Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807030723/wm2129sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536807030723/wm2129Isup2.hkl |
CCDC reference: 654824
Key indicators
- Single-crystal X-ray study
- T = 150 K
- Mean (C-C) = 0.003 Å
- R factor = 0.023
- wR factor = 0.063
- Data-to-parameter ratio = 17.5
checkCIF/PLATON results
No syntax errors found
Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.99
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 28.33 From the CIF: _reflns_number_total 4157 Count of symmetry unique reflns 2303 Completeness (_total/calc) 180.50% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1854 Fraction of Friedel pairs measured 0.805 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu (2) 2.22 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check
A review on ligand environments and structures of Schiff base adducts and tetracoordinated metal chelates has been given by Garnovskii et al. (1993). The Cambridge Structural Database (Version 5.28, plus two updates until May 2007; Allen, 2002) was used as a source for searching for related structures. For comparable Schiff base complexes, see: Elerman et al. (1991); Nathan et al. (2003).
A mixture of 6-methoxysalicylaldehyde (2.0 mmol, 304 mg) and 1,3-diaminopropane (1.0 mmol, 74 mg) was dissolved in methanol (10 ml) with stirring for 30 min at room temperature, to give a clear yellow solution. A methanol solution (10 ml) of Cu(CH3COO)2.2H2O (1.0 mmol, 218 mg) was then added. The mixture was stirred for further 30 min and then filtered. After keeping the filtrate in air for 7 d, blue block-shaped crystals were formed at the bottom of the vessel on slow evaporation of the solvent, in about 65% yield.
All H atoms were placed in geometrically idealized positions and allowed to ride on their parent atoms, with C—H distances in the range 0.93–0.97 Å and with Uiso(H) = 1.2 or 1.5 times Ueq(C).
Metal derivatives of Schiff bases have been studied extensively, and CuII and NiII complexes play a major role in both synthetic and structural research. The coordination of the metal cations is usually planar in the case of Ni, but for Cu a tetrahedral distortion is often observed (Garnovskii et al., 1993). We report here the results of the reaction of CuII with the tetradentate ligand N,N'-bis(6-methoxysalicylidene)-1,3-diaminopropane in a 1:1 molar ratio, forming the title compound, (I).
A view of the molecular structure of (I) is shown in Fig. 1. The crystal structure of the ligand (but without methoxy substituents) is known for a long time (Elerman et al., 1991), as are about 150 of its metal complexes (found in a search of the Cambridge Structural Database [version 5.28] plus two updates until May 2007; Allen, 2002). Structures of the CuII complex which are comparable with the title compound have been reported several times, the most recent given by Nathan et al. (2003). The title complex, however, is the first reported example of a Schiff base, as a ligand or uncomplexed, in which substituents in the 6 position of the benzene rings are present.
The CuII coordination polyhedron is approximately square planar, with a significant distortion towards tetrahedral, as indicated by the dihedral angle of 25.07 (9)° between the CuO2 and CuN2 planes. This, and the Cu—O and Cu—N distances (see Table), are similar to those observed in other CuII complexes of related Schiff bases.
A review on ligand environments and structures of Schiff base adducts and tetracoordinated metal chelates has been given by Garnovskii et al. (1993). The Cambridge Structural Database (Version 5.28, plus two updates until May 2007; Allen, 2002) was used as a source for searching for related structures. For comparable Schiff base complexes, see: Elerman et al. (1991); Nathan et al. (2003).
Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2005b); program(s) used to refine structure: SHELXTL; molecular graphics: DIAMOND (Brandenburg, 2007); software used to prepare material for publication: SHELXTL and local programs.
Fig. 1. The molecular structure with atom labels, drawn with ellipsoids at the 50% probability level for all non-H atoms. H atoms are given as spheres of arbitrary radius. |
[Cu(C19H20N2O4)] | F(000) = 836 |
Mr = 403.91 | Dx = 1.542 Mg m−3 |
Orthorhombic, Pca21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2ac | Cell parameters from 9351 reflections |
a = 13.7911 (14) Å | θ = 2.2–28.3° |
b = 12.7032 (13) Å | µ = 1.28 mm−1 |
c = 9.9329 (10) Å | T = 150 K |
V = 1740.2 (3) Å3 | Block, blue |
Z = 4 | 0.30 × 0.30 × 0.20 mm |
Bruker SMART 1K CCD diffractometer | 4157 independent reflections |
Radiation source: fine-focus sealed tube | 3766 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.028 |
ω scans | θmax = 28.3°, θmin = 2.2° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2005a) | h = −17→17 |
Tmin = 0.700, Tmax = 0.785 | k = −16→16 |
14731 measured reflections | l = −13→13 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.063 | w = 1/[σ2(Fo2) + (0.0332P)2 + 0.2389P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
4157 reflections | Δρmax = 0.33 e Å−3 |
237 parameters | Δρmin = −0.44 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 1916 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.013 (12) |
[Cu(C19H20N2O4)] | V = 1740.2 (3) Å3 |
Mr = 403.91 | Z = 4 |
Orthorhombic, Pca21 | Mo Kα radiation |
a = 13.7911 (14) Å | µ = 1.28 mm−1 |
b = 12.7032 (13) Å | T = 150 K |
c = 9.9329 (10) Å | 0.30 × 0.30 × 0.20 mm |
Bruker SMART 1K CCD diffractometer | 4157 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2005a) | 3766 reflections with I > 2σ(I) |
Tmin = 0.700, Tmax = 0.785 | Rint = 0.028 |
14731 measured reflections |
R[F2 > 2σ(F2)] = 0.024 | H-atom parameters constrained |
wR(F2) = 0.063 | Δρmax = 0.33 e Å−3 |
S = 1.04 | Δρmin = −0.44 e Å−3 |
4157 reflections | Absolute structure: Flack (1983), 1916 Friedel pairs |
237 parameters | Absolute structure parameter: 0.013 (12) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
x | y | z | Uiso*/Ueq | ||
Cu | 0.174992 (13) | 0.252482 (15) | 0.36441 (5) | 0.01625 (6) | |
N1 | 0.23946 (12) | 0.12304 (12) | 0.42218 (15) | 0.0194 (3) | |
N2 | 0.28978 (10) | 0.32088 (11) | 0.28765 (16) | 0.0171 (3) | |
O1 | 0.13783 (12) | −0.12408 (11) | 0.62238 (16) | 0.0321 (3) | |
O2 | 0.06371 (10) | 0.22063 (11) | 0.47204 (15) | 0.0239 (3) | |
O3 | 0.08904 (9) | 0.34212 (10) | 0.26854 (13) | 0.0210 (3) | |
O4 | 0.30881 (10) | 0.53932 (12) | 0.00073 (16) | 0.0298 (3) | |
C1 | 0.1202 (2) | −0.20841 (18) | 0.7155 (3) | 0.0402 (6) | |
H1A | 0.1723 | −0.2605 | 0.7085 | 0.060* | |
H1B | 0.0580 | −0.2419 | 0.6942 | 0.060* | |
H1C | 0.1181 | −0.1803 | 0.8074 | 0.060* | |
C2 | 0.07334 (16) | −0.04266 (15) | 0.6220 (2) | 0.0244 (4) | |
C3 | −0.01325 (16) | −0.04319 (16) | 0.6918 (2) | 0.0284 (5) | |
H3A | −0.0321 | −0.1025 | 0.7438 | 0.034* | |
C4 | −0.07236 (16) | 0.04570 (17) | 0.6838 (2) | 0.0292 (4) | |
H4A | −0.1319 | 0.0460 | 0.7320 | 0.035* | |
C5 | −0.04815 (15) | 0.13287 (16) | 0.6092 (2) | 0.0258 (4) | |
H5A | −0.0913 | 0.1911 | 0.6052 | 0.031* | |
C6 | 0.04105 (14) | 0.13626 (15) | 0.53826 (18) | 0.0208 (4) | |
C7 | 0.10334 (15) | 0.04696 (15) | 0.54488 (19) | 0.0205 (4) | |
C8 | 0.19971 (14) | 0.04821 (15) | 0.49065 (19) | 0.0210 (4) | |
H8A | 0.2384 | −0.0124 | 0.5068 | 0.025* | |
C9 | 0.34254 (14) | 0.11051 (14) | 0.38763 (19) | 0.0221 (4) | |
H9A | 0.3495 | 0.1006 | 0.2892 | 0.027* | |
H9B | 0.3691 | 0.0475 | 0.4332 | 0.027* | |
C10 | 0.39877 (15) | 0.20812 (16) | 0.4319 (2) | 0.0227 (4) | |
H10A | 0.3736 | 0.2323 | 0.5199 | 0.027* | |
H10B | 0.4679 | 0.1893 | 0.4439 | 0.027* | |
C11 | 0.39108 (13) | 0.29754 (15) | 0.33088 (19) | 0.0207 (4) | |
H11A | 0.4194 | 0.3618 | 0.3712 | 0.025* | |
H11B | 0.4300 | 0.2795 | 0.2504 | 0.025* | |
C12 | 0.28636 (14) | 0.39154 (14) | 0.19369 (18) | 0.0182 (4) | |
H12A | 0.3471 | 0.4145 | 0.1595 | 0.022* | |
C13 | 0.20214 (13) | 0.43938 (14) | 0.13492 (18) | 0.0178 (4) | |
C14 | 0.21461 (13) | 0.51992 (15) | 0.03636 (19) | 0.0204 (4) | |
C15 | 0.13649 (14) | 0.57306 (15) | −0.0176 (2) | 0.0226 (4) | |
H15A | 0.1456 | 0.6263 | −0.0835 | 0.027* | |
C16 | 0.04276 (14) | 0.54632 (15) | 0.0277 (2) | 0.0241 (4) | |
H16A | −0.0116 | 0.5824 | −0.0087 | 0.029* | |
C17 | 0.02793 (14) | 0.46998 (15) | 0.1223 (2) | 0.0226 (4) | |
H17A | −0.0363 | 0.4541 | 0.1503 | 0.027* | |
C18 | 0.10671 (13) | 0.41422 (14) | 0.17916 (19) | 0.0184 (4) | |
C19 | 0.32782 (15) | 0.62249 (17) | −0.0922 (2) | 0.0295 (5) | |
H19A | 0.3979 | 0.6284 | −0.1068 | 0.044* | |
H19B | 0.3030 | 0.6889 | −0.0556 | 0.044* | |
H19C | 0.2956 | 0.6073 | −0.1780 | 0.044* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu | 0.01746 (10) | 0.01431 (10) | 0.01697 (10) | 0.00117 (8) | 0.00155 (11) | 0.00191 (8) |
N1 | 0.0246 (8) | 0.0166 (7) | 0.0170 (7) | 0.0037 (6) | 0.0008 (6) | −0.0003 (6) |
N2 | 0.0165 (7) | 0.0159 (7) | 0.0191 (8) | 0.0017 (6) | −0.0019 (6) | −0.0002 (6) |
O1 | 0.0434 (9) | 0.0202 (7) | 0.0328 (8) | −0.0012 (6) | 0.0019 (7) | 0.0100 (6) |
O2 | 0.0252 (7) | 0.0188 (6) | 0.0278 (7) | 0.0011 (6) | 0.0083 (6) | 0.0043 (6) |
O3 | 0.0168 (6) | 0.0202 (6) | 0.0258 (7) | 0.0017 (5) | 0.0021 (5) | 0.0066 (6) |
O4 | 0.0179 (6) | 0.0328 (8) | 0.0388 (9) | −0.0034 (6) | 0.0008 (6) | 0.0191 (7) |
C1 | 0.0548 (16) | 0.0247 (11) | 0.0412 (14) | −0.0029 (11) | −0.0002 (11) | 0.0160 (10) |
C2 | 0.0350 (11) | 0.0190 (9) | 0.0193 (9) | −0.0079 (8) | −0.0060 (8) | 0.0005 (8) |
C3 | 0.0362 (11) | 0.0273 (10) | 0.0217 (10) | −0.0148 (9) | −0.0026 (8) | 0.0045 (8) |
C4 | 0.0291 (11) | 0.0356 (11) | 0.0230 (10) | −0.0119 (9) | 0.0008 (8) | 0.0000 (9) |
C5 | 0.0261 (10) | 0.0278 (10) | 0.0235 (10) | −0.0024 (8) | 0.0026 (8) | 0.0014 (8) |
C6 | 0.0275 (10) | 0.0203 (9) | 0.0147 (8) | −0.0035 (7) | 0.0006 (7) | −0.0008 (7) |
C7 | 0.0296 (10) | 0.0168 (9) | 0.0151 (9) | −0.0037 (7) | −0.0018 (7) | 0.0002 (7) |
C8 | 0.0306 (10) | 0.0152 (9) | 0.0173 (9) | 0.0007 (7) | −0.0023 (7) | −0.0020 (7) |
C9 | 0.0247 (9) | 0.0191 (8) | 0.0224 (11) | 0.0057 (7) | 0.0033 (7) | 0.0010 (7) |
C10 | 0.0216 (9) | 0.0236 (9) | 0.0230 (10) | 0.0053 (8) | −0.0035 (8) | 0.0038 (8) |
C11 | 0.0149 (9) | 0.0222 (9) | 0.0250 (11) | 0.0016 (7) | −0.0033 (7) | 0.0028 (7) |
C12 | 0.0160 (8) | 0.0181 (8) | 0.0203 (9) | −0.0007 (7) | 0.0001 (6) | −0.0002 (7) |
C13 | 0.0177 (8) | 0.0160 (8) | 0.0196 (9) | 0.0005 (7) | −0.0016 (7) | 0.0023 (7) |
C14 | 0.0174 (8) | 0.0202 (9) | 0.0236 (9) | −0.0020 (7) | −0.0003 (7) | 0.0031 (7) |
C15 | 0.0244 (9) | 0.0183 (9) | 0.0252 (9) | 0.0015 (7) | −0.0011 (8) | 0.0062 (8) |
C16 | 0.0215 (9) | 0.0206 (10) | 0.0301 (10) | 0.0053 (7) | −0.0043 (8) | 0.0038 (8) |
C17 | 0.0162 (9) | 0.0221 (9) | 0.0295 (10) | 0.0018 (7) | 0.0019 (7) | 0.0029 (8) |
C18 | 0.0193 (9) | 0.0160 (8) | 0.0198 (9) | 0.0005 (7) | 0.0017 (7) | −0.0013 (7) |
C19 | 0.0267 (10) | 0.0298 (11) | 0.0321 (11) | −0.0056 (8) | 0.0026 (8) | 0.0125 (9) |
Cu—N1 | 1.9554 (15) | C6—C7 | 1.425 (3) |
Cu—N2 | 1.9602 (15) | C7—C8 | 1.434 (3) |
Cu—O2 | 1.9136 (14) | C8—H8A | 0.950 |
Cu—O3 | 1.8996 (13) | C9—H9A | 0.990 |
N1—C8 | 1.291 (2) | C9—H9B | 0.990 |
N1—C9 | 1.471 (2) | C9—C10 | 1.527 (3) |
N2—C11 | 1.491 (2) | C10—H10A | 0.990 |
N2—C12 | 1.296 (2) | C10—H10B | 0.990 |
O1—C1 | 1.436 (3) | C10—C11 | 1.519 (3) |
O1—C2 | 1.364 (3) | C11—H11A | 0.990 |
O2—C6 | 1.296 (2) | C11—H11B | 0.990 |
O3—C18 | 1.299 (2) | C12—H12A | 0.950 |
O4—C14 | 1.369 (2) | C12—C13 | 1.435 (3) |
O4—C19 | 1.427 (2) | C13—C14 | 1.426 (2) |
C1—H1A | 0.980 | C13—C18 | 1.424 (3) |
C1—H1B | 0.980 | C14—C15 | 1.380 (3) |
C1—H1C | 0.980 | C15—H15A | 0.950 |
C2—C3 | 1.381 (3) | C15—C16 | 1.410 (3) |
C2—C7 | 1.433 (3) | C16—H16A | 0.950 |
C3—H3A | 0.950 | C16—C17 | 1.366 (3) |
C3—C4 | 1.395 (3) | C17—H17A | 0.950 |
C4—H4A | 0.950 | C17—C18 | 1.415 (3) |
C4—C5 | 1.373 (3) | C19—H19A | 0.980 |
C5—H5A | 0.950 | C19—H19B | 0.980 |
C5—C6 | 1.419 (3) | C19—H19C | 0.980 |
N1—Cu—N2 | 96.88 (6) | N1—C9—H9B | 109.7 |
N1—Cu—O2 | 91.31 (6) | N1—C9—C10 | 109.62 (15) |
N1—Cu—O3 | 159.21 (6) | H9A—C9—H9B | 108.2 |
N2—Cu—O2 | 163.48 (6) | H9A—C9—C10 | 109.7 |
N2—Cu—O3 | 92.48 (6) | H9B—C9—C10 | 109.7 |
O2—Cu—O3 | 84.63 (6) | C9—C10—H10A | 109.1 |
Cu—N1—C8 | 125.50 (14) | C9—C10—H10B | 109.1 |
Cu—N1—C9 | 117.51 (11) | C9—C10—C11 | 112.44 (17) |
C8—N1—C9 | 116.98 (16) | H10A—C10—H10B | 107.8 |
Cu—N2—C11 | 123.81 (12) | H10A—C10—C11 | 109.1 |
Cu—N2—C12 | 123.91 (13) | H10B—C10—C11 | 109.1 |
C11—N2—C12 | 112.28 (15) | N2—C11—C10 | 113.84 (16) |
C1—O1—C2 | 117.18 (19) | N2—C11—H11A | 108.8 |
Cu—O2—C6 | 130.69 (13) | N2—C11—H11B | 108.8 |
Cu—O3—C18 | 130.41 (12) | C10—C11—H11A | 108.8 |
C14—O4—C19 | 118.35 (15) | C10—C11—H11B | 108.8 |
O1—C1—H1A | 109.5 | H11A—C11—H11B | 107.7 |
O1—C1—H1B | 109.5 | N2—C12—H12A | 116.0 |
O1—C1—H1C | 109.5 | N2—C12—C13 | 128.01 (18) |
H1A—C1—H1B | 109.5 | H12A—C12—C13 | 116.0 |
H1A—C1—H1C | 109.5 | C12—C13—C14 | 119.04 (16) |
H1B—C1—H1C | 109.5 | C12—C13—C18 | 121.84 (17) |
O1—C2—C3 | 123.98 (18) | C14—C13—C18 | 118.96 (16) |
O1—C2—C7 | 114.55 (19) | O4—C14—C13 | 114.90 (16) |
C3—C2—C7 | 121.5 (2) | O4—C14—C15 | 123.54 (17) |
C2—C3—H3A | 120.9 | C13—C14—C15 | 121.56 (17) |
C2—C3—C4 | 118.23 (19) | C14—C15—H15A | 120.8 |
H3A—C3—C4 | 120.9 | C14—C15—C16 | 118.30 (18) |
C3—C4—H4A | 118.6 | H15A—C15—C16 | 120.8 |
C3—C4—C5 | 122.8 (2) | C15—C16—H16A | 119.1 |
H4A—C4—C5 | 118.6 | C15—C16—C17 | 121.85 (17) |
C4—C5—H5A | 119.9 | H16A—C16—C17 | 119.1 |
C4—C5—C6 | 120.22 (19) | C16—C17—H17A | 119.5 |
H5A—C5—C6 | 119.9 | C16—C17—C18 | 121.01 (17) |
O2—C6—C5 | 119.12 (18) | H17A—C17—C18 | 119.5 |
O2—C6—C7 | 122.45 (17) | O3—C18—C13 | 122.87 (16) |
C5—C6—C7 | 118.42 (18) | O3—C18—C17 | 118.81 (16) |
C2—C7—C6 | 118.89 (18) | C13—C18—C17 | 118.31 (17) |
C2—C7—C8 | 118.50 (18) | O4—C19—H19A | 109.5 |
C6—C7—C8 | 122.19 (17) | O4—C19—H19B | 109.5 |
N1—C8—C7 | 126.84 (18) | O4—C19—H19C | 109.5 |
N1—C8—H8A | 116.6 | H19A—C19—H19B | 109.5 |
C7—C8—H8A | 116.6 | H19A—C19—H19C | 109.5 |
N1—C9—H9A | 109.7 | H19B—C19—H19C | 109.5 |
N2—Cu—N1—C8 | 174.63 (16) | C3—C2—C7—C6 | −1.4 (3) |
N2—Cu—N1—C9 | −3.89 (14) | C3—C2—C7—C8 | 171.33 (19) |
O2—Cu—N1—C8 | 9.01 (16) | Cu—N1—C8—C7 | −4.0 (3) |
O2—Cu—N1—C9 | −169.52 (13) | C9—N1—C8—C7 | 174.53 (18) |
O3—Cu—N1—C8 | −69.2 (3) | C2—C7—C8—N1 | −178.13 (18) |
O3—Cu—N1—C9 | 112.24 (19) | C6—C7—C8—N1 | −5.7 (3) |
N1—Cu—N2—C11 | −25.55 (15) | Cu—N1—C9—C10 | 51.28 (18) |
N1—Cu—N2—C12 | 154.49 (15) | C8—N1—C9—C10 | −127.38 (18) |
O2—Cu—N2—C11 | 93.6 (3) | N1—C9—C10—C11 | −81.9 (2) |
O2—Cu—N2—C12 | −86.3 (3) | Cu—N2—C11—C10 | 5.3 (2) |
O3—Cu—N2—C11 | 173.05 (14) | C12—N2—C11—C10 | −174.79 (16) |
O3—Cu—N2—C12 | −6.91 (15) | C9—C10—C11—N2 | 49.3 (2) |
N1—Cu—O2—C6 | −8.50 (17) | Cu—N2—C12—C13 | 5.1 (3) |
N2—Cu—O2—C6 | −128.4 (2) | C11—N2—C12—C13 | −174.83 (18) |
O3—Cu—O2—C6 | 151.08 (17) | N2—C12—C13—C14 | 176.99 (18) |
N1—Cu—O3—C18 | −112.2 (2) | N2—C12—C13—C18 | 1.7 (3) |
N2—Cu—O3—C18 | 4.62 (16) | C19—O4—C14—C13 | −176.82 (17) |
O2—Cu—O3—C18 | 168.31 (16) | C19—O4—C14—C15 | 3.2 (3) |
C1—O1—C2—C3 | −8.9 (3) | C12—C13—C14—O4 | 4.0 (3) |
C1—O1—C2—C7 | 169.63 (19) | C12—C13—C14—C15 | −176.04 (18) |
O1—C2—C3—C4 | 179.44 (19) | C18—C13—C14—O4 | 179.49 (17) |
C7—C2—C3—C4 | 1.0 (3) | C18—C13—C14—C15 | −0.6 (3) |
C2—C3—C4—C5 | 0.4 (3) | O4—C14—C15—C16 | −179.7 (2) |
C3—C4—C5—C6 | −1.3 (3) | C13—C14—C15—C16 | 0.3 (3) |
Cu—O2—C6—C5 | −179.00 (14) | C14—C15—C16—C17 | −0.1 (3) |
Cu—O2—C6—C7 | 2.3 (3) | C15—C16—C17—C18 | 0.0 (3) |
C4—C5—C6—O2 | −177.84 (19) | Cu—O3—C18—C13 | 0.2 (3) |
C4—C5—C6—C7 | 0.9 (3) | Cu—O3—C18—C17 | 179.72 (13) |
O2—C6—C7—C2 | 179.10 (17) | C16—C17—C18—O3 | −179.84 (18) |
O2—C6—C7—C8 | 6.7 (3) | C16—C17—C18—C13 | −0.3 (3) |
C5—C6—C7—C2 | 0.4 (3) | C12—C13—C18—O3 | −4.6 (3) |
C5—C6—C7—C8 | −172.05 (18) | C12—C13—C18—C17 | 175.85 (18) |
O1—C2—C7—C6 | −179.93 (17) | C14—C13—C18—O3 | −179.93 (17) |
O1—C2—C7—C8 | −7.2 (3) | C14—C13—C18—C17 | 0.5 (3) |
Experimental details
Crystal data | |
Chemical formula | [Cu(C19H20N2O4)] |
Mr | 403.91 |
Crystal system, space group | Orthorhombic, Pca21 |
Temperature (K) | 150 |
a, b, c (Å) | 13.7911 (14), 12.7032 (13), 9.9329 (10) |
V (Å3) | 1740.2 (3) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.28 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Bruker SMART 1K CCD |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2005a) |
Tmin, Tmax | 0.700, 0.785 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 14731, 4157, 3766 |
Rint | 0.028 |
(sin θ/λ)max (Å−1) | 0.668 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.024, 0.063, 1.04 |
No. of reflections | 4157 |
No. of parameters | 237 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.33, −0.44 |
Absolute structure | Flack (1983), 1916 Friedel pairs |
Absolute structure parameter | 0.013 (12) |
Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXTL (Sheldrick, 2005b), DIAMOND (Brandenburg, 2007), SHELXTL and local programs.
Cu—N1 | 1.9554 (15) | Cu—O2 | 1.9136 (14) |
Cu—N2 | 1.9602 (15) | Cu—O3 | 1.8996 (13) |
N1—Cu—N2 | 96.88 (6) | N2—Cu—O2 | 163.48 (6) |
N1—Cu—O2 | 91.31 (6) | N2—Cu—O3 | 92.48 (6) |
N1—Cu—O3 | 159.21 (6) | O2—Cu—O3 | 84.63 (6) |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
- Information on subscribing
- Sample issue
- If you have already subscribed, you may need to register
Metal derivatives of Schiff bases have been studied extensively, and CuII and NiII complexes play a major role in both synthetic and structural research. The coordination of the metal cations is usually planar in the case of Ni, but for Cu a tetrahedral distortion is often observed (Garnovskii et al., 1993). We report here the results of the reaction of CuII with the tetradentate ligand N,N'-bis(6-methoxysalicylidene)-1,3-diaminopropane in a 1:1 molar ratio, forming the title compound, (I).
A view of the molecular structure of (I) is shown in Fig. 1. The crystal structure of the ligand (but without methoxy substituents) is known for a long time (Elerman et al., 1991), as are about 150 of its metal complexes (found in a search of the Cambridge Structural Database [version 5.28] plus two updates until May 2007; Allen, 2002). Structures of the CuII complex which are comparable with the title compound have been reported several times, the most recent given by Nathan et al. (2003). The title complex, however, is the first reported example of a Schiff base, as a ligand or uncomplexed, in which substituents in the 6 position of the benzene rings are present.
The CuII coordination polyhedron is approximately square planar, with a significant distortion towards tetrahedral, as indicated by the dihedral angle of 25.07 (9)° between the CuO2 and CuN2 planes. This, and the Cu—O and Cu—N distances (see Table), are similar to those observed in other CuII complexes of related Schiff bases.