Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Deoxyuridine triphosphate nucleotidohydrolase (dUTPase) from Saccharomyces cerevisiae is essential for cell viability. It has been overexpressed in Escherichia coli and has been crystallized at 296 K using polyethylene glycol (PEG) 1500 as a precipitant. The crystals belong to the orthorhombic space group P212121, with unit-cell parameters a = 59.48, b = 138.54, c = 157.91 Å, α = β = γ = 90°. Two molecules of trimeric dUTPase from S. cerevisiae are present in the asymmetric unit, giving a crystal volume per protein mass (VM) of 3.36 Å3 Da−1 and a solvent content of 63%. The diffraction limit of the crystals could be significantly extended by the crystal-annealing procedure. A set of native data extending to 2.7 Å resolution has been collected at 100 K using synchrotron X-rays.

Subscribe to Acta Crystallographica Section D: Biological Crystallography

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email [email protected] for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. D
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds