385.37 (4)84.11 (3)86.65 (4)
O3ii—Co2—O3i95.02 (4)94.17 (3)95.86 (3)
O3ii—Co2—O31iii178.73 (4)178.01 (4)179.76 (5)
O3ii—Co2—O3184.97 (3)84.95 (3)84.99 (4)
O3ii—Co2—O31iv94.62 (4)93.00 (3)96.23 (3)
O31iii—Co2—O3195.02 (3)94.14 (3)95.84 (3)
O31iii—Co2—O31iv85.37 (3)84.10 (3)86.63 (3)
O31—Co2—O31iii95.02 (3)94.14 (3)95.84 (3)
O31—Co2—O31iv85.37 (3)84.10 (3)86.63 (3)
O31iv—Co2—O31iii85.37 (3)84.10 (3)86.63 (3)
O31iv—Co2—O3185.37 (3)84.10 (3)86.63 (3)
Symmetry codes: (i) x1+1, x2+1, x3, x4, x5; (ii) x1+1, x2+2, x3, x4, x5; (iii) x1, x21, x3, x4, x5; (iv) x1+2, x2+2, x3, x4, x5.
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds