Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Layered hybrid organic–inorganic metal halides (CH3CH2NH3)2[MnCl4] and (CH3CH2NH3)2[CoCl4] were synthesized by the slow evaporation method to understand the relationship between the crystal structure and order–disorder phase transition. Calorimetric data and crystal structure determination across the phase transition temperature establish the order–disorder phase transition. (CH3CH2NH3)2[MnCl4] undergoes the reversible structural phase transition from tetragonal I4/mmm to orthorhombic Pbca at 212/222 K (cooling/heating), whereas (CH3CH2NH3)2CoCl4 demonstrates the phase transition at 220/239 K from orthorhombic Pnma to orthorhombic P212121. Both compounds are characterized by disordered ethyl ammonium cations in the structure above the phase transition temperature, whereas they become ordered cations at temperatures below the phase transition. Dielectric results further support the observed structural phase transitions. Additionally, magnetic measurements show canted antiferromagnetic characteristics for (CH3CH2NH3)2[MnCl4] and paramagnetic behaviour is observed for (CH3CH2NH3)2[CoCl4]. The structural differences, the role of intermolecular interactions and the effect of transition metals on the phase transition were evaluated using Hirshfeld surface analysis and the topological properties of electron density distributions. An accurate description of the structure and intermolecular interactions is crucial for understanding the physical properties and designing multifunctional hybrid organic–inorganic metal halide perovskites.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520625002719/woz5005sup1.cif
Contains datablocks EAMn_HT, EAMn_LT, EACo_HT, EACo_LT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520625002719/woz5005EAMn_HTsup2.hkl
Contains datablock EAMn_HT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520625002719/woz5005EAMn_LTsup3.hkl
Contains datablock EAMn_LT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520625002719/woz5005EACo_HTsup4.hkl
Contains datablock EACo_HT

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520625002719/woz5005EACo_LTsup5.hkl
Contains datablock EACo_LT

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520625002719/woz5005sup6.pdf
Tables S1-S5 , Figs. S1-S8, dielectric properties

CCDC references: 2394572; 2394573; 2394574; 2394575

Computing details top

(EAMn_HT) top
Crystal data top
Cl4Mn·2(C2H8N)Dx = 1.564 Mg m3
Mr = 288.93Mo Kα radiation, λ = 0.71073 Å
Tetragonal, I4/mmmCell parameters from 1456 reflections
a = 5.1748 (5) Åθ = 3.7–25.2°
c = 22.112 (3) ŵ = 1.97 mm1
V = 592.12 (14) Å3T = 296 K
Z = 2Block, pink
F(000) = 2740.27 × 0.24 × 0.21 mm
Data collection top
Bruker D8 Quest
diffractometer
259 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
SADABS
θmax = 28.3°, θmin = 3.7°
Tmin = 0.619, Tmax = 0.683h = 66
3486 measured reflectionsk = 66
259 independent reflectionsl = 2929
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037All H-atom parameters refined
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0314P)2 + 2.2579P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
259 reflectionsΔρmax = 0.59 e Å3
25 parametersΔρmin = 0.46 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Mn10.50000.50000.50000.0242 (4)
Cl10.50000.00000.50000.0580 (7)
Cl20.50000.50000.38897 (9)0.0837 (10)
N10.00000.00000.3985 (3)0.0491 (18)
C10.00000.091 (3)0.3371 (8)0.059 (6)0.25
C20.00000.109 (5)0.2904 (6)0.083 (11)0.25
H20.00000.00000.262 (6)0.08 (4)*
H10.097 (14)0.097 (14)0.411 (5)0.00 (3)*0.25
H1A0.08 (3)0.23 (3)0.338 (6)0.00 (3)*0.125
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.0206 (5)0.0206 (5)0.0313 (7)0.0000.0000.000
Cl10.0333 (10)0.0183 (8)0.122 (2)0.0000.0000.000
Cl20.1108 (16)0.1108 (16)0.0296 (9)0.0000.0000.000
N10.053 (3)0.053 (3)0.041 (4)0.0000.0000.000
C10.081 (15)0.040 (9)0.057 (8)0.0000.0000.010 (7)
C20.14 (3)0.072 (14)0.037 (5)0.0000.0000.004 (8)
Geometric parameters (Å, º) top
Mn1—Cl1i2.5874 (3)C1—C1vi0.67 (3)
Mn1—Cl1ii2.5874 (3)C1—C2vii1.04 (2)
Mn1—Cl1iii2.5874 (3)C1—C2ii1.27 (2)
Mn1—Cl12.5874 (3)C1—C21.46 (3)
Mn1—Cl22.455 (2)C1—C2vi1.27 (2)
Mn1—Cl2iv2.455 (2)C1—H1A0.86 (15)
Cl1—Mn1v2.5874 (3)C2—C1vi1.27 (2)
N1—C1ii1.438 (18)C2—C1ii1.27 (2)
N1—C1vi1.438 (18)C2—C1vii1.04 (2)
N1—C1vii1.438 (18)C2—C2vi0.80 (4)
N1—C11.438 (18)C2—C2vii1.12 (5)
N1—H10.76 (10)C2—C2ii0.80 (4)
C1—C1vii0.94 (4)C2—H20.85 (9)
C1—C1ii0.67 (3)
Cl1—Mn1—Cl1iii180.0C1vi—C1—C260.0 (6)
Cl1ii—Mn1—Cl1i180.0C1vii—C1—H1A149 (8)
Cl1iii—Mn1—Cl1i90.0C1vi—C1—H1A104 (9)
Cl1—Mn1—Cl1ii90.0C1ii—C1—H1A166 (8)
Cl1iii—Mn1—Cl1ii90.0C2vi—C1—N1130.3 (13)
Cl1—Mn1—Cl1i90.0C2ii—C1—N1130.3 (13)
Cl2—Mn1—Cl1ii90.0C2vii—C1—N1166 (2)
Cl2iv—Mn1—Cl1i90.0C2ii—C1—C232.9 (14)
Cl2iv—Mn1—Cl1iii90.0C2vi—C1—C232.9 (14)
Cl2iv—Mn1—Cl1ii90.0C2vii—C1—C2vi38.8 (19)
Cl2—Mn1—Cl1iii90.0C2vii—C1—C2ii38.8 (19)
Cl2—Mn1—Cl190.0C2vi—C1—C2ii53 (2)
Cl2iv—Mn1—Cl190.0C2vii—C1—C250 (2)
Cl2—Mn1—Cl1i90.0C2ii—C1—H1A96 (9)
Cl2—Mn1—Cl2iv180.0C2vi—C1—H1A124 (10)
Mn1v—Cl1—Mn1180.0C2—C1—H1A128 (9)
C1ii—N1—C1vii26.9 (10)C2vii—C1—H1A87 (9)
C1vi—N1—C126.9 (10)C1ii—C2—C127.2 (10)
C1ii—N1—C126.9 (10)C1vii—C2—C140.1 (17)
C1ii—N1—C1vi38.4 (15)C1vi—C2—C127.2 (10)
C1vii—N1—C1vi26.9 (10)C1vi—C2—C1ii43.8 (17)
C1vii—N1—C138.4 (15)C1vii—C2—C1ii31.7 (13)
C1ii—N1—H1124 (8)C1vii—C2—C1vi31.7 (13)
C1vi—N1—H198 (8)C1vii—C2—C2vii85.0 (18)
C1vii—N1—H1124 (8)C1ii—C2—H2109 (6)
C1—N1—H198 (8)C1—C2—H294 (7)
N1—C1—C2115.8 (15)C1vii—C2—H2134 (7)
N1—C1—H1A105 (9)C1vi—C2—H2109 (6)
C1vii—C1—N170.8 (7)C2vi—C2—C1ii54.7 (10)
C1vi—C1—N176.6 (5)C2vii—C2—C1vi63.7 (12)
C1ii—C1—N176.6 (5)C2vii—C2—C145.0 (11)
C1ii—C1—C1vi90.002 (13)C2vi—C2—C1vi87.1 (10)
C1ii—C1—C1vii45.001 (7)C2vi—C2—C1vii86.5 (13)
C1vi—C1—C1vii45.001 (10)C2ii—C2—C1vi54.7 (10)
C1vii—C1—C2vi68.1 (8)C2ii—C2—C1ii87.1 (10)
C1ii—C1—C260.0 (6)C2ii—C2—C160.0 (6)
C1vi—C1—C2vii93.5 (13)C2vii—C2—C1ii63.7 (12)
C1ii—C1—C2ii92.9 (10)C2ii—C2—C1vii86.5 (13)
C1ii—C1—C2vii93.5 (13)C2vi—C2—C160.0 (6)
C1vi—C1—C2ii54.7 (10)C2ii—C2—C2vi89.998 (11)
C1vi—C1—C2vi92.9 (10)C2vi—C2—C2vii44.999 (7)
C1vii—C1—C2ii68.1 (8)C2ii—C2—C2vii44.999 (7)
C1vii—C1—C245.0 (11)C2vi—C2—H262 (4)
C1vii—C1—C2vii95.0 (18)C2ii—C2—H262 (4)
C1ii—C1—C2vi54.7 (10)C2vii—C2—H249 (6)
N1—C1—C2—C1ii54.8 (5)C1vi—C1—C2—C1vii54.8 (5)
N1—C1—C2—C1vi54.8 (5)C1vii—C1—C2—C1ii54.8 (5)
N1—C1—C2—C1vii0.000 (6)C1ii—C1—C2—C1vi109.5 (11)
N1—C1—C2—C2vi125.2 (5)C1vi—C1—C2—C2vi180.002 (14)
N1—C1—C2—C2ii125.2 (5)C1vii—C1—C2—C2ii125.2 (5)
N1—C1—C2—C2vii180.000 (5)C1ii—C1—C2—C2vii125.2 (5)
C1vii—N1—C1—C1ii46.64 (13)C1vii—C1—C2—C2vii180.000 (11)
C1ii—N1—C1—C1vii46.64 (12)C1ii—C1—C2—C2vi70.5 (11)
C1vii—N1—C1—C1vi46.64 (13)C1ii—C1—C2—C2ii179.998 (4)
C1vi—N1—C1—C1ii93.3 (3)C1vi—C1—C2—C2ii70.5 (10)
C1vi—N1—C1—C1vii46.64 (13)C1vi—C1—C2—C2vii125.2 (5)
C1ii—N1—C1—C1vi93.3 (3)C1vii—C1—C2—C2vi125.2 (5)
C1vi—N1—C1—C246.64 (12)C2vii—C1—C2—C1vii180.000 (13)
C1ii—N1—C1—C246.64 (13)C2vi—C1—C2—C1vi179.998 (5)
C1vii—N1—C1—C2vii0.00 (3)C2vi—C1—C2—C1ii70.5 (10)
C1ii—N1—C1—C2vii46.64 (12)C2vi—C1—C2—C1vii125.2 (5)
C1vii—N1—C1—C2ii35.6 (17)C2vii—C1—C2—C1ii125.2 (5)
C1vi—N1—C1—C2vii46.64 (13)C2ii—C1—C2—C1vii125.2 (5)
C1vi—N1—C1—C2ii11.0 (18)C2ii—C1—C2—C1ii180.002 (4)
C1vii—N1—C1—C2vi35.6 (17)C2vii—C1—C2—C1vi125.2 (5)
C1vii—N1—C1—C20.000 (5)C2ii—C1—C2—C1vi70.5 (10)
C1vi—N1—C1—C2vi82.2 (16)C2vii—C1—C2—C2ii54.8 (5)
C1ii—N1—C1—C2ii82.2 (16)C2vii—C1—C2—C2vi54.8 (5)
C1ii—N1—C1—C2vi11.0 (18)C2vi—C1—C2—C2vii54.8 (5)
C1ii—C1—C2—C1vii54.8 (5)C2vi—C1—C2—C2ii109.5 (10)
C1vii—C1—C2—C1vi54.8 (5)C2ii—C1—C2—C2vi109.5 (11)
C1vi—C1—C2—C1ii109.5 (10)C2ii—C1—C2—C2vii54.8 (5)
Symmetry codes: (i) y+1, x, z; (ii) y, x, z; (iii) x, y+1, z; (iv) x+1, y+1, z+1; (v) x, y1, z; (vi) y, x, z; (vii) x, y, z.
(EAMn_LT) top
Crystal data top
Cl4Mn·2(C2H8N)Dx = 1.657 Mg m3
Mr = 288.93Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PbcaCell parameters from 2418 reflections
a = 7.3088 (3) Åθ = 3.3–25.2°
b = 7.1675 (3) ŵ = 2.01 mm1
c = 22.1136 (10) ÅT = 150 K
V = 1158.44 (9) Å3Block, pink
Z = 40.27 × 0.24 × 0.21 mm
F(000) = 588
Data collection top
Bruker D8 Quest
diffractometer
1344 reflections with I > 2σ(I)
φ and ω scansRint = 0.033
Absorption correction: multi-scan
SADABS
θmax = 28.3°, θmin = 3.3°
Tmin = 0.613, Tmax = 0.677h = 89
15025 measured reflectionsk = 99
1423 independent reflectionsl = 2829
Refinement top
Refinement on F28 restraints
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029All H-atom parameters refined
wR(F2) = 0.076 w = 1/[σ2(Fo2) + (0.0223P)2 + 2.3097P]
where P = (Fo2 + 2Fc2)/3
S = 1.22(Δ/σ)max = 0.001
1423 reflectionsΔρmax = 0.48 e Å3
84 parametersΔρmin = 0.44 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0557 (3)0.4704 (3)0.33553 (11)0.0249 (5)
C20.0525 (3)0.5608 (3)0.28616 (10)0.0351 (7)
Cl10.45891 (8)0.48681 (8)0.38841 (2)0.01737 (14)
Cl20.73185 (7)0.76770 (7)0.48886 (2)0.01487 (14)
Mn10.50000.50000.50000.00984 (13)
N10.0167 (2)0.5194 (2)0.39633 (8)0.0184 (4)
H1C0.1538 (4)0.490 (2)0.4026 (9)0.065 (13)*
H1D0.0522 (9)0.4534 (10)0.4311 (2)0.057 (12)*
H1E0.004 (4)0.6606 (4)0.4048 (7)0.059 (12)*
H1A0.042 (4)0.3194 (4)0.3308 (11)0.059 (12)*
H1B0.1974 (4)0.5187 (13)0.3348 (19)0.064 (13)*
H2A0.0082 (10)0.534 (2)0.24360 (16)0.036 (9)*
H2B0.038 (4)0.7070 (4)0.2911 (11)0.064 (13)*
H2C0.1896 (4)0.5140 (13)0.2895 (15)0.079 (15)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0258 (12)0.0326 (13)0.0162 (12)0.0094 (11)0.0038 (9)0.0009 (10)
C20.0398 (16)0.0517 (18)0.0139 (12)0.0148 (15)0.0000 (11)0.0025 (12)
Cl10.0169 (3)0.0237 (3)0.0115 (3)0.0002 (2)0.00029 (18)0.0006 (2)
Cl20.0122 (2)0.0122 (2)0.0202 (3)0.00313 (18)0.00037 (19)0.00007 (19)
Mn10.0091 (2)0.0097 (2)0.0108 (2)0.00029 (16)0.00046 (15)0.00036 (15)
N10.0191 (9)0.0223 (10)0.0137 (9)0.0006 (8)0.0023 (7)0.0010 (8)
Geometric parameters (Å, º) top
C1—N11.487 (3)Cl2—Mn1i2.5834 (5)
C1—C21.496 (3)Mn1—Cl1ii2.4877 (5)
C1—H1A1.0920 (1)Mn1—Cl2ii2.5717 (5)
C1—H1B1.0920 (1)Mn1—Cl2iii2.5834 (5)
C2—H2A1.0590 (1)Mn1—Cl2iv2.5834 (5)
C2—H2B1.0590 (1)N1—H1C1.0330 (1)
C2—H2C1.0590 (2)N1—H1D1.0330 (1)
Cl1—Mn12.4877 (5)N1—H1E1.0330 (2)
Cl2—Mn12.5717 (5)
N1—C1—C2111.66 (17)Cl1—Mn1—Cl290.740 (17)
N1—C1—H1A106.8 (15)Cl2ii—Mn1—Cl2180.0
C2—C1—H1A108.1 (12)Cl1ii—Mn1—Cl2iii91.574 (17)
N1—C1—H1B106 (2)Cl1—Mn1—Cl2iii88.426 (17)
C2—C1—H1B110.7 (17)Cl2ii—Mn1—Cl2iii91.613 (4)
H1A—C1—H1B113.6 (15)Cl2—Mn1—Cl2iii88.387 (4)
C1—C2—H2A110.3 (5)Cl1ii—Mn1—Cl2iv88.426 (17)
C1—C2—H2B107.6 (12)Cl1—Mn1—Cl2iv91.574 (17)
H2A—C2—H2B103.5 (18)Cl2ii—Mn1—Cl2iv88.387 (4)
C1—C2—H2C108.2 (14)Cl2—Mn1—Cl2iv91.613 (4)
H2A—C2—H2C113.6 (19)Cl2iii—Mn1—Cl2iv180.00 (2)
H2B—C2—H2C113.4 (16)C1—N1—H1C114.7 (12)
Mn1—Cl2—Mn1i166.31 (2)C1—N1—H1D113.0 (4)
Cl1ii—Mn1—Cl1180.0H1C—N1—H1D106.2 (10)
Cl1ii—Mn1—Cl2ii90.741 (17)C1—N1—H1E111.4 (12)
Cl1—Mn1—Cl2ii89.260 (17)H1C—N1—H1E105.1 (18)
Cl1ii—Mn1—Cl289.260 (17)H1D—N1—H1E105.8 (10)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x+1, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x1/2, y+3/2, z+1.
(EACo_HT) top
Crystal data top
Cl4Co·2(C2H8N)Dx = 1.446 Mg m3
Mr = 292.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PnmaCell parameters from 1853 reflections
a = 10.0173 (5) Åθ = 3.1–25.2°
b = 7.4027 (4) ŵ = 2.09 mm1
c = 17.5837 (8) ÅT = 296 K
V = 1303.92 (11) Å3Block
Z = 40.24 × 0.19 × 0.18 mm
F(000) = 560
Data collection top
Bruker D8 Quest
diffractometer
θmax = 28.3°, θmin = 3.1°
12094 measured reflectionsh = 1310
1732 independent reflectionsk = 99
1199 reflections with I > 2σ(I)l = 2318
Rint = 0.035
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.062 w = 1/[σ2(Fo2) + (0.1098P)2 + 1.2926P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.208(Δ/σ)max < 0.001
S = 1.05Δρmax = 0.56 e Å3
1732 reflectionsΔρmin = 0.49 e Å3
81 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
28 restraintsExtinction coefficient: 0.019 (5)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Co10.77171 (9)0.75000.54093 (5)0.0677 (4)
Cl10.9893 (2)0.75000.56926 (13)0.1121 (9)
Cl20.7379 (15)0.75000.4153 (9)0.097 (5)0.5
Cl2'0.7462 (12)0.817 (2)0.4122 (8)0.068 (2)0.25
Cl30.66928 (17)0.50209 (17)0.58768 (10)0.1031 (6)
N11.0623 (7)0.75000.3842 (3)0.0928 (19)
H1A1.11580.66700.40440.139*0.5
H1B0.97790.72470.39600.139*0.5
H1C1.08360.85830.40250.139*0.5
N20.3728 (9)0.75000.5693 (4)0.118 (3)
C11.0774 (16)0.75000.3046 (5)0.226 (11)
H1D1.08700.62550.28830.271*0.5
H1E1.16210.80970.29560.271*0.5
C20.9746 (16)0.830 (2)0.2556 (7)0.153 (8)0.5
C30.3322 (16)0.8349 (19)0.6315 (7)0.132 (5)0.5
H3A0.25300.90570.62070.158*0.5
H3B0.40290.92140.64120.158*0.5
C40.310 (2)0.75000.7080 (7)0.172 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0707 (6)0.0544 (6)0.0779 (7)0.0000.0015 (4)0.000
Cl10.0746 (12)0.166 (2)0.0962 (14)0.0000.0201 (10)0.000
Cl20.087 (5)0.121 (14)0.082 (4)0.0000.019 (3)0.000
Cl2'0.069 (4)0.059 (4)0.077 (4)0.005 (4)0.006 (3)0.006 (4)
Cl30.1064 (11)0.0557 (8)0.1472 (14)0.0044 (6)0.0223 (10)0.0147 (8)
N10.075 (4)0.137 (6)0.066 (3)0.0000.004 (3)0.000
N20.127 (7)0.144 (7)0.084 (4)0.0000.022 (4)0.000
C10.170 (13)0.42 (3)0.086 (7)0.0000.005 (8)0.000
C20.188 (16)0.19 (2)0.078 (7)0.051 (13)0.005 (9)0.030 (8)
C30.119 (8)0.123 (8)0.152 (9)0.017 (7)0.013 (7)0.023 (7)
C40.27 (2)0.117 (9)0.125 (9)0.0000.026 (11)0.000
Geometric parameters (Å, º) top
Co1—Cl12.236 (2)N2—C31.326 (9)
Co1—Cl22.234 (15)C1—H1D0.9700
Co1—Cl2'2.330 (13)C1—H1E0.9700
Co1—Cl2'i2.330 (13)C1—C2i1.467 (9)
Co1—Cl3i2.2576 (14)C1—C21.467 (9)
Co1—Cl32.2576 (14)C2—C2i1.19 (4)
Cl2'—Cl2'i0.99 (3)C3—C3i1.26 (3)
N1—H1A0.8900C3—H3A0.9700
N1—H1B0.8900C3—H3B0.9700
N1—H1C0.8900C3—C41.501 (9)
N1—C11.408 (8)C4—C3i1.501 (9)
N2—C3i1.326 (9)
Cl1—Co1—Cl2'i108.9 (3)N1—C1—H1E104.8
Cl1—Co1—Cl2'108.9 (3)N1—C1—C2120.5 (10)
Cl1—Co1—Cl3i111.22 (6)N1—C1—C2i120.5 (10)
Cl1—Co1—Cl3111.22 (6)H1D—C1—H1E107.3
Cl2—Co1—Cl1111.6 (4)C2i—C1—H1D60.8
Cl2—Co1—Cl3106.9 (2)C2—C1—H1D106.3
Cl2—Co1—Cl3i106.9 (2)C2—C1—H1E109.5
Cl2'—Co1—Cl2'i24.6 (8)C2i—C1—H1E134.6
Cl3i—Co1—Cl2'i118.5 (4)C2i—C1—C247.7 (15)
Cl3—Co1—Cl2'118.5 (4)C2i—C2—C166.1 (7)
Cl3i—Co1—Cl2'97.5 (4)N2—C3—H3A110.2
Cl3—Co1—Cl2'i97.5 (4)N2—C3—H3B103.5
Cl3i—Co1—Cl3108.76 (9)N2—C3—C4125.9 (12)
Cl2'i—Cl2'—Co177.7 (4)C3i—C3—N261.7 (6)
H1A—N1—H1B109.5C3i—C3—H3A122.7
H1A—N1—H1C109.5C3i—C3—H3B131.3
H1B—N1—H1C109.5C3i—C3—C465.2 (6)
C1—N1—H1A109.5H3A—C3—H3B106.0
C1—N1—H1B109.5C4—C3—H3A106.4
C1—N1—H1C109.5C4—C3—H3B103.0
C3—N2—C3i56.6 (13)C3i—C4—C349.5 (11)
N1—C1—H1D107.7
N1—C1—C2—C2i105.1 (9)C3i—N2—C3—C413 (2)
N2—C3—C4—C3i12 (2)
Symmetry code: (i) x, y+3/2, z.
(EACo_LT) top
Crystal data top
Cl4Co·2(C2H8N)Dx = 1.554 Mg m3
Mr = 292.92Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from 2145 reflections
a = 9.7066 (6) Åθ = 2.5–25.5°
b = 7.6312 (5) ŵ = 2.18 mm1
c = 16.9019 (11) ÅT = 150 K
V = 1251.97 (14) Å3Block, blue
Z = 40.24 × 0.19 × 0.18 mm
F(000) = 596
Data collection top
Bruker D8 Quest
diffractometer
2852 reflections with I > 2σ(I)
φ and ω scansRint = 0.025
Absorption correction: multi-scan
SADABS
θmax = 28.3°, θmin = 2.4°
Tmin = 0.623, Tmax = 0.695h = 912
10145 measured reflectionsk = 108
3035 independent reflectionsl = 2222
Refinement top
Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullAll H-atom parameters refined
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.017P)2 + 0.1464P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.043(Δ/σ)max = 0.001
S = 1.10Δρmax = 0.22 e Å3
3035 reflectionsΔρmin = 0.22 e Å3
165 parametersAbsolute structure: Refined as an inversion twin.
16 restraintsAbsolute structure parameter: 0.498 (15)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refined as a 2-component inversion twin.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9765 (3)0.1549 (4)0.48775 (13)0.0413 (8)
C21.0414 (2)0.3218 (4)0.46232 (15)0.0330 (7)
C30.3214 (3)0.2678 (3)0.04734 (15)0.0425 (8)
C40.3306 (2)0.3734 (3)0.12179 (16)0.0284 (6)
Cl10.65870 (7)0.05516 (7)0.16579 (4)0.02422 (14)
Cl20.72884 (7)0.34436 (7)0.33557 (3)0.02445 (14)
Cl31.00223 (7)0.23998 (9)0.18568 (4)0.03137 (16)
Cl40.69800 (7)0.53866 (8)0.13878 (4)0.02886 (15)
Co10.77626 (3)0.30076 (4)0.20517 (2)0.01987 (9)
N11.0543 (2)0.3274 (3)0.37435 (11)0.0262 (5)
N20.3638 (2)0.2597 (2)0.19107 (12)0.0276 (5)
H1A1.0332 (8)0.0456 (7)0.4671 (7)0.074 (13)*
H1B0.8746 (4)0.137 (3)0.4669 (7)0.059 (10)*
H1C0.976 (3)0.146 (4)0.55027 (16)0.054 (10)*
H1D0.9581 (5)0.314 (4)0.3488 (6)0.080 (12)*
H1E1.0846 (14)0.4478 (6)0.3526 (7)0.055 (10)*
H1F1.1222 (7)0.2340 (8)0.3534 (7)0.079 (13)*
H2A1.1483 (4)0.333 (4)0.4819 (7)0.051 (10)*
H2B0.9826 (8)0.4382 (7)0.4788 (9)0.041 (9)*
H2C0.366 (3)0.3304 (9)0.2432 (3)0.048 (9)*
H2D0.2917 (6)0.1612 (7)0.1974 (16)0.071 (11)*
H2E0.4557 (5)0.1950 (11)0.1812 (12)0.050 (9)*
H3A0.2910 (15)0.3494 (9)0.0003 (3)0.067 (11)*
H3B0.2505 (6)0.1629 (7)0.0523 (16)0.056 (10)*
H3C0.4212 (5)0.2251 (17)0.0310 (9)0.062 (11)*
H4A0.4082 (6)0.4768 (7)0.1187 (17)0.048 (9)*
H4B0.2298 (5)0.4308 (13)0.1340 (11)0.054 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.045 (2)0.047 (2)0.0320 (16)0.0055 (16)0.0096 (14)0.0164 (14)
C20.0362 (17)0.0413 (17)0.0216 (13)0.0042 (15)0.0017 (11)0.0062 (13)
C30.066 (2)0.0323 (16)0.0287 (15)0.0035 (16)0.0009 (15)0.0001 (12)
C40.0289 (16)0.0212 (12)0.0350 (15)0.0021 (12)0.0024 (12)0.0042 (11)
Cl10.0255 (3)0.0195 (3)0.0277 (3)0.0023 (3)0.0019 (3)0.0033 (2)
Cl20.0263 (3)0.0239 (3)0.0232 (3)0.0018 (3)0.0043 (3)0.0004 (2)
Cl30.0201 (3)0.0378 (4)0.0362 (4)0.0003 (3)0.0045 (3)0.0086 (3)
Cl40.0326 (4)0.0235 (3)0.0304 (3)0.0000 (3)0.0050 (3)0.0044 (2)
Co10.01954 (17)0.01820 (15)0.02188 (16)0.00018 (14)0.00032 (13)0.00137 (13)
N10.0262 (12)0.0271 (12)0.0254 (11)0.0031 (10)0.0015 (9)0.0049 (10)
N20.0311 (13)0.0252 (12)0.0266 (12)0.0008 (10)0.0020 (10)0.0001 (9)
Geometric parameters (Å, º) top
C1—C21.485 (4)C4—H4A1.0920 (2)
C1—H1A1.0590 (1)C4—H4B1.0920 (1)
C1—H1B1.0590 (2)Cl1—Co12.2929 (7)
C1—H1C1.0590 (2)Cl2—Co12.2761 (6)
C2—N11.493 (3)Cl3—Co12.2661 (7)
C2—H2A1.0920 (2)Cl4—Co12.2654 (7)
C2—H2B1.0920 (1)N1—H1D1.0330 (2)
C3—C41.497 (4)N1—H1E1.0330 (1)
C3—H3A1.0590 (1)N1—H1F1.0330 (1)
C3—H3B1.0590 (1)N2—H2C1.0330 (2)
C3—H3C1.0590 (1)N2—H2D1.0330 (1)
C4—N21.492 (3)N2—H2E1.0330 (1)
C2—C1—H1A111.1 (5)N2—C4—H4B106.1 (10)
C2—C1—H1B114.2 (14)C3—C4—H4B108.7 (8)
H1A—C1—H1B106.0 (13)H4A—C4—H4B109.7 (7)
C2—C1—H1C110.3 (17)Cl4—Co1—Cl3114.62 (3)
H1A—C1—H1C106.3 (18)Cl4—Co1—Cl2107.14 (3)
H1B—C1—H1C108.7 (19)Cl3—Co1—Cl2111.50 (3)
C1—C2—N1110.4 (2)Cl4—Co1—Cl1110.15 (3)
C1—C2—H2A112.4 (15)Cl3—Co1—Cl1105.79 (3)
N1—C2—H2A102.7 (7)Cl2—Co1—Cl1107.46 (3)
C1—C2—H2B113.7 (5)C2—N1—H1D109.8 (6)
N1—C2—H2B106.0 (8)C2—N1—H1E113.9 (7)
H2A—C2—H2B110.8 (15)H1D—N1—H1E101.2 (18)
C4—C3—H3A109.8 (5)C2—N1—H1F112.0 (7)
C4—C3—H3B112.3 (14)H1D—N1—H1F111.6 (14)
H3A—C3—H3B108.9 (14)H1E—N1—H1F108.0 (8)
C4—C3—H3C109.3 (7)C4—N2—H2C111.7 (6)
H3A—C3—H3C103.7 (12)C4—N2—H2D111.0 (13)
H3B—C3—H3C112.5 (9)H2C—N2—H2D107.9 (19)
N2—C4—C3111.08 (19)C4—N2—H2E109.8 (11)
N2—C4—H4A108.0 (13)H2C—N2—H2E112 (2)
C3—C4—H4A112.9 (14)H2D—N2—H2E104.7 (7)
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds