Buy article online - an online subscription or single-article purchase is required to access this article.
Monoclinic β-cyclooctaselenium, Se8, crystallizes as discrete eight-membered ring molecules. The low-temperature (150 K) crystal structure is composed of cyclic crown-shaped molecules, similar to those of α- and γ-Se8. The average Se—Se bond length is 2.308 (8) Å, the average bond angle is 105.7 (8)° and the average torsion angle is 101 (2)°. In contrast with α-Se8, the structure of β-Se8 does not show elongation of the ring at low temperatures.
Supporting information
Key indicators
- Single-crystal X-ray study
- T = 150 K
- Mean (Se-Se) = 0.001 Å
- R factor = 0.040
- wR factor = 0.095
- Data-to-parameter ratio = 24.9
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT230_ALERT_2_C Hirshfeld Test Diff for Se1 - Se2 .. 5.14 su
Alert level G
CHEMS02_ALERT_1_G Please check that you have entered the correct
_publ_requested_category classification of your compound;
FI or CI or EI for inorganic; FM or CM or EM for metal-organic;
FO or CO or EO for organic.
From the CIF: _publ_requested_category EO
From the CIF: _chemical_formula_sum :Se8
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
1 ALERT level C = Check and explain
1 ALERT level G = General alerts; check
1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
0 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg & Berndt, 1999); software used to prepare material for publication: WinGX (Farrugia, 1999).
beta-monoclinic cyclooctaselenium
top
Crystal data top
Se8 | F(000) = 1088 |
Mr = 631.68 | Dx = 4.482 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 9298 reflections |
a = 9.2004 (18) Å | θ = 2.2–26.0° |
b = 8.0000 (16) Å | µ = 31.14 mm−1 |
c = 12.735 (3) Å | T = 150 K |
β = 92.95 (3)° | Prism, red |
V = 936.1 (3) Å3 | 0.15 × 0.08 × 0.05 mm |
Z = 4 | |
Data collection top
Nonius KappaCCD diffractometer | 1821 independent reflections |
Radiation source: fine-focus sealed tube | 1463 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.078 |
φ scans, and ω scans with κ offsets | θmax = 26.0°, θmin = 2.2° |
Absorption correction: ψ scan (SHELXTL; Bruker, 2001) | h = −10→11 |
Tmin = 0.062, Tmax = 0.211 | k = −9→9 |
9298 measured reflections | l = −15→15 |
Refinement top
Refinement on F2 | 0 restraints |
Least-squares matrix: full | Primary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.040 | Secondary atom site location: difference Fourier map |
wR(F2) = 0.095 | w = 1/[σ2(Fo2) + (0.0413P)2 + 5.4999P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max = 0.001 |
1821 reflections | Δρmax = 1.13 e Å−3 |
73 parameters | Δρmin = −1.23 e Å−3 |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Se1 | 0.06355 (10) | 0.68641 (11) | 0.91290 (7) | 0.0288 (2) | |
Se2 | 0.25586 (11) | 0.77285 (11) | 1.02241 (8) | 0.0304 (3) | |
Se3 | 0.25827 (11) | 0.60084 (11) | 1.16858 (7) | 0.0279 (2) | |
Se4 | 0.44886 (10) | 0.41857 (11) | 1.14620 (7) | 0.0256 (2) | |
Se5 | 0.34045 (11) | 0.17089 (11) | 1.09083 (7) | 0.0270 (2) | |
Se6 | 0.35943 (10) | 0.16250 (11) | 0.90960 (7) | 0.0240 (2) | |
Se7 | 0.13558 (10) | 0.24704 (12) | 0.84010 (7) | 0.0297 (3) | |
Se8 | 0.16495 (11) | 0.52018 (13) | 0.78818 (7) | 0.0329 (3) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Se1 | 0.0278 (5) | 0.0309 (5) | 0.0278 (5) | 0.0072 (4) | 0.0030 (4) | 0.0012 (4) |
Se2 | 0.0354 (6) | 0.0211 (5) | 0.0350 (6) | −0.0020 (4) | 0.0058 (4) | 0.0020 (4) |
Se3 | 0.0337 (6) | 0.0245 (5) | 0.0261 (5) | 0.0009 (4) | 0.0075 (4) | −0.0018 (4) |
Se4 | 0.0241 (5) | 0.0279 (5) | 0.0246 (5) | −0.0011 (4) | 0.0005 (4) | −0.0008 (4) |
Se5 | 0.0358 (6) | 0.0223 (5) | 0.0236 (5) | −0.0006 (4) | 0.0068 (4) | 0.0026 (3) |
Se6 | 0.0281 (5) | 0.0208 (5) | 0.0235 (5) | 0.0008 (4) | 0.0057 (4) | 0.0002 (3) |
Se7 | 0.0246 (5) | 0.0364 (6) | 0.0283 (5) | −0.0029 (4) | 0.0022 (4) | −0.0082 (4) |
Se8 | 0.0342 (6) | 0.0398 (6) | 0.0251 (5) | 0.0104 (4) | 0.0040 (4) | 0.0043 (4) |
Geometric parameters (Å, º) top
Se1—Se2 | 2.3021 (15) | Se4—Se5 | 2.3121 (13) |
Se1—Se8 | 2.3052 (14) | Se5—Se6 | 2.3244 (13) |
Se2—Se3 | 2.3141 (14) | Se6—Se7 | 2.3010 (15) |
Se3—Se4 | 2.3095 (14) | Se7—Se8 | 2.3029 (15) |
| | | |
Se2—Se1—Se8 | 105.37 (5) | Se4—Se5—Se6 | 105.92 (5) |
Se1—Se2—Se3 | 106.50 (5) | Se7—Se6—Se5 | 105.19 (5) |
Se4—Se3—Se2 | 104.60 (5) | Se6—Se7—Se8 | 105.87 (5) |
Se3—Se4—Se5 | 105.09 (5) | Se7—Se8—Se1 | 106.97 (5) |
| | | |
Se8—Se1—Se2—Se3 | −99.24 (6) | Se4—Se5—Se6—Se7 | −99.75 (6) |
Se1—Se2—Se3—Se4 | 104.27 (6) | Se5—Se6—Se7—Se8 | 102.57 (5) |
Se2—Se3—Se4—Se5 | −103.15 (6) | Se6—Se7—Se8—Se1 | −103.24 (6) |
Se3—Se4—Se5—Se6 | 100.28 (6) | Se2—Se1—Se8—Se7 | 98.21 (6) |
Cell parameters (Å, Å3), bond lengths (Å) and angles (°) in the
Se8 molecule at different temperatures (K). topTemperature | β-Se8 at 150 (2)Ka | β-Se8 at r.t.b | α-Se8 at 123 (2)c | α-Se8 at 299d |
Cell parameters | | | | |
a | 9.200 (2) | 9.31 (1) | 8.9247 (2) | 9.054 (3) |
b | 8.000 (2) | 8.07 (1) | 8.9665 (2) | 9.083 (5) |
c | 12.735 (3) | 12.85 (1) | 11.3687 (2) | 11.601 (6) |
β | 92.95 (3) | 93.8 (5) | 90.583 (1) | 90.81 (5) |
V | 936.1 (3) | 964 (1) | 909.71 (3) | 953.9 (8) |
| | | | |
Bond | | | | |
Se1—Se2 | 2.302 (2) | 2.30 | 2.327 (1) | 2.346 (5) |
Se2—Se3 | 2.314 (1) | 2.36 | 2.307 (1) | 2.337 (5) |
Se3—Se4 | 2.310 (1) | 2.33 | 2.310 (1) | 2.333 (5) |
Se4—Se5 | 2.312 (1) | 2.33 | 2.320 (1) | 2.331 (5) |
Se5—Se6 | 2.324 (1) | 2.37 | 2.293 (1) | 2.332 (4) |
Se6—Se7 | 2.301 (2) | 2.34 | 2.291 (1) | 2.345 (5) |
Se7—Se8 | 2.303 (2) | 2.36 | 2.269 (1) | 2.326 (4) |
Se8—Se1 | 2.305 (1) | 2.31 | 2.293 (1) | 2.337 (4) |
| | | | |
Angle | | | | |
Se1—Se2—Se3 | 106.50 (5) | 106.7 | 107.88 (5) | 107.68 (4) |
Se2—Se3—Se4 | 104.60 (5) | 104.2 | 107.35 (4) | 107.51 (4) |
Se3—Se4—Se5 | 105.09 (5) | 105.8 | 106.78 (4) | 106.60 (5) |
Se4—Se5—Se6 | 105.92 (5) | 107.1 | 103.15 (4) | 103.97 (4) |
Se5—Se6—Se7 | 105.19 (5) | 105.7 | 103.32 (5) | 103.65 (4) |
Se6—Se7—Se8 | 105.87 (5) | 104.7 | 105.30 (5) | 105.23 (4) |
Se7—Se8—Se1 | 106.97 (5) | 106.3 | 107.41 (5) | 107.10 (5) |
Se8—Se1—Se2 | 105.37 (5) | 104.8 | 103.98 (5) | 104.08 (4) |
(a) This work; (b) Marsh et al. (1953) utilized the cell parameters of Burbank
(1951); the temperature is unspecified; the atoms have been renumbered to
correspond with those in the present structure;
(c) Maaninen et al. (2001);
(d) Cherin & Unger (1972); the atoms have been renumbered to correspond
with those reported by Maaninen et al. (2001). |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.