Buy article online - an online subscription or single-article purchase is required to access this article.
Homogeneous and inclusion-free single crystals of 2:1 mullite (Al4.8Si1.2O9.6) grown by the Czochralski technique were examined by X-ray and neutron diffraction methods. The observed diffuse scattering together with the pattern of satellite reflections confirm previously published data and are thus inherent features of the mullite structure. The ideal composition was closely met as confirmed by microprobe analysis (Al4.82 (3)Si1.18 (1)O9.59 (5)) and by average structure refinements. 8 (5) to 20 (13)% of the available Si was found in the T* position of the tetrahedra triclusters. The strong tendencey for disorder in mullite may be understood from considerations of hypothetical superstructures which would have to be n-fivefold with respect to the three-dimensional average unit cell of 2:1 mullite and n-fourfold in case of 3:2 mullite. In any of these the possible arrangements of the vacancies and of the tetrahedral units would inevitably be unfavorable. Three directions of incommensurate modulations were determined: q1 = [0.3137 (2) 0 ½], q2 = [0 0.4021 (5) 0.1834 (2)] and q3 = [0 0.4009 (5) −0.1834 (2)]. The one-dimensional incommensurately modulated crystal structure associated with q1 was refined for the first time using the superspace approach. The modulation is dominated by harmonic occupational modulations of the atoms in the di- and the triclusters of the tetrahedral units in mullite. The modulation amplitudes are small and the harmonic character implies that the modulated structure still represents an average structure in the overall disordered arrangement of the vacancies and of the tetrahedral structural units. In other words, when projecting the local assemblies at the scale of a few tens of average mullite cells into cells determined by either one of the modulation vectors q1, q2 or q3 a weak average modulation results with slightly varying average occupation factors for the tetrahedral units. As a result, the real structure of mullite is locally ordered (as previously known), but on the long-range its average is not completely disordered, the modulated structure of mullite may be denoted the true `average structure of mullite'.
Supporting information
B-IncStrDB reference: 11262E9iecH
CCDC reference: 1060127
Crystal data top
Al4.8O9.6Si1.2 | Z = 1 |
Mr = 316.8 | F(000) = 156 |
Orthorhombic, Pbam(α01/2)0ss† | Dx = 3.117 Mg m−3 |
q = 0.313700a* + 0.500000c* | Mo Kα radiation, λ = 0.71073 Å |
a = 7.5911 Å | µ = 1.06 mm−1 |
b = 7.6924 Å | T = 293 K |
c = 2.8899 Å | Stump wedge, colorless |
V = 168.75 Å3 | 0.36 × 0.28 × 0.21 mm |
† Symmetry operations: (1) x1, x2, x3, x4; (2) −x1, −x2, x3, x3−x4+1/2; (3) −x1+1/2, x2+1/2, −x3, −x4+1/2; (4) x1+1/2, −x2+1/2, −x3, −x3+x4; (5) −x1, −x2, −x3, −x4; (6) x1, x2, −x3, −x3+x4+1/2; (7) x1+1/2, −x2+1/2, x3, x4+1/2; (8) −x1+1/2, x2+1/2, x3, x3−x4.
|
Data collection top
Bruker CCD diffractometer | 1234 independent reflections |
Radiation source: X-ray tube | 772 reflections with I > 3σ(I) |
Graphite monochromator | Rint = 0.028 |
integration technique scans | θmax = 36.6°, θmin = 4.0° |
Absorption correction: empirical (using intensity measurements) | h = −12→12 |
Tmin = 0.741, Tmax = 0.831 | k = −12→12 |
8049 measured reflections | l = −5→5 |
Refinement top
Refinement on F | 48 constraints |
R[F2 > 2σ(F2)] = 0.028 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
wR(F2) = 0.057 | (Δ/σ)max = 0.032 |
S = 3.01 | Δρmax = 0.39 e Å−3 |
1234 reflections | Δρmin = −0.50 e Å−3 |
106 parameters | Extinction correction: B-C type 1 Gaussian isotropic (Becker & Coppens, 1974) |
0 restraints | Extinction coefficient: 2000 (200) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Al1 | 0 | 0 | 0 | 0.00670 (13) | |
Al2 | 0.14887 (5) | 0.34028 (4) | 0.5 | 0.00720 (13) | 0.5 |
Si2 | 0.14887 (5) | 0.34028 (4) | 0.5 | 0.00720 (13) | 0.2963 |
Al3 | 0.2626 (2) | 0.2055 (2) | 0.5 | 0.0087 (4) | 0.2037 |
Si3 | 0.2626 (2) | 0.2055 (2) | 0.5 | 0.0087 (4) | 0 |
O1 | 0.35820 (9) | 0.42264 (10) | 0.5 | 0.0132 (2) | |
O2 | 0.12772 (10) | 0.21868 (11) | 0 | 0.0134 (2) | |
O3 | 0 | 0.5 | 0.5 | 0.0198 (16) | 0.3889 |
O4 | 0.4523 (8) | 0.0457 (11) | 0.5 | 0.0119 (17) | 0.2037 |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Al1 | 0.0079 (2) | 0.0068 (2) | 0.0054 (2) | 0.00073 (11) | 0 | 0 |
Al2 | 0.0065 (2) | 0.0081 (2) | 0.0070 (2) | −0.00052 (10) | 0 | 0 |
Si2 | 0.0065 (2) | 0.0081 (2) | 0.0070 (2) | −0.00052 (10) | 0 | 0 |
Al3 | 0.0088 (7) | 0.0090 (6) | 0.0082 (6) | 0.0015 (5) | 0 | 0 |
Si3 | 0.0088 (7) | 0.0090 (6) | 0.0082 (6) | 0.0015 (5) | 0 | 0 |
O1 | 0.0141 (4) | 0.0188 (4) | 0.0066 (3) | −0.0079 (3) | 0 | 0 |
O2 | 0.0156 (3) | 0.0136 (4) | 0.0109 (3) | −0.0063 (2) | 0 | 0 |
O3 | 0.007 (3) | 0.024 (4) | 0.0283 (17) | −0.0002 (16) | 0 | 0 |
O4 | 0.005 (3) | 0.017 (4) | 0.0138 (18) | −0.003 (2) | 0 | 0 |
Bond lengths (Å) top | Average | Minimum | Maximum |
Al1—O1i | 1.8977 (7) | 1.8907 (8) | 1.9047 (8) |
Al1—O1ii | 1.8977 (7) | 1.8907 (8) | 1.9047 (8) |
Al1—O1iii | 1.8977 (7) | 1.8907 (8) | 1.9047 (8) |
Al1—O1iv | 1.8977 (7) | 1.8907 (8) | 1.9047 (8) |
Al1—O2 | 1.9416 (8) | 1.9415 (8) | 1.9416 (8) |
Al1—O2v | 1.9416 (8) | 1.9415 (8) | 1.9416 (8) |
Al2—O1 | 1.7109 (12) | 1.7033 (12) | 1.7182 (12) |
Al2—O2 | 1.7289 (8) | 1.7186 (8) | 1.7391 (8) |
Al2—O2vi | 1.7289 (8) | 1.7186 (8) | 1.7391 (8) |
Al2—O3 | 1.670 (3) | 1.650 (6) | 1.689 (6) |
Al2—O4vii | 1.757 (12) | 1.692 (15) | 1.822 (15) |
Al2—O4iv | 1.731 (11) | 1.688 (12) | 1.774 (12) |
Si2—O1 | 1.7109 (12) | 1.7033 (12) | 1.7182 (12) |
Si2—O2 | 1.7289 (8) | 1.7186 (8) | 1.7391 (8) |
Si2—O2vi | 1.7289 (8) | 1.7186 (8) | 1.7391 (8) |
Si2—O3 | 1.670 (3) | 1.650 (6) | 1.689 (6) |
Si2—O4vii | 1.757 (12) | 1.692 (15) | 1.822 (15) |
Si2—O4iv | 1.731 (11) | 1.688 (12) | 1.774 (12) |
Al3—O1 | 1.822 (3) | 1.806 (3) | 1.838 (3) |
Al3—O2 | 1.7739 (16) | 1.7611 (16) | 1.7865 (16) |
Al3—O2vi | 1.7739 (16) | 1.7611 (16) | 1.7865 (16) |
Al3—O4 | 1.894 (11) | 1.847 (13) | 1.940 (13) |
Si3—O1 | 1.812 (3) | 1.806 (3) | 1.825 (3) |
Si3—O2 | 1.7722 (16) | 1.7611 (16) | 1.7862 (16) |
Si3—O2vi | 1.7722 (16) | 1.7611 (16) | 1.7862 (16) |
Si3—O4 | 1.865 (11) | 1.847 (13) | 1.898 (13) |
Symmetry codes: (i) −x1+1/2, x2−1/2, −x3, −x4+1/2; (ii) −x1+1/2, x2−1/2, −x3+1, −x4+1/2; (iii) x1−1/2, −x2+1/2, −x3, −x3+x4; (iv) x1−1/2, −x2+1/2, −x3+1, −x3+x4; (v) −x1, −x2, x3, x3−x4+1/2; (vi) x1, x2, x3+1, x4; (vii) −x1+1/2, x2+1/2, −x3+1, −x4+1/2. |
Crystal data top
Al4.78O9.61Si1.22 | Z = 1 |
Mr = 317 | F(000) = 156 |
Orthorhombic, Pbam | Dx = 3.141 Mg m−3 |
Hall symbol: -P -2xab;-2yab;-2z | X-ray radiation, λ = 1.0408 Å |
a = 7.5757 Å | µ = 0.00044 mm−1 |
b = 7.6651 Å | T = 293 K |
c = 2.885 Å | Almost a cube, colorless |
V = 167.53 Å3 | 4 × 4 × 4 mm |
Data collection top
Eulerian cradle diffractometer | θmax = 58.5°, θmin = 5.5° |
Graphite monochromator | h = −12→9 |
1545 measured reflections | k = −8→12 |
1534 independent reflections | l = −4→4 |
1516 reflections with I > 3σ(I) | |
Refinement top
Refinement on F | 16 constraints |
R[F2 > 2σ(F2)] = 0.050 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2) |
wR(F2) = 0.067 | (Δ/σ)max = 0.007 |
S = 2.68 | Δρmax = 1.12 e Å−3 |
1534 reflections | Δρmin = −0.69 e Å−3 |
47 parameters | Extinction correction: B-C type 1 Lorentzian anisotropic (Becker & Coppens, 1975) |
0 restraints | Extinction coefficient: -0.014(5), -0.026(2), -0.0078(8), -0.008(2), -0.001(1), -0.0009(7) |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | Occ. (<1) |
Al1 | 0 | 0 | 0 | 0.0045 (3) | |
Al2 | 0.14897 (9) | 0.34022 (13) | 0.5 | 0.0049 (3) | 0.56 (5) |
Si2 | 0.14897 (9) | 0.34022 (13) | 0.5 | 0.0049 (3) | 0.24 (5) |
Al3 | 0.2619 (4) | 0.2066 (4) | 0.5 | 0.0054 (9) | 0.13 (5) |
Si3 | 0.2619 (4) | 0.2066 (4) | 0.5 | 0.0054 (9) | 0.06 (5) |
O1 | 0.35845 (5) | 0.42238 (8) | 0.5 | 0.0111 (2) | |
O2 | 0.12734 (5) | 0.21852 (7) | 0 | 0.0116 (2) | |
O3 | 0.5 | 0 | 0.5 | 0.0194 (16) | 0.42 (2) |
O4 | 0.4496 (11) | 0.0518 (9) | 0.5 | 0.0072 (9) | 0.195 (8) |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Al1 | 0.0056 (4) | 0.0065 (4) | 0.0013 (5) | 0.0011 (3) | 0 | 0 |
Al2 | 0.0038 (4) | 0.0081 (5) | 0.0029 (5) | −0.0013 (2) | 0 | 0 |
Si2 | 0.0038 (4) | 0.0081 (5) | 0.0029 (5) | −0.0013 (2) | 0 | 0 |
Al3 | 0.0016 (14) | 0.0091 (13) | 0.0055 (19) | 0.0014 (10) | 0 | 0 |
Si3 | 0.0016 (14) | 0.0091 (13) | 0.0055 (19) | 0.0014 (10) | 0 | 0 |
O1 | 0.0116 (4) | 0.0199 (4) | 0.0018 (4) | −0.00831 (17) | 0 | 0 |
O2 | 0.0131 (3) | 0.0138 (4) | 0.0078 (4) | −0.00698 (15) | 0 | 0 |
O3 | 0.018 (3) | 0.018 (4) | 0.0224 (13) | −0.006 (3) | 0 | 0 |
O4 | 0.0094 (18) | 0.0047 (15) | 0.0073 (12) | −0.0002 (11) | 0 | 0 |
Bond lengths (Å) top
Al1—O1i | 1.8933 (3) | Si2—O3vi | 1.790 (3) |
Al1—O1ii | 1.8933 (3) | Si2—O3iv | 1.705 (3) |
Al1—O1iii | 1.8933 (3) | Si2—O4 | 1.7243 (6) |
Al1—O1iv | 1.8933 (3) | Si2—O4vii | 1.7243 (6) |
Al1—O4 | 1.9331 (5) | Al3—O1 | 1.808 (4) |
Al1—O4v | 1.9331 (5) | Al3—O1ii | 2.362 (4) |
Al2—Al3 | 1.334 (3) | Al3—O2 | 2.398 (3) |
Al2—Si3 | 1.334 (3) | Al3—O3 | 1.879 (4) |
Al2—O1 | 1.7078 (9) | Al3—O4 | 1.7699 (17) |
Al2—O2vi | 1.6680 (9) | Al3—O4vii | 1.7699 (17) |
Al2—O3vi | 1.790 (3) | Si3—O1 | 1.808 (4) |
Al2—O3iv | 1.705 (3) | Si3—O1ii | 2.362 (4) |
Al2—O4 | 1.7243 (6) | Si3—O2 | 2.398 (3) |
Al2—O4vii | 1.7243 (6) | Si3—O3 | 1.879 (4) |
Si2—Al3 | 1.334 (3) | Si3—O4 | 1.7699 (17) |
Si2—Si3 | 1.334 (3) | Si3—O4vii | 1.7699 (17) |
Si2—O1 | 1.7078 (9) | O1—O1viii | 2.4525 (7) |
Si2—O2vi | 1.6680 (9) | O3—O3ix | 1.045 (4) |
Symmetry codes: (i) −x+1/2, y−1/2, −z; (ii) −x+1/2, y−1/2, −z+1; (iii) x−1/2, −y+1/2, −z; (iv) x−1/2, −y+1/2, −z+1; (v) −x, −y, z; (vi) −x+1/2, y+1/2, −z+1; (vii) x, y, z+1; (viii) −x+1, −y+1, z; (ix) −x+1, −y, z. |
Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.