Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The structure of highly twinned pinacol (2,3-dimethyl-2,3-butanediol) monohydrate, the existence of which has been known since 1922, has been determined, and the structures of anhydrous pinacol and its two other known hydrates have been reinvestigated. All the phases are unusual. The anhydrous phase [Jeffrey & Robbins (1978). Acta Cryst. B34, 3817-3820] is exceptional among molecular crystals in having molecules located on three different symmetry sites (1, \overline 1 and 2). A hexagonal form of pinacol originally described as a second polymorph [Dahlqvist & Sillanpää (2000). J. Mol. Struct. 524, 141-149] has been shown to be a solvate of uncertain composition that is very loosely packed. Pinacol hexahydrate, which was originally reported as tetragonal and highly disordered [Kim & Jeffrey (1970). J. Chem. Phys. 53, 3610-3615], appears to be described better as having an orthorhombic structure that is both disordered and twinned; the diffraction pattern at 90 K shows structured diffuse scattering that suggests short-range correlations of disordered molecules. The occurrence of this unusual set of structures is attributed to the combination of the hydrogen-bonding requirements of the pinacol molecule with its small size and limited conformational flexibility.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768105031356/ws5034sup1.cif
Contains datablocks k01154, k03278, k03227p, k03226o, k01235

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105031356/ws5034k01154sup2.hkl
Contains datablock k01154

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105031356/ws5034k03278sup3.hkl
Contains datablock k03278

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105031356/ws5034k03227psup4.hkl
Contains datablock k03227p

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105031356/ws5034k03226osup5.hkl
Contains datablock k03226o

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108768105031356/ws5034k01235sup6.hkl
Contains datablock k01235

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108768105031356/ws5034sup7.pdf
Pictures of all the crystals except for the hexagonal phase

CCDC references: 292342; 292343; 292344; 292345; 292346

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for k01154, k03278, k03226o, k01235; SHELXD (Sheldrick, 2002) for k03227p. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: XP in Siemens SHELXTL (Sheldrick, 1994); software used to prepare material for publication: SHELX97-2 (Sheldrick, 1997) and local procedures.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
(k01154) 2,3-dimethyl-2,3-butanediol top
Crystal data top
C6H14O2Dx = 1.082 Mg m3
Mr = 118.17Melting point: 314.2 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.360 (3) ÅCell parameters from 2804 reflections
b = 16.219 (3) Åθ = 1.0–27.5°
c = 10.942 (2) ŵ = 0.08 mm1
β = 90.96 (3)°T = 173 K
V = 2903.0 (9) Å3Block, colorless
Z = 160.20 × 0.15 × 0.10 mm
F(000) = 1056
Data collection top
Nonius KappaCCD
diffractometer
3333 independent reflections
Radiation source: fine-focus sealed tube2173 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω scans at fixed χ = 55°h = 2121
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
k = 2114
Tmin = 0.984, Tmax = 0.992l = 1414
5431 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.128 w = 1/[σ2(Fo2) + (0.0507P)2 + 0.8893P]
where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max < 0.001
3333 reflectionsΔρmax = 0.25 e Å3
170 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0041 (7)
Crystal data top
C6H14O2V = 2903.0 (9) Å3
Mr = 118.17Z = 16
Monoclinic, C2/cMo Kα radiation
a = 16.360 (3) ŵ = 0.08 mm1
b = 16.219 (3) ÅT = 173 K
c = 10.942 (2) Å0.20 × 0.15 × 0.10 mm
β = 90.96 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3333 independent reflections
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
2173 reflections with I > 2σ(I)
Tmin = 0.984, Tmax = 0.992Rint = 0.027
5431 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.128H atoms treated by a mixture of independent and constrained refinement
S = 1.07Δρmax = 0.25 e Å3
3333 reflectionsΔρmin = 0.19 e Å3
170 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydroxyl H atoms were located from difference map and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45410 (9)0.40173 (9)0.23173 (15)0.0264 (4)
C20.40691 (10)0.47252 (11)0.2899 (2)0.0441 (5)
H2A0.35010.47170.26000.066*
H2B0.43230.52510.26810.066*
H2C0.40810.46610.37900.066*
C30.44156 (11)0.40276 (12)0.09436 (16)0.0419 (5)
H3A0.47500.35950.05750.063*
H3B0.45780.45660.06220.063*
H3C0.38380.39280.07440.063*
O10.41874 (6)0.32727 (7)0.28109 (11)0.0285 (3)
H110.4150 (12)0.2914 (12)0.2247 (19)0.049 (6)*
C40.35651 (9)0.14506 (10)0.08927 (14)0.0282 (4)
C50.42546 (13)0.19988 (16)0.13141 (19)0.0607 (7)
H5A0.41970.20960.21950.091*
H5B0.47800.17290.11400.091*
H5C0.42340.25270.08800.091*
C60.35862 (14)0.06306 (12)0.15647 (18)0.0542 (6)
H6A0.31190.02940.13230.081*
H6B0.40950.03400.13560.081*
H6C0.35590.07290.24480.081*
C70.35667 (9)0.13528 (9)0.05157 (14)0.0256 (4)
C80.28163 (10)0.08893 (11)0.09577 (16)0.0343 (4)
H8A0.28300.08620.18530.051*
H8B0.28160.03290.06210.051*
H8C0.23200.11790.06830.051*
C90.43405 (10)0.09374 (11)0.09998 (16)0.0368 (4)
H9A0.48180.12600.07600.055*
H9B0.43790.03800.06580.055*
H9C0.43230.09050.18930.055*
O20.28053 (7)0.18513 (7)0.12021 (12)0.0334 (3)
H210.2757 (12)0.1876 (12)0.196 (2)0.053 (6)*
O30.35727 (7)0.21581 (7)0.10653 (10)0.0312 (3)
H310.3133 (14)0.2391 (13)0.090 (2)0.063 (7)*
C100.24748 (9)0.29785 (10)0.49399 (14)0.0260 (4)
C110.31077 (10)0.34099 (10)0.57561 (15)0.0350 (4)
H11A0.36580.32630.54920.052*
H11B0.30370.32360.66050.052*
H11C0.30340.40080.56950.052*
C120.16219 (10)0.32945 (11)0.52355 (17)0.0366 (4)
H12A0.16080.38960.51470.055*
H12B0.14900.31450.60770.055*
H12C0.12210.30460.46720.055*
O40.26063 (7)0.32027 (7)0.36847 (10)0.0301 (3)
H410.3141 (13)0.3219 (11)0.3509 (18)0.048 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0223 (8)0.0268 (8)0.0299 (9)0.0021 (6)0.0023 (6)0.0056 (7)
C20.0279 (9)0.0341 (10)0.0704 (15)0.0050 (7)0.0002 (9)0.0003 (9)
C30.0418 (11)0.0503 (12)0.0330 (10)0.0151 (8)0.0124 (8)0.0149 (9)
O10.0291 (6)0.0300 (7)0.0264 (7)0.0062 (5)0.0032 (5)0.0003 (5)
C40.0218 (8)0.0385 (9)0.0242 (9)0.0066 (7)0.0007 (6)0.0011 (7)
C50.0436 (12)0.1069 (19)0.0318 (11)0.0213 (11)0.0057 (9)0.0112 (11)
C60.0773 (15)0.0527 (13)0.0321 (11)0.0309 (11)0.0113 (10)0.0109 (9)
C70.0250 (8)0.0295 (9)0.0222 (8)0.0025 (6)0.0019 (6)0.0032 (7)
C80.0325 (9)0.0404 (10)0.0300 (10)0.0029 (7)0.0020 (7)0.0013 (8)
C90.0312 (9)0.0475 (11)0.0314 (10)0.0091 (8)0.0063 (7)0.0006 (8)
O20.0337 (7)0.0440 (7)0.0225 (7)0.0135 (5)0.0034 (5)0.0007 (5)
O30.0302 (6)0.0343 (7)0.0290 (7)0.0019 (5)0.0058 (5)0.0078 (5)
C100.0250 (8)0.0335 (9)0.0194 (8)0.0003 (6)0.0030 (6)0.0004 (7)
C110.0388 (10)0.0387 (10)0.0272 (9)0.0058 (8)0.0020 (7)0.0047 (8)
C120.0325 (10)0.0376 (10)0.0399 (11)0.0067 (7)0.0082 (8)0.0017 (8)
O40.0251 (6)0.0431 (7)0.0223 (6)0.0011 (5)0.0015 (5)0.0076 (5)
Geometric parameters (Å, º) top
C1—O11.4474 (19)C7—C91.521 (2)
C1—C31.514 (2)C7—C81.525 (2)
C1—C21.529 (2)C8—H8A0.9800
C1—C1i1.548 (3)C8—H8B0.9800
C2—H2A0.9800C8—H8C0.9800
C2—H2B0.9800C9—H9A0.9800
C2—H2C0.9800C9—H9B0.9800
C3—H3A0.9800C9—H9C0.9800
C3—H3B0.9800O2—H210.84 (2)
C3—H3C0.9800O3—H310.83 (2)
O1—H110.85 (2)C10—O41.4405 (18)
C4—O21.4381 (18)C10—C111.526 (2)
C4—C51.514 (3)C10—C121.526 (2)
C4—C61.520 (2)C10—C10ii1.560 (3)
C4—C71.549 (2)C11—H11A0.9800
C5—H5A0.9800C11—H11B0.9800
C5—H5B0.9800C11—H11C0.9800
C5—H5C0.9800C12—H12A0.9800
C6—H6A0.9800C12—H12B0.9800
C6—H6B0.9800C12—H12C0.9800
C6—H6C0.9800O4—H410.90 (2)
C7—O31.4378 (19)
O1—C1—C3109.35 (13)O3—C7—C8108.36 (13)
O1—C1—C2105.28 (13)C9—C7—C8109.93 (14)
C3—C1—C2110.15 (14)O3—C7—C4108.84 (12)
O1—C1—C1i107.20 (10)C9—C7—C4112.28 (13)
C3—C1—C1i111.79 (17)C8—C7—C4112.21 (13)
C2—C1—C1i112.77 (12)C7—C8—H8A109.5
C1—C2—H2A109.5C7—C8—H8B109.5
C1—C2—H2B109.5H8A—C8—H8B109.5
H2A—C2—H2B109.5C7—C8—H8C109.5
C1—C2—H2C109.5H8A—C8—H8C109.5
H2A—C2—H2C109.5H8B—C8—H8C109.5
H2B—C2—H2C109.5C7—C9—H9A109.5
C1—C3—H3A109.5C7—C9—H9B109.5
C1—C3—H3B109.5H9A—C9—H9B109.5
H3A—C3—H3B109.5C7—C9—H9C109.5
C1—C3—H3C109.5H9A—C9—H9C109.5
H3A—C3—H3C109.5H9B—C9—H9C109.5
H3B—C3—H3C109.5C4—O2—H21108.8 (14)
C1—O1—H11108.9 (14)C7—O3—H31109.0 (15)
O2—C4—C5107.96 (15)O4—C10—C11109.37 (13)
O2—C4—C6107.94 (13)O4—C10—C12105.60 (13)
C5—C4—C6110.08 (17)C11—C10—C12109.62 (14)
O2—C4—C7105.52 (13)O4—C10—C10ii108.85 (15)
C5—C4—C7111.97 (14)C11—C10—C10ii111.88 (16)
C6—C4—C7113.07 (14)C12—C10—C10ii111.31 (16)
C4—C5—H5A109.5C10—C11—H11A109.5
C4—C5—H5B109.5C10—C11—H11B109.5
H5A—C5—H5B109.5H11A—C11—H11B109.5
C4—C5—H5C109.5C10—C11—H11C109.5
H5A—C5—H5C109.5H11A—C11—H11C109.5
H5B—C5—H5C109.5H11B—C11—H11C109.5
C4—C6—H6A109.5C10—C12—H12A109.5
C4—C6—H6B109.5C10—C12—H12B109.5
H6A—C6—H6B109.5H12A—C12—H12B109.5
C4—C6—H6C109.5C10—C12—H12C109.5
H6A—C6—H6C109.5H12A—C12—H12C109.5
H6B—C6—H6C109.5H12B—C12—H12C109.5
O3—C7—C9104.88 (12)C10—O4—H41111.9 (12)
O2—C4—C7—O364.08 (15)C6—C4—C7—C962.50 (18)
C5—C4—C7—O353.12 (18)O2—C4—C7—C855.85 (17)
C6—C4—C7—O3178.17 (14)C5—C4—C7—C8173.04 (16)
O2—C4—C7—C9179.74 (13)C6—C4—C7—C861.91 (18)
C5—C4—C7—C962.5 (2)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
(k03278) 2,3-dimethyl-2,3-butanediol top
Crystal data top
C6H14O2Dx = 1.091 Mg m3
Mr = 118.17Melting point: 314.2 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.333 (3) ÅCell parameters from 6281 reflections
b = 16.145 (3) Åθ = 1.0–27.5°
c = 10.916 (2) ŵ = 0.08 mm1
β = 90.92 (3)°T = 90 K
V = 2878.1 (9) Å3Block, colorless
Z = 160.30 × 0.20 × 0.20 mm
F(000) = 1056
Data collection top
Nonius KappaCCD
diffractometer
3297 independent reflections
Radiation source: fine-focus sealed tube2561 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.033
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.8°
ω scans at fixed χ = 55°h = 2121
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
k = 2020
Tmin = 0.977, Tmax = 0.984l = 1414
11933 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0503P)2 + 1.4237P]
where P = (Fo2 + 2Fc2)/3
3297 reflections(Δ/σ)max < 0.001
169 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C6H14O2V = 2878.1 (9) Å3
Mr = 118.17Z = 16
Monoclinic, C2/cMo Kα radiation
a = 16.333 (3) ŵ = 0.08 mm1
b = 16.145 (3) ÅT = 90 K
c = 10.916 (2) Å0.30 × 0.20 × 0.20 mm
β = 90.92 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3297 independent reflections
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
2561 reflections with I > 2σ(I)
Tmin = 0.977, Tmax = 0.984Rint = 0.033
11933 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.107H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.29 e Å3
3297 reflectionsΔρmin = 0.21 e Å3
169 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The hydroxyl H atoms were located from difference map and refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.45370 (7)0.40201 (7)0.23245 (10)0.0178 (3)
C20.40674 (8)0.47298 (8)0.29136 (13)0.0283 (3)
H2A0.35010.47300.26040.042*
H2B0.43290.52570.27100.042*
H2C0.40710.46570.38050.042*
C30.44061 (8)0.40347 (9)0.09407 (12)0.0280 (3)
H3A0.47450.36060.05650.042*
H3B0.45610.45790.06220.042*
H3C0.38280.39280.07450.042*
O10.41874 (5)0.32696 (5)0.28176 (8)0.0191 (2)
H110.4154 (10)0.2922 (11)0.2261 (16)0.043 (5)*
C40.35623 (7)0.14493 (8)0.08991 (11)0.0208 (3)
C50.42564 (10)0.20010 (13)0.13186 (14)0.0496 (5)
H5A0.41990.21010.22010.074*
H5B0.47820.17280.11450.074*
H5C0.42370.25300.08800.074*
C60.35829 (11)0.06215 (9)0.15671 (13)0.0395 (4)
H6A0.31170.02820.13160.059*
H6B0.40950.03330.13620.059*
H6C0.35500.07170.24530.059*
C70.35679 (7)0.13497 (7)0.05169 (10)0.0185 (3)
C80.28133 (8)0.08874 (8)0.09625 (11)0.0231 (3)
H8A0.28280.08600.18590.035*
H8B0.28100.03250.06250.035*
H8C0.23180.11810.06890.035*
C90.43451 (8)0.09308 (9)0.09956 (11)0.0255 (3)
H9A0.48230.12520.07460.038*
H9B0.43790.03700.06570.038*
H9C0.43320.09010.18920.038*
O20.28017 (5)0.18504 (6)0.12022 (8)0.0234 (2)
H210.2740 (10)0.1864 (10)0.1932 (17)0.037 (5)*
O30.35780 (6)0.21601 (6)0.10662 (8)0.0212 (2)
H310.3154 (12)0.2392 (11)0.0906 (16)0.045 (5)*
C100.24744 (7)0.29816 (7)0.49416 (10)0.0169 (3)
C110.31090 (8)0.34145 (8)0.57599 (11)0.0232 (3)
H11A0.36600.32720.54870.035*
H11B0.30430.32330.66100.035*
H11C0.30310.40150.57080.035*
C120.16208 (8)0.33006 (8)0.52406 (12)0.0235 (3)
H12A0.16100.39050.51660.035*
H12B0.14850.31420.60800.035*
H12C0.12190.30590.46680.035*
O40.26063 (6)0.32105 (5)0.36831 (7)0.0202 (2)
H410.3120 (11)0.3245 (10)0.3544 (15)0.040 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0162 (6)0.0182 (6)0.0189 (6)0.0021 (5)0.0018 (5)0.0038 (4)
C20.0189 (7)0.0219 (7)0.0440 (8)0.0028 (5)0.0005 (6)0.0016 (6)
C30.0274 (7)0.0346 (8)0.0218 (7)0.0100 (6)0.0076 (5)0.0107 (5)
O10.0210 (5)0.0197 (5)0.0167 (4)0.0046 (3)0.0018 (3)0.0001 (3)
C40.0164 (6)0.0290 (7)0.0170 (6)0.0048 (5)0.0021 (4)0.0018 (5)
C50.0339 (9)0.0923 (14)0.0226 (7)0.0244 (9)0.0023 (6)0.0119 (8)
C60.0589 (10)0.0388 (9)0.0205 (7)0.0253 (7)0.0093 (7)0.0094 (6)
C70.0182 (6)0.0209 (6)0.0163 (6)0.0014 (5)0.0017 (4)0.0029 (4)
C80.0212 (7)0.0270 (7)0.0211 (6)0.0025 (5)0.0009 (5)0.0015 (5)
C90.0219 (7)0.0340 (7)0.0203 (6)0.0064 (5)0.0033 (5)0.0003 (5)
O20.0252 (5)0.0300 (5)0.0148 (4)0.0099 (4)0.0024 (4)0.0004 (4)
O30.0213 (5)0.0225 (5)0.0197 (4)0.0012 (4)0.0047 (3)0.0048 (3)
C100.0171 (6)0.0216 (6)0.0121 (5)0.0004 (5)0.0018 (4)0.0010 (4)
C110.0252 (7)0.0251 (7)0.0191 (6)0.0041 (5)0.0001 (5)0.0024 (5)
C120.0216 (7)0.0240 (7)0.0250 (6)0.0029 (5)0.0049 (5)0.0001 (5)
O40.0181 (5)0.0283 (5)0.0142 (4)0.0009 (4)0.0016 (3)0.0045 (3)
Geometric parameters (Å, º) top
C1—O11.4470 (14)C7—C91.5233 (17)
C1—C31.5224 (17)C7—C81.5271 (17)
C1—C21.5266 (18)C8—H8A0.9800
C1—C1i1.554 (2)C8—H8B0.9800
C2—H2A0.9800C8—H8C0.9800
C2—H2B0.9800C9—H9A0.9800
C2—H2C0.9800C9—H9B0.9800
C3—H3A0.9800C9—H9C0.9800
C3—H3B0.9800O2—H210.802 (18)
C3—H3C0.9800O3—H310.803 (18)
O1—H110.829 (18)C10—O41.4422 (14)
C4—O21.4349 (15)C10—C121.5264 (17)
C4—C51.518 (2)C10—C111.5266 (17)
C4—C61.5231 (19)C10—C10ii1.562 (2)
C4—C71.5539 (16)C11—H11A0.9800
C5—H5A0.9800C11—H11B0.9800
C5—H5B0.9800C11—H11C0.9800
C5—H5C0.9800C12—H12A0.9800
C6—H6A0.9800C12—H12B0.9800
C6—H6B0.9800C12—H12C0.9800
C6—H6C0.9800O4—H410.857 (18)
C7—O31.4391 (15)
O1—C1—C3109.40 (9)O3—C7—C8108.40 (10)
O1—C1—C2105.54 (10)C9—C7—C8110.25 (10)
C3—C1—C2110.05 (11)O3—C7—C4108.68 (10)
O1—C1—C1i107.25 (7)C9—C7—C4112.25 (10)
C3—C1—C1i111.41 (12)C8—C7—C4112.06 (10)
C2—C1—C1i112.93 (9)C7—C8—H8A109.5
C1—C2—H2A109.5C7—C8—H8B109.5
C1—C2—H2B109.5H8A—C8—H8B109.5
H2A—C2—H2B109.5C7—C8—H8C109.5
C1—C2—H2C109.5H8A—C8—H8C109.5
H2A—C2—H2C109.5H8B—C8—H8C109.5
H2B—C2—H2C109.5C7—C9—H9A109.5
C1—C3—H3A109.5C7—C9—H9B109.5
C1—C3—H3B109.5H9A—C9—H9B109.5
H3A—C3—H3B109.5C7—C9—H9C109.5
C1—C3—H3C109.5H9A—C9—H9C109.5
H3A—C3—H3C109.5H9B—C9—H9C109.5
H3B—C3—H3C109.5C4—O2—H21109.6 (12)
C1—O1—H11108.4 (12)C7—O3—H31109.2 (12)
O2—C4—C5108.28 (12)O4—C10—C12105.56 (9)
O2—C4—C6108.14 (10)O4—C10—C11109.24 (10)
C5—C4—C6110.37 (13)C12—C10—C11109.53 (10)
O2—C4—C7105.50 (10)O4—C10—C10ii108.91 (11)
C5—C4—C7111.61 (10)C12—C10—C10ii111.49 (12)
C6—C4—C7112.68 (11)C11—C10—C10ii111.90 (12)
C4—C5—H5A109.5C10—C11—H11A109.5
C4—C5—H5B109.5C10—C11—H11B109.5
H5A—C5—H5B109.5H11A—C11—H11B109.5
C4—C5—H5C109.5C10—C11—H11C109.5
H5A—C5—H5C109.5H11A—C11—H11C109.5
H5B—C5—H5C109.5H11B—C11—H11C109.5
C4—C6—H6A109.5C10—C12—H12A109.5
C4—C6—H6B109.5C10—C12—H12B109.5
H6A—C6—H6B109.5H12A—C12—H12B109.5
C4—C6—H6C109.5C10—C12—H12C109.5
H6A—C6—H6C109.5H12A—C12—H12C109.5
H6B—C6—H6C109.5H12B—C12—H12C109.5
O3—C7—C9104.88 (10)C10—O4—H41110.3 (11)
O2—C4—C7—O364.31 (12)C6—C4—C7—C962.36 (14)
C5—C4—C7—O353.07 (14)O2—C4—C7—C855.45 (13)
C6—C4—C7—O3177.91 (11)C5—C4—C7—C8172.83 (12)
O2—C4—C7—C9179.86 (10)C6—C4—C7—C862.33 (14)
C5—C4—C7—C962.48 (16)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+1/2, y+1/2, z+1.
(k03227p) 2,3-dimethyl-2,3-butanediol monohydrate top
Crystal data top
C6H14O2·H2ODx = 1.097 Mg m3
Mr = 136.19Melting point: 314.4 K
Monoclinic, P2/nMo Kα radiation, λ = 0.71073 Å
a = 10.582 (2) ÅCell parameters from 5559 reflections
b = 7.3637 (15) Åθ = 1.0–27.5°
c = 10.587 (2) ŵ = 0.09 mm1
β = 92.13 (3)°T = 90 K
V = 824.4 (3) Å3Block, colorless
Z = 40.30 × 0.30 × 0.15 mm
F(000) = 304
Data collection top
Nonius KappaCCD
diffractometer
2125 independent reflections
Radiation source: fine-focus sealed tube1666 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
Detector resolution: 18 pixels mm-1θmax = 25.0°, θmin = 2.7°
ω scans at fixed χ = 55°h = 1212
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
k = 88
Tmin = 0.975, Tmax = 0.987l = 1212
2125 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0526P)2 + 0.165P]
where P = (Fo2 + 2Fc2)/3
2125 reflections(Δ/σ)max = 0.001
97 parametersΔρmax = 0.20 e Å3
3 restraintsΔρmin = 0.23 e Å3
Crystal data top
C6H14O2·H2OV = 824.4 (3) Å3
Mr = 136.19Z = 4
Monoclinic, P2/nMo Kα radiation
a = 10.582 (2) ŵ = 0.09 mm1
b = 7.3637 (15) ÅT = 90 K
c = 10.587 (2) Å0.30 × 0.30 × 0.15 mm
β = 92.13 (3)°
Data collection top
Nonius KappaCCD
diffractometer
2125 independent reflections
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
1666 reflections with I > 2σ(I)
Tmin = 0.975, Tmax = 0.987Rint = 0.098
2125 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0533 restraints
wR(F2) = 0.123H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.20 e Å3
2125 reflectionsΔρmin = 0.23 e Å3
97 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0141 (3)0.0722 (3)0.4515 (3)0.0301 (7)
C20.1380 (4)0.0329 (3)0.3833 (3)0.0383 (9)
H2A0.14890.12330.31660.057*
H2B0.13380.08870.34580.057*
H2C0.20980.03930.44430.057*
C30.0955 (3)0.0956 (4)0.3546 (3)0.0442 (8)
H3A0.17190.13090.39800.066*
H3B0.11060.01930.30980.066*
H3C0.07420.19020.29380.066*
O10.0351 (2)0.2411 (2)0.51800 (19)0.0372 (5)
H10.08420.30680.47740.056*
C40.0052 (3)0.5590 (4)0.0606 (3)0.0303 (7)
C50.0449 (3)0.7541 (3)0.0291 (3)0.0385 (9)
H5A0.05330.82530.10720.058*
H5B0.01940.80950.02760.058*
H5C0.12620.75190.01230.058*
C60.1150 (3)0.5629 (4)0.1330 (3)0.0328 (7)
H6A0.14130.43830.15130.049*
H6B0.18170.62380.08220.049*
H6C0.10010.62900.21250.049*
O20.1026 (2)0.4796 (2)0.14287 (19)0.0337 (5)
H20.17370.49740.11240.051*
O30.1415 (2)0.5241 (2)0.3925 (2)0.0314 (5)
H310.105 (2)0.498 (3)0.3230 (15)0.047*
H320.0915 (19)0.596 (3)0.427 (2)0.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.047 (2)0.0172 (12)0.0271 (15)0.0013 (13)0.0111 (14)0.0006 (11)
C20.055 (3)0.0238 (12)0.038 (2)0.0003 (15)0.0223 (18)0.0022 (12)
C30.064 (2)0.0321 (17)0.0364 (17)0.0093 (16)0.0027 (15)0.0036 (14)
O10.0576 (15)0.0184 (10)0.0369 (12)0.0027 (9)0.0176 (10)0.0000 (7)
C40.040 (2)0.0216 (13)0.0299 (17)0.0002 (12)0.0096 (15)0.0014 (12)
C50.054 (2)0.0194 (14)0.0427 (18)0.0015 (14)0.0062 (16)0.0009 (12)
C60.039 (2)0.0338 (16)0.0262 (16)0.0037 (15)0.0061 (14)0.0020 (13)
O20.0377 (15)0.0352 (11)0.0284 (12)0.0006 (10)0.0037 (10)0.0038 (8)
O30.0391 (16)0.0250 (9)0.0305 (14)0.0028 (9)0.0081 (9)0.0041 (8)
Geometric parameters (Å, º) top
C1—O11.442 (3)C4—C61.510 (4)
C1—C1i1.516 (5)C4—C51.537 (4)
C1—C31.529 (4)C4—C4ii1.551 (5)
C1—C21.547 (5)C5—H5A0.9800
C2—H2A0.9800C5—H5B0.9800
C2—H2B0.9800C5—H5C0.9800
C2—H2C0.9800C6—H6A0.9800
C3—H3A0.9800C6—H6B0.9800
C3—H3B0.9800C6—H6C0.9800
C3—H3C0.9800O2—H20.8400
O1—H10.8400O3—H310.842 (5)
C4—O21.447 (4)O3—H320.842 (5)
O1—C1—C1i107.7 (3)O2—C4—C5108.3 (3)
O1—C1—C3109.2 (2)C6—C4—C5109.6 (2)
C1i—C1—C3111.7 (4)O2—C4—C4ii107.4 (3)
O1—C1—C2105.8 (2)C6—C4—C4ii113.2 (3)
C1i—C1—C2112.2 (3)C5—C4—C4ii110.9 (3)
C3—C1—C2110.0 (3)C4—C5—H5A109.5
C1—C2—H2A109.5C4—C5—H5B109.5
C1—C2—H2B109.5H5A—C5—H5B109.5
H2A—C2—H2B109.5C4—C5—H5C109.5
C1—C2—H2C109.5H5A—C5—H5C109.5
H2A—C2—H2C109.5H5B—C5—H5C109.5
H2B—C2—H2C109.5C4—C6—H6A109.5
C1—C3—H3A109.5C4—C6—H6B109.5
C1—C3—H3B109.5H6A—C6—H6B109.5
H3A—C3—H3B109.5C4—C6—H6C109.5
C1—C3—H3C109.5H6A—C6—H6C109.5
H3A—C3—H3C109.5H6B—C6—H6C109.5
H3B—C3—H3C109.5C4—O2—H2109.5
C1—O1—H1109.5H31—O3—H32104.1 (8)
O2—C4—C6107.3 (2)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
(k03226o) 2,3-dimethyl-2,3-butanediol hexahydrate top
Crystal data top
C6H14O2·6(H2O)Dx = 1.196 Mg m3
Mr = 226.27Melting point: 318.6 K
Orthorhombic, PnnmMo Kα radiation, λ = 0.71073 Å
a = 6.308 (2) ÅCell parameters from 1360 reflections
b = 6.321 (2) Åθ = 1.0–27.5°
c = 15.759 (3) ŵ = 0.11 mm1
V = 628.4 (3) Å3T = 90 K
Z = 2Block, colorless
F(000) = 2520.20 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
734 independent reflections
Radiation source: fine-focus sealed tube559 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
Detector resolution: 18 pixels mm-1θmax = 27.5°, θmin = 1.3°
ω scans at fixed χ = 55°h = 88
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
k = 77
Tmin = 0.978, Tmax = 0.984l = 2016
3531 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0432P)2 + 0.1463P]
where P = (Fo2 + 2Fc2)/3
734 reflections(Δ/σ)max < 0.001
87 parametersΔρmax = 0.28 e Å3
103 restraintsΔρmin = 0.14 e Å3
Crystal data top
C6H14O2·6(H2O)V = 628.4 (3) Å3
Mr = 226.27Z = 2
Orthorhombic, PnnmMo Kα radiation
a = 6.308 (2) ŵ = 0.11 mm1
b = 6.321 (2) ÅT = 90 K
c = 15.759 (3) Å0.20 × 0.20 × 0.15 mm
Data collection top
Nonius KappaCCD
diffractometer
734 independent reflections
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
559 reflections with I > 2σ(I)
Tmin = 0.978, Tmax = 0.984Rint = 0.039
3531 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.036103 restraints
wR(F2) = 0.094H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.28 e Å3
734 reflectionsΔρmin = 0.14 e Å3
87 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.3792 (12)0.5259 (13)0.50000.0216 (15)0.428 (4)
C20.3069 (18)0.678 (2)0.4327 (6)0.041 (2)0.428 (4)
H2A0.15570.70820.44030.062*0.428 (4)
H2B0.32970.61510.37650.062*0.428 (4)
H2C0.38810.80970.43720.062*0.428 (4)
O10.2599 (15)0.3322 (14)0.50000.0257 (17)0.428 (4)
H1O0.26 (3)0.27 (2)0.463 (4)0.039*0.2140 (19)
C1'0.5260 (10)0.3828 (10)0.50000.0261 (13)0.572 (4)
C2'0.6451 (13)0.3393 (17)0.4141 (4)0.0407 (16)0.572 (4)
H2'10.55710.38710.36660.061*0.572 (4)
H2'20.67260.18740.40850.061*0.572 (4)
H2'30.77990.41640.41370.061*0.572 (4)
O1'0.3309 (10)0.2651 (12)0.50000.0277 (14)0.572 (4)
H1O'0.277 (13)0.246 (16)0.461 (3)0.042*0.2860 (19)
O20.1568 (3)0.1567 (3)0.34129 (5)0.0256 (3)
H2W10.064 (6)0.066 (6)0.3459 (13)0.038*0.50
H2W20.195 (6)0.194 (6)0.3886 (9)0.038*0.50
H2W30.109 (7)0.258 (4)0.316 (3)0.038*0.50
H2W40.257 (4)0.107 (7)0.315 (3)0.038*0.50
O30.00000.50000.2506 (2)0.0259 (3)
H3W10.051 (4)0.396 (5)0.277 (3)0.039*0.50
H3W20.102 (5)0.549 (5)0.223 (3)0.039*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.017 (3)0.025 (4)0.022 (3)0.001 (3)0.0000.000
C20.040 (5)0.041 (4)0.043 (4)0.012 (3)0.003 (3)0.018 (3)
O10.026 (4)0.026 (3)0.025 (4)0.007 (3)0.0000.000
C1'0.024 (3)0.033 (3)0.021 (2)0.001 (2)0.0000.000
C2'0.032 (3)0.051 (4)0.039 (3)0.006 (3)0.012 (3)0.016 (3)
O1'0.029 (3)0.030 (3)0.024 (3)0.006 (2)0.0000.000
O20.0308 (10)0.0296 (11)0.0164 (4)0.0008 (4)0.0001 (7)0.0003 (7)
O30.0320 (14)0.0285 (15)0.0171 (6)0.0006 (14)0.0000.000
Geometric parameters (Å, º) top
C1—O11.437 (10)C1'—C2'i1.572 (7)
C1—C21.503 (10)C2'—H2'10.9800
C1—C2i1.503 (10)C2'—H2'20.9800
C1—C1ii1.559 (15)C2'—H2'30.9800
C2—H2A0.9800O1'—H1O0.74 (15)
C2—H2B0.9800O1'—H1O'0.72 (5)
C2—H2C0.9800O2—H2W10.821 (13)
O1—H1O0.72 (5)O2—H2W20.817 (12)
O1—H1O'0.83 (9)O2—H2W30.816 (12)
C1'—O1'1.438 (8)O2—H2W40.816 (12)
C1'—C1'ii1.517 (13)O3—H3W10.838 (13)
C1'—C2'1.572 (7)O3—H3W20.838 (13)
O1—C1—C2112.7 (8)C1'—C2'—H2'2109.5
O1—C1—C2i112.7 (8)H2'1—C2'—H2'2109.5
C2—C1—C2i89.9 (9)C1'—C2'—H2'3109.5
O1—C1—C1ii109.4 (8)H2'1—C2'—H2'3109.5
C2—C1—C1ii115.5 (7)H2'2—C2'—H2'3109.5
C2i—C1—C1ii115.5 (7)C1'—O1'—H1O121 (3)
C1—O1—H1O120 (3)C1'—O1'—H1O'120 (3)
C1—O1—H1O'119 (3)H2W1—O2—H2W2109.0 (8)
O1'—C1'—C1'ii108.7 (7)H2W1—O2—H2W3109.1 (8)
O1'—C1'—C2'108.6 (5)H2W2—O2—H2W3109.7 (8)
C1'ii—C1'—C2'105.9 (5)H2W1—O2—H2W4109.2 (8)
O1'—C1'—C2'i108.6 (5)H2W2—O2—H2W4109.8 (8)
C1'ii—C1'—C2'i105.9 (5)H2W3—O2—H2W4110.1 (8)
C2'—C1'—C2'i118.8 (6)H3W1—O3—H3W2104.5 (9)
C1'—C2'—H2'1109.5
Symmetry codes: (i) x, y, z+1; (ii) x+1, y+1, z+1.
(k01235) 2,3-dimethyl-2,3-butanediol hemihydrate top
Crystal data top
C6H14O2·0.5(H2O)Melting point = 300–302 K
Mr = 127.18Mo Kα radiation, λ = 0.71073 Å
Hexagonal, P6522Cell parameters from 3031 reflections
a = 14.696 (2) Åθ = 1.0–25.4°
c = 13.686 (3) ŵ = 0.08 mm1
V = 2559.8 (7) Å3T = 173 K
Z = 12Needle, colorless
F(000) = 8520.50 × 0.10 × 0.10 mm
Dx = 0.990 Mg m3
Data collection top
Nonius KappaCCD
diffractometer
1121 independent reflections
Radiation source: fine-focus sealed tube836 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 18 pixels mm-1θmax = 22.5°, θmin = 2.2°
ω scans at fixed χ = 55°h = 1515
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
k = 1313
Tmin = 0.964, Tmax = 0.993l = 1414
4442 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.072Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.1531P)2 + 0.2175P]
where P = (Fo2 + 2Fc2)/3
1121 reflections(Δ/σ)max < 0.001
95 parametersΔρmax = 0.25 e Å3
5 restraintsΔρmin = 0.16 e Å3
Crystal data top
C6H14O2·0.5(H2O)Z = 12
Mr = 127.18Mo Kα radiation
Hexagonal, P6522µ = 0.08 mm1
a = 14.696 (2) ÅT = 173 K
c = 13.686 (3) Å0.50 × 0.10 × 0.10 mm
V = 2559.8 (7) Å3
Data collection top
Nonius KappaCCD
diffractometer
1121 independent reflections
Absorption correction: multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
836 reflections with I > 2σ(I)
Tmin = 0.964, Tmax = 0.993Rint = 0.026
4442 measured reflectionsθmax = 22.5°
Refinement top
R[F2 > 2σ(F2)] = 0.0725 restraints
wR(F2) = 0.214H atoms treated by a mixture of independent and constrained refinement
S = 1.06Δρmax = 0.25 e Å3
1121 reflectionsΔρmin = 0.16 e Å3
95 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.7636 (3)0.2018 (3)0.9135 (3)0.0750 (12)
C20.8251 (5)0.1428 (4)0.9278 (4)0.1050 (18)
H2A0.81970.12070.99610.158*
H2B0.89910.18940.91100.158*
H2C0.79550.08080.88530.158*
C30.6445 (4)0.1272 (4)0.9263 (4)0.1070 (18)
H3A0.60810.16760.92270.161*
H3B0.63110.09240.99000.161*
H3C0.61870.07420.87440.161*
C40.7889 (3)0.2588 (3)0.8147 (2)0.0726 (12)
C50.9050 (3)0.3387 (4)0.8069 (4)0.0887 (14)
H5A0.92640.38620.86330.133*
H5B0.91810.37940.74670.133*
H5C0.94550.30230.80590.133*
C60.7521 (4)0.1832 (4)0.7280 (3)0.0944 (16)
H6A0.77080.22330.66690.142*
H6B0.67570.13720.73130.142*
H6C0.78610.14040.73020.142*
O10.7982 (2)0.2787 (2)0.98827 (17)0.0755 (9)
H1OA0.780 (7)0.325 (6)0.974 (7)0.120*0.50
H1OB0.749 (6)0.236 (6)1.028 (6)0.120*0.50
O20.7290 (3)0.3116 (2)0.8107 (2)0.0873 (11)
H2OA0.744 (9)0.374 (5)0.830 (6)0.120*0.50
H2OB0.693 (7)0.302 (7)0.758 (5)0.120*0.50
O1W1.045 (4)0.0225 (18)0.91670.63 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.107 (3)0.077 (3)0.050 (2)0.053 (3)0.005 (2)0.000 (2)
C20.166 (5)0.119 (4)0.074 (3)0.104 (4)0.007 (3)0.011 (3)
C30.100 (4)0.084 (3)0.109 (4)0.025 (3)0.028 (3)0.017 (3)
C40.099 (3)0.082 (3)0.047 (2)0.054 (2)0.008 (2)0.0049 (19)
C50.077 (3)0.091 (3)0.084 (3)0.032 (3)0.009 (2)0.013 (3)
C60.132 (4)0.102 (3)0.056 (3)0.063 (3)0.018 (2)0.021 (2)
O10.094 (2)0.096 (2)0.0406 (14)0.0503 (18)0.0018 (13)0.0054 (13)
O20.119 (3)0.100 (2)0.0673 (19)0.073 (2)0.0138 (16)0.0029 (15)
O1W0.81 (5)0.46 (2)0.72 (7)0.41 (3)0.0000.23 (4)
Geometric parameters (Å, º) top
C1—O11.417 (5)C4—C61.527 (5)
C1—C41.535 (5)C5—H5A0.9800
C1—C31.541 (7)C5—H5B0.9800
C1—C21.547 (6)C5—H5C0.9800
C2—H2A0.9800C6—H6A0.9800
C2—H2B0.9800C6—H6B0.9800
C2—H2C0.9800C6—H6C0.9800
C3—H3A0.9800O1—H1OA0.87 (5)
C3—H3B0.9800O1—H1OB0.87 (5)
C3—H3C0.9800O2—H2OA0.87 (5)
C4—O21.437 (5)O2—H2OB0.87 (5)
C4—C51.515 (6)
O1—C1—C4108.0 (3)O2—C4—C1106.3 (3)
O1—C1—C3108.2 (4)C5—C4—C1110.9 (3)
C4—C1—C3111.6 (4)C6—C4—C1112.7 (3)
O1—C1—C2106.1 (3)C4—C5—H5A109.5
C4—C1—C2111.5 (4)C4—C5—H5B109.5
C3—C1—C2111.2 (4)H5A—C5—H5B109.5
C1—C2—H2A109.5C4—C5—H5C109.5
C1—C2—H2B109.5H5A—C5—H5C109.5
H2A—C2—H2B109.5H5B—C5—H5C109.5
C1—C2—H2C109.5C4—C6—H6A109.5
H2A—C2—H2C109.5C4—C6—H6B109.5
H2B—C2—H2C109.5H6A—C6—H6B109.5
C1—C3—H3A109.5C4—C6—H6C109.5
C1—C3—H3B109.5H6A—C6—H6C109.5
H3A—C3—H3B109.5H6B—C6—H6C109.5
C1—C3—H3C109.5C1—O1—H1OA109 (7)
H3A—C3—H3C109.5C1—O1—H1OB92 (6)
H3B—C3—H3C109.5H1OA—O1—H1OB104 (7)
O2—C4—C5109.6 (3)C4—O2—H2OA131 (7)
O2—C4—C6105.9 (3)C4—O2—H2OB115 (6)
C5—C4—C6111.2 (4)H2OA—O2—H2OB105 (7)
O1—C1—C4—O262.8 (4)C2—C1—C4—C560.0 (4)
C3—C1—C4—O256.0 (4)O1—C1—C4—C6178.4 (4)
C2—C1—C4—O2179.1 (4)C3—C1—C4—C659.6 (5)
O1—C1—C4—C556.2 (4)C2—C1—C4—C665.4 (5)
C3—C1—C4—C5175.0 (4)

Experimental details

(k01154)(k03278)(k03227p)(k03226o)
Crystal data
Chemical formulaC6H14O2C6H14O2C6H14O2·H2OC6H14O2·6(H2O)
Mr118.17118.17136.19226.27
Crystal system, space groupMonoclinic, C2/cMonoclinic, C2/cMonoclinic, P2/nOrthorhombic, Pnnm
Temperature (K)173909090
a, b, c (Å)16.360 (3), 16.219 (3), 10.942 (2)16.333 (3), 16.145 (3), 10.916 (2)10.582 (2), 7.3637 (15), 10.587 (2)6.308 (2), 6.321 (2), 15.759 (3)
α, β, γ (°)90, 90.96 (3), 9090, 90.92 (3), 9090, 92.13 (3), 9090, 90, 90
V3)2903.0 (9)2878.1 (9)824.4 (3)628.4 (3)
Z161642
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.080.080.090.11
Crystal size (mm)0.20 × 0.15 × 0.100.30 × 0.20 × 0.200.30 × 0.30 × 0.150.20 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
Multi-scan
SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.984, 0.9920.977, 0.9840.975, 0.9870.978, 0.984
No. of measured, independent and
observed [I > 2σ(I)] reflections
5431, 3333, 2173 11933, 3297, 2561 2125, 2125, 1666 3531, 734, 559
Rint0.0270.0330.0980.039
θmax (°)27.527.525.027.5
(sin θ/λ)max1)0.6490.6490.5950.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.128, 1.07 0.040, 0.107, 1.04 0.053, 0.123, 1.05 0.036, 0.094, 1.03
No. of reflections333332972125734
No. of parameters1701699787
No. of restraints003103
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.190.29, 0.210.20, 0.230.28, 0.14


(k01235)
Crystal data
Chemical formulaC6H14O2·0.5(H2O)
Mr127.18
Crystal system, space groupHexagonal, P6522
Temperature (K)173
a, b, c (Å)14.696 (2), 14.696 (2), 13.686 (3)
α, β, γ (°)90, 90, 120
V3)2559.8 (7)
Z12
Radiation typeMo Kα
µ (mm1)0.08
Crystal size (mm)0.50 × 0.10 × 0.10
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
SCALEPACK (Otwinowski & Minor, 1997)
Tmin, Tmax0.964, 0.993
No. of measured, independent and
observed [I > 2σ(I)] reflections
4442, 1121, 836
Rint0.026
θmax (°)22.5
(sin θ/λ)max1)0.538
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.072, 0.214, 1.06
No. of reflections1121
No. of parameters95
No. of restraints5
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.25, 0.16

Computer programs: COLLECT (Nonius, 1998), SCALEPACK (Otwinowski & Minor, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1990), SHELXD (Sheldrick, 2002), SHELXL97 (Sheldrick, 1997), XP in Siemens SHELXTL (Sheldrick, 1994), SHELX97-2 (Sheldrick, 1997) and local procedures.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds