Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The germanate compound Cu2Fe2Ge4O13, dicopper diiron germanate, was synthesized by solid-state reaction at 1403 K and ambient pressure. There is no change of space-group symmetry between 10 and 900 K. Between 40 K and room temperature the a lattice parameter shows a negative thermal expansion which can be connected to a decreasing Cu-Cu interatomic distance. Above room temperature all the lattice parameters are positively correlated with temperature. Among the structural parameters several alterations with temperature occur, which are most prominent for the distorted Fe3+ octahedral site. Besides an increase of the average bond length and of the interatomic Fe-Fe distances, distortional parameters also increase with temperature, while the average Cu-O bond length remains almost constant between 100 and 900 K, as do the average Ge-O distances. 57Fe Mössbauer spectroscopy was used to detect long-range magnetic ordering in Cu2Fe2Ge4O13. While around 100 K, which is the temperature at which a broad maximum is observed in the magnetic susceptibility, no magnetic ordering was detected in the Mössbauer spectrum, below 40 K a narrow split sextet is developed which is indicative of a three-dimensional magnetic ordering of the sample.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108768106051652/ws5044sup1.cif
Contains datablocks global, cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_100, cf9_200, cf9_300, cf9_400, cf9_500, cf9_550, cf9_600, cf9_650, cf9_750

Comment top

# Insert blank lines between paragraphs ?

Computing details top

Data collection: STOE X-AREA (Stoe & Cie, 2002) for cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_100, cf9_200, cf9_300, cf9_550, cf9_600, cf9_650, cf9_750. Cell refinement: STOE X-AREA (Stoe & Cie, 2002) for cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_100, cf9_200, cf9_300, cf9_550, cf9_600, cf9_650, cf9_750. Data reduction: Stoe X-AREA (Stoe & Cie, 2002) for cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_100, cf9_200, cf9_300, cf9_550, cf9_600, cf9_650, cf9_750. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) for cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_100, cf9_200, cf9_300, cf9_550, cf9_600, cf9_650, cf9_750. For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: Diamond 3.0 Bradenburg & Berndt 1999) for cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_100, cf9_200, cf9_300, cf9_550, cf9_600, cf9_650, cf9_750. Software used to prepare material for publication: WinGX 1.70.00 (Farrugia, 1999) for cf5_090, cf5_130, cf5_170, cf5_200, cf5_250, cf5_290, cufege, cf9_050, cf9_200, cf9_300, cf9_550, cf9_600, cf9_650, cf9_750; WinGX 1.70.00 (Farrugia, 1999)' for cf9_100.

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
Figure 1. View of (I) (50% probability displacement ellipsoids)
(cf5_090) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.933 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.090 (2) ÅCell parameters from 5776 reflections
b = 8.4901 (9) Åθ = 2.9–30.0°
c = 4.8626 (8) ŵ = 19.06 mm1
β = 96.13 (2)°T = 90 K
V = 496.27 (13) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-II
diffractometer
1202 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.060
rotation method, ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1716
Tmin = 0.12, Tmax = 0.25k = 1111
5776 measured reflectionsl = 66
1527 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0238P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max = 0.001
wR(F2) = 0.058Δρmax = 1.51 e Å3
S = 1.02Δρmin = 1.16 e Å3
1527 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0024 (3)
Crystal data top
Cu2Fe2Ge4O13V = 496.27 (13) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.090 (2) ŵ = 19.06 mm1
b = 8.4901 (9) ÅT = 90 K
c = 4.8626 (8) Å0.12 × 0.11 × 0.08 mm
β = 96.13 (2)°
Data collection top
STOE IPDS-II
diffractometer
1527 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1202 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.060
5776 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032110 parameters
wR(F2) = 0.0583 restraints
S = 1.02Δρmax = 1.51 e Å3
1527 reflectionsΔρmin = 1.16 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23969 (5)0.250.49418 (14)0.00331 (14)
Ge20.74763 (5)0.250.33894 (14)0.00322 (14)
Ge30.00505 (5)0.250.40645 (14)0.00369 (14)
Ge40.51221 (5)0.250.60629 (14)0.00323 (14)
Fe10.37602 (5)0.06144 (7)1.04793 (14)0.00330 (13)
Cu10.12607 (4)0.00344 (7)1.04347 (13)0.00516 (12)
O10.3319 (3)0.250.7965 (10)0.0046 (8)
O20.6537 (3)0.250.5758 (10)0.0077 (9)
O30.1133 (4)0.250.6471 (10)0.0053 (8)
O40.2478 (2)0.0836 (4)0.2855 (7)0.0059 (6)
O50.8720 (4)0.250.5694 (10)0.0055 (8)
O60.50325 (19)0.0738 (4)0.7917 (5)0.0060 (6)
O70.7427 (2)0.0804 (4)0.1349 (7)0.0053 (6)
O80.4361 (3)0.250.2801 (5)0.0042 (8)
O90.0027 (2)0.0825 (4)0.2020 (7)0.0071 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0031 (3)0.0044 (3)0.0025 (4)00.0005 (2)0
Ge20.0031 (3)0.0040 (3)0.0026 (3)00.0006 (2)0
Ge30.0032 (3)0.0050 (3)0.0030 (3)00.0007 (2)0
Ge40.0038 (2)0.0043 (3)0.0017 (3)00.0006 (2)0
Fe10.0039 (2)0.0040 (2)0.0021 (3)0.0002 (2)0.00076 (19)0.0001 (2)
Cu10.0032 (2)0.0069 (2)0.0054 (3)0.00046 (17)0.00108 (15)0.00235 (19)
O10.0051 (17)0.0075 (19)0.001 (2)00.0009 (14)0
O20.0055 (19)0.012 (2)0.006 (2)00.0003 (16)0
O30.0044 (17)0.0081 (19)0.004 (2)00.0024 (15)0
O40.0055 (13)0.0091 (15)0.0033 (15)0.0003 (10)0.0023 (10)0.0013 (12)
O50.0047 (17)0.0122 (19)0.000 (2)00.0017 (15)0
O60.0075 (13)0.0047 (14)0.0059 (17)0.0009 (10)0.0010 (10)0.0006 (12)
O70.0043 (12)0.0076 (14)0.0041 (16)0.0012 (10)0.0007 (10)0.0013 (12)
O80.0069 (18)0.0036 (18)0.002 (2)00.0004 (14)0
O90.0041 (12)0.0092 (15)0.0078 (17)0.0012 (11)0.0001 (11)0.0031 (13)
Geometric parameters (Å, º) top
Ge1—O11.747 (4)Fe1—O8v2.0467 (10)
Ge1—O41.748 (3)Fe1—O12.050 (3)
Ge1—O4i1.748 (3)Fe1—O62.0831 (15)
Ge1—O31.769 (5)Cu1—O9vi1.929 (3)
Ge2—O21.702 (5)Cu1—O4v1.931 (3)
Ge2—O71.746 (3)Cu1—O9v1.951 (3)
Ge2—O7i1.746 (3)Cu1—O7iv1.998 (3)
Ge2—O51.777 (4)Cu1—Cu1vii3.0331 (12)
Ge3—O91.737 (3)O1—Fe1i2.050 (3)
Ge3—O9i1.737 (3)O4—Cu1viii1.931 (3)
Ge3—O31.750 (4)O4—Fe1viii2.038 (3)
Ge3—O5ii1.758 (5)O5—Ge3ix1.758 (5)
Ge4—O21.733 (4)O6—Fe1iii1.953 (3)
Ge4—O81.747 (3)O7—Cu1iv1.998 (3)
Ge4—O6i1.756 (3)O7—Fe1iv2.007 (3)
Ge4—O61.756 (3)O8—Fe1viii2.0467 (10)
Fe1—O6iii1.953 (3)O8—Fe1x2.0467 (10)
Fe1—O7iv2.007 (3)O9—Cu1vi1.929 (3)
Fe1—O4v2.038 (3)O9—Cu1viii1.951 (3)
O1—Ge1—O4114.70 (12)O7iv—Fe1—O6107.70 (13)
O1—Ge1—O4i114.70 (12)O4v—Fe1—O6171.55 (12)
O4—Ge1—O4i107.8 (2)O8v—Fe1—O692.84 (15)
O1—Ge1—O398.5 (2)O1—Fe1—O676.44 (15)
O4—Ge1—O3110.40 (13)O9vi—Cu1—O4v177.87 (15)
O4i—Ge1—O3110.40 (13)O9vi—Cu1—O9v77.17 (16)
O2—Ge2—O7113.56 (13)O4v—Cu1—O9v101.79 (13)
O2—Ge2—O7i113.56 (13)O9vi—Cu1—O7iv102.44 (13)
O7—Ge2—O7i111.1 (2)O4v—Cu1—O7iv78.49 (13)
O2—Ge2—O598.8 (2)O9v—Cu1—O7iv176.51 (15)
O7—Ge2—O5109.50 (12)O9vi—Cu1—Cu1vii38.84 (10)
O7i—Ge2—O5109.50 (12)O4v—Cu1—Cu1vii140.09 (10)
O9—Ge3—O9i109.9 (2)O9v—Cu1—Cu1vii38.33 (9)
O9—Ge3—O3108.69 (13)O7iv—Cu1—Cu1vii141.17 (10)
O9i—Ge3—O3108.69 (13)Ge1—O1—Fe1i127.13 (10)
O9—Ge3—O5ii108.94 (13)Ge1—O1—Fe1127.13 (10)
O9i—Ge3—O5ii108.94 (13)Fe1i—O1—Fe1102.7 (2)
O3—Ge3—O5ii111.7 (2)Ge2—O2—Ge4142.6 (3)
O2—Ge4—O8110.6 (2)Ge3—O3—Ge1113.6 (3)
O2—Ge4—O6i99.17 (11)Ge1—O4—Cu1viii125.21 (17)
O8—Ge4—O6i114.25 (11)Ge1—O4—Fe1viii119.79 (17)
O2—Ge4—O699.17 (11)Cu1viii—O4—Fe1viii101.28 (15)
O8—Ge4—O6114.25 (11)Ge3ix—O5—Ge2114.5 (3)
O6i—Ge4—O6116.86 (17)Ge4—O6—Fe1iii128.43 (12)
O6iii—Fe1—O7iv107.02 (12)Ge4—O6—Fe1116.10 (13)
O6iii—Fe1—O4v114.14 (11)Fe1iii—O6—Fe1107.43 (12)
O7iv—Fe1—O4v75.84 (13)Ge2—O7—Cu1iv122.38 (16)
O6iii—Fe1—O8v91.93 (11)Ge2—O7—Fe1iv136.57 (18)
O7iv—Fe1—O8v155.28 (15)Cu1iv—O7—Fe1iv100.09 (15)
O4v—Fe1—O8v82.05 (15)Ge4—O8—Fe1viii128.48 (4)
O6iii—Fe1—O1146.41 (14)Ge4—O8—Fe1x128.48 (4)
O7iv—Fe1—O194.37 (14)Fe1viii—O8—Fe1x102.92 (7)
O4v—Fe1—O195.78 (16)Ge3—O9—Cu1vi125.45 (17)
O8v—Fe1—O176.85 (10)Ge3—O9—Cu1viii126.53 (16)
O6iii—Fe1—O672.57 (12)Cu1vi—O9—Cu1viii102.83 (16)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1; (vii) x, y, z+2; (viii) x, y, z1; (ix) x+1, y, z; (x) x, y+1/2, z1.
(cf5_130) top
Crystal data top
Cu2Fe2Ge4O13Z = 2
Mr = 737.14F(000) = 684
Monoclinic, P21/mDx = 4.931 Mg m3
a = 12.0881 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4914 (5) ŵ = 19.05 mm1
c = 4.8644 (4) ÅT = 130 K
β = 96.137 (9)°Prismatic, pale green
V = 496.44 (6) Å30.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-II
diffractometer
1198 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.056
rotation method, ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1716
Tmin = 0.12, Tmax = 0.25k = 1111
5770 measured reflectionsl = 66
1530 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0229P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.001
wR(F2) = 0.055Δρmax = 1.31 e Å3
S = 1.00Δρmin = 1.17 e Å3
1530 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0032 (3)
Crystal data top
Cu2Fe2Ge4O13V = 496.44 (6) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0881 (9) ŵ = 19.05 mm1
b = 8.4914 (5) ÅT = 130 K
c = 4.8644 (4) Å0.12 × 0.11 × 0.08 mm
β = 96.137 (9)°
Data collection top
STOE IPDS-II
diffractometer
1530 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1198 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.056
5770 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031110 parameters
wR(F2) = 0.0551 restraint
S = 1.00Δρmax = 1.31 e Å3
1530 reflectionsΔρmin = 1.17 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23974 (5)0.250.49397 (14)0.00374 (14)
Ge20.74765 (5)0.250.33896 (14)0.00366 (14)
Ge30.00507 (5)0.250.40634 (14)0.00390 (14)
Ge40.51222 (5)0.250.60604 (14)0.00335 (14)
Fe10.37605 (5)0.06145 (7)1.04815 (14)0.00354 (12)
Cu10.12593 (4)0.00340 (7)1.04331 (13)0.00600 (12)
O10.3324 (3)0.250.7953 (10)0.0053 (8)
O20.6538 (4)0.250.5741 (10)0.0095 (9)
O30.1129 (3)0.250.6473 (10)0.0050 (8)
O40.2479 (2)0.0836 (4)0.2866 (7)0.0056 (6)
O50.8719 (2)0.250.5683 (9)0.0067 (8)
O60.5033 (2)0.0742 (4)0.7915 (7)0.0063 (6)
O70.7423 (2)0.0804 (4)0.1341 (7)0.0060 (6)
O80.4362 (3)0.250.2811 (9)0.0053 (8)
O90.0027 (2)0.0830 (4)0.2017 (7)0.0088 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0039 (3)0.0046 (3)0.0028 (3)00.0004 (2)0
Ge20.0034 (3)0.0047 (3)0.0030 (3)00.0007 (2)0
Ge30.0026 (3)0.0059 (3)0.0033 (3)00.0008 (2)0
Ge40.0036 (2)0.0044 (3)0.0020 (3)00.0001 (2)0
Fe10.0036 (2)0.0047 (2)0.0024 (3)0.0004 (2)0.00057 (18)0.0001 (2)
Cu10.0035 (2)0.0085 (2)0.0060 (2)0.00069 (17)0.00084 (15)0.00336 (19)
O10.0048 (17)0.0056 (18)0.006 (2)00.0005 (15)0
O20.0078 (19)0.012 (2)0.009 (2)00.0016 (16)0
O30.0054 (17)0.0100 (19)0.000 (2)00.0032 (14)0
O40.0025 (12)0.0080 (14)0.0061 (16)0.0023 (10)0.0004 (10)0.0010 (12)
O50.0040 (17)0.0127 (18)0.004 (2)00.0017 (15)0
O60.0063 (13)0.0081 (14)0.0048 (16)0.0003 (10)0.0019 (10)0.0001 (12)
O70.0051 (12)0.0065 (14)0.0071 (16)0.0001 (10)0.0030 (10)0.0032 (12)
O80.0076 (18)0.0071 (18)0.001 (2)00.0006 (14)0
O90.0043 (13)0.0130 (15)0.0088 (17)0.0009 (11)0.0004 (11)0.0053 (13)
Geometric parameters (Å, º) top
Ge1—O41.745 (3)Ge4—O6i1.754 (3)
Ge1—O4i1.745 (3)Ge4—O61.754 (3)
Ge1—O11.747 (4)Fe1—O6iii1.954 (3)
Ge1—O31.775 (4)Fe1—O7iv2.003 (3)
Ge2—O21.695 (5)Fe1—O4v2.041 (3)
Ge2—O71.748 (3)Fe1—O8v2.049 (3)
Ge2—O7i1.748 (3)Fe1—O12.053 (3)
Ge2—O51.773 (4)Fe1—O62.085 (3)
Ge3—O91.734 (3)Cu1—O9vi1.928 (3)
Ge3—O9i1.734 (3)Cu1—O4v1.935 (3)
Ge3—O31.747 (4)Cu1—O9v1.951 (3)
Ge3—O5ii1.7559 (19)Cu1—O7iv2.001 (3)
Ge4—O21.735 (4)Cu1—Cu1vii3.0292 (10)
Ge4—O81.741 (4)
O4—Ge1—O4i108.1 (2)O6i—Ge4—O6116.7 (2)
O4—Ge1—O1114.48 (12)O6iii—Fe1—O7iv106.84 (12)
O4i—Ge1—O1114.48 (12)O6iii—Fe1—O4v114.03 (13)
O4—Ge1—O3110.33 (12)O7iv—Fe1—O4v75.95 (13)
O4i—Ge1—O3110.33 (12)O6iii—Fe1—O8v91.95 (13)
O1—Ge1—O398.8 (2)O7iv—Fe1—O8v155.36 (15)
O2—Ge2—O7113.46 (13)O4v—Fe1—O8v81.94 (15)
O2—Ge2—O7i113.46 (13)O6iii—Fe1—O1146.26 (15)
O7—Ge2—O7i110.9 (2)O7iv—Fe1—O194.49 (13)
O2—Ge2—O599.11 (19)O4v—Fe1—O196.11 (15)
O7—Ge2—O5109.63 (11)O8v—Fe1—O177.01 (13)
O7i—Ge2—O5109.63 (11)O6iii—Fe1—O672.70 (15)
O9—Ge3—O9i109.7 (2)O7iv—Fe1—O6107.68 (13)
O9—Ge3—O3108.83 (13)O4v—Fe1—O6171.50 (12)
O9i—Ge3—O3108.83 (13)O8v—Fe1—O692.86 (15)
O9—Ge3—O5ii108.92 (13)O1—Fe1—O676.09 (15)
O9i—Ge3—O5ii108.92 (13)O9vi—Cu1—O4v178.09 (14)
O3—Ge3—O5ii111.6 (2)O9vi—Cu1—O9v77.31 (16)
O2—Ge4—O8110.4 (2)O4v—Cu1—O9v101.65 (13)
O2—Ge4—O6i99.31 (13)O9vi—Cu1—O7iv102.52 (13)
O8—Ge4—O6i114.28 (11)O4v—Cu1—O7iv78.42 (13)
O2—Ge4—O699.31 (13)O9v—Cu1—O7iv176.50 (15)
O8—Ge4—O6114.28 (11)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1; (vii) x, y, z+2.
(cf5_170) top
Crystal data top
Cu2Fe2Ge4O13Z = 2
Mr = 737.14F(000) = 684
Monoclinic, P21/mDx = 4.962 Mg m3
a = 12.0087 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4931 (5) ŵ = 19.17 mm1
c = 4.8657 (4) ÅT = 170 K
β = 96.139 (9)°Prismatic, pale green
V = 493.41 (6) Å30.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-II
diffractometer
1171 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.057
rotation method, ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1616
Tmin = 0.12, Tmax = 0.22k = 1111
5729 measured reflectionsl = 66
1518 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0301P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.001
wR(F2) = 0.062Δρmax = 1.03 e Å3
S = 0.98Δρmin = 1.15 e Å3
1518 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0058 (4)
Crystal data top
Cu2Fe2Ge4O13V = 493.41 (6) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0087 (9) ŵ = 19.17 mm1
b = 8.4931 (5) ÅT = 170 K
c = 4.8657 (4) Å0.12 × 0.11 × 0.08 mm
β = 96.139 (9)°
Data collection top
STOE IPDS-II
diffractometer
1518 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1171 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.22Rint = 0.057
5729 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031110 parameters
wR(F2) = 0.0623 restraints
S = 0.98Δρmax = 1.03 e Å3
1518 reflectionsΔρmin = 1.15 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23978 (5)0.250.49373 (15)0.00453 (15)
Ge20.74752 (5)0.250.33876 (15)0.00442 (15)
Ge30.00516 (5)0.250.40619 (15)0.00488 (15)
Ge40.51223 (5)0.250.60641 (14)0.00396 (15)
Fe10.37589 (5)0.06134 (8)1.04797 (15)0.00438 (14)
Cu10.12583 (4)0.00325 (8)1.04329 (13)0.00727 (13)
O10.3320 (4)0.250.7961 (10)0.0075 (9)
O20.65451 (18)0.250.5741 (11)0.0084 (9)
O30.1131 (4)0.250.6455 (11)0.0074 (9)
O40.2480 (3)0.0840 (4)0.2860 (7)0.0069 (6)
O50.8715 (3)0.250.5699 (9)0.0080 (9)
O60.5037 (3)0.0752 (4)0.7928 (7)0.0056 (6)
O70.7426 (3)0.0805 (4)0.1344 (8)0.0068 (6)
O80.4357 (3)0.250.2807 (6)0.0054 (8)
O90.0026 (3)0.0829 (4)0.2032 (8)0.0111 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0033 (3)0.0059 (3)0.0043 (4)00.0003 (2)0
Ge20.0032 (3)0.0055 (3)0.0045 (3)00.0001 (2)0
Ge30.0035 (3)0.0077 (3)0.0034 (4)00.0005 (2)0
Ge40.0044 (3)0.0051 (3)0.0023 (3)00.0002 (2)0
Fe10.0039 (2)0.0058 (2)0.0035 (3)0.0001 (2)0.0006 (2)0.0001 (3)
Cu10.0037 (2)0.0105 (2)0.0076 (3)0.00104 (18)0.00051 (17)0.0034 (2)
O10.0088 (19)0.009 (2)0.005 (2)00.0011 (16)0
O20.007 (2)0.012 (2)0.007 (2)00.0044 (16)0
O30.0052 (19)0.011 (2)0.005 (2)00.0010 (16)0
O40.0048 (13)0.0098 (16)0.0063 (17)0.0013 (11)0.0018 (11)0.0015 (13)
O50.0033 (18)0.013 (2)0.007 (3)00.0003 (16)0
O60.0043 (13)0.0064 (14)0.0064 (17)0.0014 (10)0.0018 (11)0.0015 (12)
O70.0072 (13)0.0047 (14)0.0086 (17)0.0005 (10)0.0010 (11)0.0024 (12)
O80.009 (2)0.0050 (19)0.002 (2)00.0001 (15)0
O90.0045 (14)0.0159 (17)0.0122 (19)0.0020 (12)0.0017 (12)0.0076 (14)
Geometric parameters (Å, º) top
Ge1—O41.744 (3)Ge4—O81.7451 (19)
Ge1—O4i1.744 (3)Ge4—O6i1.749 (3)
Ge1—O11.744 (5)Ge4—O61.749 (3)
Ge1—O31.761 (5)Fe1—O6iii1.948 (3)
Ge2—O21.683 (4)Fe1—O7iv1.998 (3)
Ge2—O71.747 (3)Fe1—O4v2.030 (3)
Ge2—O7i1.747 (3)Fe1—O8v2.0472 (14)
Ge2—O51.768 (5)Fe1—O12.052 (3)
Ge3—O9i1.731 (3)Fe1—O62.078 (3)
Ge3—O91.731 (3)Cu1—O9vi1.925 (3)
Ge3—O31.737 (5)Cu1—O4v1.930 (3)
Ge3—O5ii1.755 (4)Cu1—O9v1.944 (4)
Ge4—O21.7325 (19)Cu1—O7iv1.992 (3)
O4—Ge1—O4i107.9 (2)O6i—Ge4—O6116.2 (2)
O4—Ge1—O1114.76 (13)O6iii—Fe1—O7iv106.30 (13)
O4i—Ge1—O1114.76 (13)O6iii—Fe1—O4v113.85 (14)
O4—Ge1—O3110.35 (13)O7iv—Fe1—O4v76.36 (14)
O4i—Ge1—O3110.35 (13)O6iii—Fe1—O8v92.54 (12)
O1—Ge1—O398.4 (2)O7iv—Fe1—O8v155.29 (16)
O2—Ge2—O7113.74 (13)O4v—Fe1—O8v81.51 (16)
O2—Ge2—O7i113.74 (13)O6iii—Fe1—O1146.58 (17)
O7—Ge2—O7i111.0 (2)O7iv—Fe1—O194.61 (14)
O2—Ge2—O598.18 (18)O4v—Fe1—O196.04 (17)
O7—Ge2—O5109.71 (12)O8v—Fe1—O176.80 (12)
O7i—Ge2—O5109.71 (12)O6iii—Fe1—O672.96 (15)
O9i—Ge3—O9110.1 (3)O7iv—Fe1—O6107.75 (14)
O9i—Ge3—O3108.64 (14)O4v—Fe1—O6171.15 (12)
O9—Ge3—O3108.64 (14)O8v—Fe1—O692.79 (16)
O9i—Ge3—O5ii109.03 (14)O1—Fe1—O675.99 (16)
O9—Ge3—O5ii109.03 (14)O9vi—Cu1—O4v177.99 (16)
O3—Ge3—O5ii111.4 (2)O9vi—Cu1—O9v77.98 (17)
O2—Ge4—O8110.3 (2)O4v—Cu1—O9v101.20 (14)
O2—Ge4—O6i99.21 (14)O9vi—Cu1—O7iv101.90 (14)
O8—Ge4—O6i114.62 (12)O4v—Cu1—O7iv78.81 (14)
O2—Ge4—O699.21 (14)O9v—Cu1—O7iv176.68 (16)
O8—Ge4—O6114.62 (12)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf5_200) top
Crystal data top
Cu2Fe2Ge4O13Z = 2
Mr = 737.14F(000) = 684
Monoclinic, P21/mDx = 4.928 Mg m3
a = 12.0859 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4947 (5) ŵ = 19.04 mm1
c = 4.8667 (4) ÅT = 200 K
β = 96.143 (9)°Prismatic, pale green
V = 496.78 (6) Å30.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-II
diffractometer
1196 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.059
rotation method, ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1716
Tmin = 0.12, Tmax = 0.25k = 1111
5779 measured reflectionsl = 66
1530 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0234P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.031(Δ/σ)max = 0.001
wR(F2) = 0.055Δρmax = 0.92 e Å3
S = 0.97Δρmin = 1.09 e Å3
1530 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0063 (4)
Crystal data top
Cu2Fe2Ge4O13V = 496.78 (6) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0859 (9) ŵ = 19.04 mm1
b = 8.4947 (5) ÅT = 200 K
c = 4.8667 (4) Å0.12 × 0.11 × 0.08 mm
β = 96.143 (9)°
Data collection top
STOE IPDS-II
diffractometer
1530 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1196 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.059
5779 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031110 parameters
wR(F2) = 0.0554 restraints
S = 0.97Δρmax = 0.92 e Å3
1530 reflectionsΔρmin = 1.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23976 (5)0.250.49366 (14)0.00450 (14)
Ge20.74750 (5)0.250.33851 (14)0.00461 (14)
Ge30.00513 (5)0.250.40630 (14)0.00530 (14)
Ge40.51223 (5)0.250.60629 (13)0.00416 (14)
Fe10.37604 (5)0.06131 (7)1.04822 (14)0.00478 (13)
Cu10.12574 (4)0.00325 (7)1.04322 (13)0.00795 (12)
O10.3328 (3)0.250.7953 (10)0.0075 (8)
O20.6536 (3)0.250.5744 (10)0.0084 (8)
O30.1131 (4)0.250.6456 (10)0.0068 (8)
O40.2477 (2)0.0837 (3)0.2854 (7)0.0069 (6)
O50.8724 (4)0.250.5695 (10)0.0070 (8)
O60.5034 (2)0.0749 (2)0.7923 (6)0.0061 (6)
O70.7428 (2)0.0805 (4)0.1348 (7)0.0074 (6)
O80.4358 (3)0.250.2810 (6)0.0070 (8)
O90.00267 (17)0.0827 (3)0.2031 (6)0.0115 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0041 (3)0.0063 (3)0.0031 (3)00.0002 (2)0
Ge20.0043 (3)0.0056 (3)0.0041 (3)00.0009 (2)0
Ge30.0036 (3)0.0080 (3)0.0044 (3)00.0004 (2)0
Ge40.0048 (2)0.0052 (3)0.0023 (3)00.0001 (2)0
Fe10.0044 (2)0.0059 (2)0.0041 (3)0.0002 (2)0.00075 (19)0.0003 (2)
Cu10.0043 (2)0.0112 (2)0.0083 (3)0.00087 (17)0.00064 (16)0.0042 (2)
O10.0087 (18)0.0068 (18)0.007 (2)00.0002 (15)0
O20.0070 (19)0.013 (2)0.006 (2)00.0047 (15)0
O30.0072 (18)0.0107 (19)0.003 (2)00.0018 (14)0
O40.0060 (12)0.0085 (14)0.0065 (16)0.0022 (10)0.0017 (10)0.0005 (12)
O50.0062 (16)0.0120 (18)0.002 (2)00.0008 (14)0
O60.0073 (13)0.0056 (13)0.0059 (16)0.0017 (10)0.0030 (10)0.0006 (11)
O70.0068 (12)0.0089 (14)0.0066 (16)0.0012 (10)0.0013 (10)0.0016 (12)
O80.0099 (19)0.0053 (18)0.005 (2)00.0007 (15)0
O90.0051 (13)0.0168 (16)0.0119 (18)0.0013 (11)0.0016 (11)0.0091 (14)
Geometric parameters (Å, º) top
Ge1—O41.747 (3)Ge4—O81.7455 (19)
Ge1—O4i1.747 (3)Ge4—O6i1.7505 (17)
Ge1—O11.751 (4)Ge4—O61.7505 (17)
Ge1—O31.770 (5)Fe1—O6iii1.955 (2)
Ge2—O21.698 (5)Fe1—O7iv2.008 (3)
Ge2—O71.746 (3)Fe1—O4v2.039 (3)
Ge2—O7i1.746 (3)Fe1—O8v2.0491 (13)
Ge2—O51.783 (4)Fe1—O12.054 (3)
Ge3—O91.7332 (17)Fe1—O62.084 (3)
Ge3—O9i1.7332 (17)Cu1—O9vi1.930 (3)
Ge3—O31.744 (4)Cu1—O4v1.932 (3)
Ge3—O5ii1.754 (5)Cu1—O9v1.951 (3)
Ge4—O21.732 (4)Cu1—O7iv2.000 (3)
O4—Ge1—O4i107.9 (2)O6i—Ge4—O6116.4 (2)
O4—Ge1—O1114.61 (12)O6iii—Fe1—O7iv106.76 (11)
O4i—Ge1—O1114.61 (12)O6iii—Fe1—O4v114.24 (12)
O4—Ge1—O3110.23 (12)O7iv—Fe1—O4v75.86 (13)
O4i—Ge1—O3110.23 (12)O6iii—Fe1—O8v92.28 (11)
O1—Ge1—O399.0 (2)O7iv—Fe1—O8v155.15 (15)
O2—Ge2—O7113.60 (13)O4v—Fe1—O8v81.87 (15)
O2—Ge2—O7i113.60 (13)O6iii—Fe1—O1146.17 (14)
O7—Ge2—O7i111.1 (2)O7iv—Fe1—O194.49 (13)
O2—Ge2—O598.9 (2)O4v—Fe1—O196.09 (16)
O7—Ge2—O5109.40 (13)O8v—Fe1—O176.88 (11)
O7i—Ge2—O5109.40 (13)O6iii—Fe1—O672.74 (10)
O9—Ge3—O9i110.1 (2)O7iv—Fe1—O6107.88 (13)
O9—Ge3—O3108.56 (10)O4v—Fe1—O6171.21 (10)
O9i—Ge3—O3108.56 (10)O8v—Fe1—O692.75 (15)
O9—Ge3—O5ii108.98 (12)O1—Fe1—O675.85 (14)
O9i—Ge3—O5ii108.98 (12)O9vi—Cu1—O4v177.99 (14)
O3—Ge3—O5ii111.6 (2)O9vi—Cu1—O9v77.61 (9)
O2—Ge4—O8110.5 (2)O4v—Cu1—O9v101.59 (11)
O2—Ge4—O6i99.32 (13)O9vi—Cu1—O7iv102.20 (12)
O8—Ge4—O6i114.41 (11)O4v—Cu1—O7iv78.48 (13)
O2—Ge4—O699.32 (13)O9v—Cu1—O7iv176.70 (15)
O8—Ge4—O6114.41 (11)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf5_250) top
Crystal data top
Cu2Fe2Ge4O13Z = 2
Mr = 737.14F(000) = 684
Monoclinic, P21/mDx = 4.924 Mg m3
a = 12.0858 (9) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4979 (5) ŵ = 19.02 mm1
c = 4.8691 (4) ÅT = 250 K
β = 96.161 (9)°Prismatic, pale green
V = 497.19 (6) Å30.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-II
diffractometer
1172 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.065
rotation method, ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1716
Tmin = 0.12, Tmax = 0.25k = 1111
5751 measured reflectionsl = 66
1523 independent reflections
Refinement top
Refinement on F28 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0231P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.033(Δ/σ)max = 0.002
wR(F2) = 0.059Δρmax = 1.38 e Å3
S = 1.00Δρmin = 1.09 e Å3
1523 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0057 (4)
Crystal data top
Cu2Fe2Ge4O13V = 497.19 (6) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0858 (9) ŵ = 19.02 mm1
b = 8.4979 (5) ÅT = 250 K
c = 4.8691 (4) Å0.12 × 0.11 × 0.08 mm
β = 96.161 (9)°
Data collection top
STOE IPDS-II
diffractometer
1523 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1172 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.065
5751 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033110 parameters
wR(F2) = 0.0598 restraints
S = 1.00Δρmax = 1.38 e Å3
1523 reflectionsΔρmin = 1.09 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23989 (5)0.250.49361 (15)0.00497 (15)
Ge20.74750 (5)0.250.33802 (15)0.00480 (15)
Ge30.00516 (5)0.250.40595 (15)0.00585 (15)
Ge40.51221 (5)0.250.60630 (15)0.00446 (15)
Fe10.37598 (5)0.06137 (7)1.04807 (15)0.00472 (13)
Cu10.12558 (4)0.00339 (8)1.04322 (14)0.00871 (13)
O10.3324 (3)0.250.7953 (11)0.0067 (9)
O20.6535 (3)0.250.5733 (8)0.0127 (10)
O30.1129 (4)0.250.6457 (11)0.0092 (9)
O40.24758 (19)0.0836 (4)0.2850 (6)0.0071 (6)
O50.8720 (2)0.250.5684 (9)0.0072 (9)
O60.5034 (2)0.0747 (3)0.7919 (7)0.0078 (6)
O70.74258 (13)0.0805 (3)0.1336 (6)0.0086 (6)
O80.4354 (4)0.250.2817 (10)0.0066 (9)
O90.0025 (3)0.0831 (3)0.2023 (7)0.0130 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0048 (3)0.0059 (3)0.0040 (4)00.0002 (2)0
Ge20.0047 (3)0.0052 (3)0.0047 (4)00.0014 (2)0
Ge30.0044 (3)0.0086 (3)0.0047 (4)00.0011 (2)0
Ge40.0055 (3)0.0053 (3)0.0026 (4)00.0004 (2)0
Fe10.0053 (2)0.0053 (2)0.0037 (3)0.0003 (2)0.0012 (2)0.0005 (3)
Cu10.0051 (2)0.0121 (2)0.0090 (3)0.00076 (18)0.00115 (17)0.0050 (2)
O10.0072 (17)0.0061 (19)0.006 (2)00.0005 (16)0
O20.0043 (19)0.021 (2)0.013 (3)00.0022 (17)0
O30.0064 (19)0.014 (2)0.007 (3)00.0038 (16)0
O40.0064 (13)0.0080 (15)0.0073 (18)0.0029 (10)0.0022 (11)0.0010 (12)
O50.0066 (17)0.014 (2)0.000 (2)00.0009 (15)0
O60.0080 (13)0.0080 (15)0.0076 (18)0.0012 (11)0.0024 (11)0.0012 (13)
O70.0076 (13)0.0094 (15)0.0091 (18)0.0007 (11)0.0021 (11)0.0045 (13)
O80.0099 (19)0.010 (2)0.000 (2)00.0009 (15)0
O90.0073 (14)0.0177 (18)0.014 (2)0.0010 (12)0.0014 (12)0.0127 (15)
Geometric parameters (Å, º) top
Ge1—O11.748 (5)Ge4—O81.745 (5)
Ge1—O41.749 (3)Ge4—O6i1.751 (4)
Ge1—O4i1.749 (3)Ge4—O61.751 (4)
Ge1—O31.774 (5)Fe1—O6iii1.956 (3)
Ge2—O21.698 (4)Fe1—O7iv2.004 (4)
Ge2—O71.748 (3)Fe1—O4v2.039 (4)
Ge2—O7i1.748 (3)Fe1—O8v2.050 (3)
Ge2—O51.777 (4)Fe1—O12.055 (3)
Ge3—O91.733 (4)Fe1—O62.086 (3)
Ge3—O9i1.733 (4)Cu1—O9vi1.928 (3)
Ge3—O31.744 (5)Cu1—O4v1.932 (3)
Ge3—O5ii1.756 (4)Cu1—O9v1.948 (3)
Ge4—O21.733 (3)Cu1—O7iv2.001 (3)
O1—Ge1—O4114.76 (13)O6iii—Fe1—O4v114.15 (13)
O1—Ge1—O4i114.76 (13)O7iv—Fe1—O4v75.76 (10)
O4—Ge1—O4i107.9 (2)O6iii—Fe1—O8v92.26 (14)
O1—Ge1—O398.8 (2)O7iv—Fe1—O8v155.00 (13)
O4—Ge1—O3110.15 (11)O4v—Fe1—O8v81.73 (16)
O4i—Ge1—O3110.15 (11)O6iii—Fe1—O1146.31 (15)
O2—Ge2—O7113.58 (11)O7iv—Fe1—O194.57 (14)
O2—Ge2—O7i113.58 (10)O4v—Fe1—O196.02 (16)
O7—Ge2—O7i111.0 (2)O8v—Fe1—O176.97 (14)
O2—Ge2—O598.98 (19)O6iii—Fe1—O672.79 (11)
O7—Ge2—O5109.52 (10)O7iv—Fe1—O6107.91 (11)
O7i—Ge2—O5109.52 (10)O4v—Fe1—O6171.30 (11)
O9—Ge3—O9i109.9 (3)O8v—Fe1—O692.99 (16)
O9—Ge3—O3108.61 (14)O1—Fe1—O675.97 (15)
O9i—Ge3—O3108.61 (14)O9vi—Cu1—O4v178.07 (15)
O9—Ge3—O5ii109.03 (14)O9vi—Cu1—O9v77.65 (11)
O9i—Ge3—O5ii109.03 (14)O4v—Cu1—O9v101.56 (10)
O3—Ge3—O5ii111.7 (2)O9vi—Cu1—O7iv102.41 (10)
O2—Ge4—O8110.5 (2)O4v—Cu1—O7iv78.27 (8)
O2—Ge4—O6i99.38 (12)O9v—Cu1—O7iv176.58 (17)
O8—Ge4—O6i114.29 (12)O9vi—Cu1—Cu1vii39.07 (8)
O2—Ge4—O699.38 (12)O4v—Cu1—Cu1vii140.12 (8)
O8—Ge4—O6114.29 (12)O9v—Cu1—Cu1vii38.59 (8)
O6i—Ge4—O6116.5 (2)O7iv—Cu1—Cu1vii141.37 (7)
O6iii—Fe1—O7iv106.69 (12)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1; (vii) x, y, z+2.
(cf5_290) top
Crystal data top
Cu2Fe2Ge4O13Z = 2
Mr = 737.14F(000) = 684
Monoclinic, P21/mDx = 4.922 Mg m3
a = 12.0861 (12) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5008 (8) ŵ = 19.00 mm1
c = 4.8704 (5) ÅT = 290 K
β = 96.167 (9)°Prismatic, pale green
V = 497.50 (9) Å30.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-II
diffractometer
1256 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.055
rotation method, ω scansθmax = 30.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1716
Tmin = 0.12, Tmax = 0.25k = 1111
7188 measured reflectionsl = 66
1524 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0282P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.001
wR(F2) = 0.054Δρmax = 0.91 e Å3
S = 1.02Δρmin = 1.04 e Å3
1524 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0179 (7)
Crystal data top
Cu2Fe2Ge4O13V = 497.50 (9) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0861 (12) ŵ = 19.00 mm1
b = 8.5008 (8) ÅT = 290 K
c = 4.8704 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.167 (9)°
Data collection top
STOE IPDS-II
diffractometer
1524 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1256 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.055
7188 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026110 parameters
wR(F2) = 0.0544 restraints
S = 1.02Δρmax = 0.91 e Å3
1524 reflectionsΔρmin = 1.04 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23992 (4)0.250.49323 (11)0.00581 (12)
Ge20.74747 (4)0.250.33797 (11)0.00590 (12)
Ge30.00509 (4)0.250.40560 (11)0.00689 (12)
Ge40.51227 (4)0.250.60648 (11)0.00523 (12)
Fe10.37596 (4)0.06134 (6)1.04827 (11)0.00578 (11)
Cu10.12563 (4)0.00343 (6)1.04340 (10)0.01038 (11)
O10.3322 (3)0.250.7946 (6)0.0081 (7)
O20.6532 (3)0.250.5715 (9)0.0132 (7)
O30.1132 (3)0.250.6456 (8)0.0096 (7)
O40.24766 (17)0.0836 (3)0.2849 (5)0.0091 (5)
O50.8718 (2)0.250.5663 (7)0.0095 (7)
O60.5034 (2)0.0750 (2)0.7918 (5)0.0087 (5)
O70.7426 (2)0.0802 (3)0.1335 (6)0.0094 (5)
O80.4360 (3)0.250.2815 (7)0.0067 (6)
O90.0029 (2)0.0832 (3)0.2017 (6)0.0143 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0050 (2)0.0079 (2)0.0044 (3)00.00011 (18)0
Ge20.0052 (2)0.0070 (2)0.0056 (2)00.00095 (17)0
Ge30.0042 (2)0.0105 (2)0.0060 (3)00.00068 (18)0
Ge40.0055 (2)0.0066 (2)0.0035 (2)00.00021 (17)0
Fe10.0052 (2)0.00690 (19)0.0054 (2)0.00022 (16)0.00109 (16)0.00021 (18)
Cu10.00548 (18)0.0143 (2)0.0114 (2)0.00102 (14)0.00125 (14)0.00620 (17)
O10.0085 (15)0.0069 (14)0.0085 (17)00.0004 (13)0
O20.0070 (16)0.0234 (19)0.0099 (19)00.0039 (14)0
O30.0076 (15)0.0160 (16)0.0056 (17)00.0021 (13)0
O40.0058 (10)0.0133 (12)0.0087 (12)0.0030 (8)0.0025 (9)0.0021 (10)
O50.0060 (14)0.0156 (16)0.0068 (17)00.0005 (13)0
O60.0091 (11)0.0083 (11)0.0091 (13)0.0020 (8)0.0028 (9)0.0035 (9)
O70.0061 (10)0.0107 (11)0.0116 (13)0.0012 (8)0.0018 (9)0.0029 (10)
O80.0087 (15)0.0093 (15)0.0016 (15)00.0014 (12)0
O90.0074 (11)0.0204 (14)0.0151 (14)0.0003 (10)0.0008 (10)0.0106 (11)
Geometric parameters (Å, º) top
Ge1—O11.746 (3)Ge4—O81.744 (3)
Ge1—O41.750 (2)Ge4—O6i1.749 (3)
Ge1—O4i1.750 (2)Ge4—O61.749 (3)
Ge1—O31.772 (4)Fe1—O6iii1.957 (2)
Ge2—O21.694 (4)Fe1—O7iv2.004 (3)
Ge2—O71.751 (3)Fe1—O4v2.038 (3)
Ge2—O7i1.751 (3)Fe1—O8v2.052 (2)
Ge2—O51.771 (3)Fe1—O12.059 (3)
Ge3—O91.733 (3)Fe1—O62.088 (3)
Ge3—O9i1.733 (3)Cu1—O9vi1.925 (3)
Ge3—O31.747 (4)Cu1—O4v1.932 (3)
Ge3—O5ii1.7541 (19)Cu1—O9v1.951 (3)
Ge4—O21.730 (4)Cu1—O7iv1.999 (3)
O1—Ge1—O4114.75 (9)O6i—Ge4—O6116.51 (18)
O1—Ge1—O4i114.75 (9)O6iii—Fe1—O7iv106.69 (10)
O4—Ge1—O4i107.94 (18)O6iii—Fe1—O4v114.17 (10)
O1—Ge1—O398.67 (18)O7iv—Fe1—O4v75.74 (10)
O4—Ge1—O3110.21 (10)O6iii—Fe1—O8v92.21 (10)
O4i—Ge1—O3110.21 (10)O7iv—Fe1—O8v155.17 (13)
O2—Ge2—O7113.46 (11)O4v—Fe1—O8v81.95 (12)
O2—Ge2—O7i113.46 (11)O6iii—Fe1—O1146.34 (12)
O7—Ge2—O7i111.03 (18)O7iv—Fe1—O194.44 (10)
O2—Ge2—O599.50 (16)O4v—Fe1—O196.04 (13)
O7—Ge2—O5109.35 (9)O8v—Fe1—O177.06 (9)
O7i—Ge2—O5109.35 (9)O6iii—Fe1—O672.85 (9)
O9—Ge3—O9i109.8 (2)O7iv—Fe1—O6107.93 (11)
O9—Ge3—O3108.75 (11)O4v—Fe1—O6171.22 (9)
O9i—Ge3—O3108.75 (11)O8v—Fe1—O692.75 (13)
O9—Ge3—O5ii108.77 (11)O1—Fe1—O675.88 (12)
O9i—Ge3—O5ii108.77 (11)O9vi—Cu1—O4v178.10 (13)
O3—Ge3—O5ii111.97 (18)O9vi—Cu1—O9v77.56 (13)
O2—Ge4—O8109.90 (19)O4v—Cu1—O9v101.72 (11)
O2—Ge4—O6i99.58 (11)O9vi—Cu1—O7iv102.37 (11)
O8—Ge4—O6i114.37 (9)O4v—Cu1—O7iv78.24 (11)
O2—Ge4—O699.58 (11)O9v—Cu1—O7iv176.43 (13)
O8—Ge4—O6114.37 (9)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cufege) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.920 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.088 (2) ÅCell parameters from 4906 reflections
b = 8.5019 (9) Åθ = 2.9–28.1°
c = 4.8703 (8) ŵ = 18.99 mm1
β = 96.17 (2)°T = 298 K
V = 497.61 (13) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
1087 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.039
rotation method, ϕ scansθmax = 28.1°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1516
Tmin = 0.12, Tmax = 0.25k = 1111
4906 measured reflectionsl = 66
1267 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0291P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.021(Δ/σ)max = 0.001
wR(F2) = 0.048Δρmax = 1.45 e Å3
S = 1.02Δρmin = 1.59 e Å3
1267 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
107 parametersExtinction coefficient: 0.0332 (9)
Crystal data top
Cu2Fe2Ge4O13V = 497.61 (13) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.088 (2) ŵ = 18.99 mm1
b = 8.5019 (9) ÅT = 298 K
c = 4.8703 (8) Å0.12 × 0.11 × 0.08 mm
β = 96.17 (2)°
Data collection top
STOE IPDS-I
diffractometer
1267 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
1087 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.039
4906 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021107 parameters
wR(F2) = 0.0480 restraints
S = 1.02Δρmax = 1.45 e Å3
1267 reflectionsΔρmin = 1.59 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23997 (3)0.250.49324 (9)0.00252 (11)
Ge20.74733 (4)0.250.33753 (9)0.00285 (12)
Ge30.00505 (3)0.250.40568 (9)0.00396 (12)
Ge40.51225 (3)0.250.60653 (9)0.00236 (11)*
Fe10.37588 (3)0.06131 (5)1.04818 (9)0.00279 (12)
Cu10.12561 (3)0.00333 (5)1.04327 (9)0.00796 (11)
O10.3310 (2)0.250.7954 (6)0.0042 (6)
O20.6530 (3)0.250.5723 (7)0.0112 (7)
O30.1132 (3)0.250.6456 (7)0.0065 (6)
O40.24768 (17)0.0838 (3)0.2847 (5)0.0061 (4)
O50.8725 (2)0.250.5667 (7)0.0064 (6)
O60.50347 (17)0.0745 (2)0.7919 (4)0.0052 (4)
O70.74245 (18)0.0803 (3)0.1347 (5)0.0068 (4)
O80.4356 (2)0.250.2820 (6)0.0048 (6)
O90.00298 (18)0.0829 (3)0.2022 (5)0.0120 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0027 (2)0.0040 (2)0.0006 (2)00.00080 (16)0
Ge20.0031 (2)0.0036 (2)0.0018 (2)00.00012 (16)0
Ge30.0024 (2)0.0070 (2)0.0024 (2)00.00002 (17)0
Fe10.0033 (2)0.0032 (2)0.0019 (2)0.00020 (14)0.00004 (15)0.00009 (16)
Cu10.00344 (18)0.0118 (2)0.0086 (2)0.00106 (14)0.00057 (13)0.00667 (16)
O10.0066 (14)0.0035 (14)0.0023 (14)00.0011 (11)0
O20.0103 (16)0.0187 (18)0.0051 (16)00.0033 (13)0
O30.0031 (13)0.0110 (15)0.0051 (15)00.0013 (11)0
O40.0056 (10)0.0072 (11)0.0054 (10)0.0005 (8)0.0006 (8)0.0039 (9)
O50.0031 (13)0.0118 (16)0.0042 (15)00.0001 (11)0
O60.0069 (10)0.0052 (10)0.0040 (10)0.0016 (8)0.0026 (8)0.0026 (9)
O70.0064 (10)0.0055 (10)0.0087 (11)0.0009 (8)0.0023 (8)0.0031 (9)
O80.0037 (14)0.0062 (14)0.0041 (15)00.0019 (11)0
O90.0059 (10)0.0182 (13)0.0119 (12)0.0004 (9)0.0009 (9)0.0110 (11)
Geometric parameters (Å, º) top
Ge1—O11.740 (3)Ge4—O81.744 (3)
Ge1—O41.748 (2)Ge4—O6i1.753 (2)
Ge1—O4i1.748 (2)Ge4—O61.753 (2)
Ge1—O31.772 (3)Fe1—O6iii1.955 (2)
Ge2—O21.699 (3)Fe1—O7iv2.004 (2)
Ge2—O71.746 (2)Fe1—O4v2.037 (2)
Ge2—O7i1.746 (2)Fe1—O8v2.0529 (19)
Ge2—O51.781 (3)Fe1—O12.0592 (19)
Ge3—O91.734 (2)Fe1—O62.089 (2)
Ge3—O9i1.734 (2)Cu1—O9vi1.925 (2)
Ge3—O31.747 (3)Cu1—O4v1.933 (2)
Ge3—O5ii1.748 (3)Cu1—O9v1.952 (2)
Ge4—O21.727 (3)Cu1—O7iv2.005 (2)
O1—Ge1—O4115.02 (8)O6i—Ge4—O6116.67 (15)
O1—Ge1—O4i115.02 (8)O6iii—Fe1—O7iv106.77 (9)
O4—Ge1—O4i107.82 (15)O6iii—Fe1—O4v114.24 (9)
O1—Ge1—O398.19 (15)O7iv—Fe1—O4v75.97 (9)
O4—Ge1—O3110.22 (9)O6iii—Fe1—O8v92.17 (9)
O4i—Ge1—O3110.22 (9)O7iv—Fe1—O8v155.18 (11)
O2—Ge2—O7113.36 (9)O4v—Fe1—O8v81.73 (11)
O2—Ge2—O7i113.36 (9)O6iii—Fe1—O1146.68 (11)
O7—Ge2—O7i111.44 (15)O7iv—Fe1—O194.17 (9)
O2—Ge2—O599.47 (16)O4v—Fe1—O195.59 (11)
O7—Ge2—O5109.23 (9)O8v—Fe1—O177.13 (9)
O7i—Ge2—O5109.23 (9)O6iii—Fe1—O672.70 (10)
O9—Ge3—O9i110.02 (17)O7iv—Fe1—O6107.72 (9)
O9—Ge3—O3108.74 (10)O4v—Fe1—O6171.27 (9)
O9i—Ge3—O3108.74 (10)O8v—Fe1—O692.95 (11)
O9—Ge3—O5ii108.75 (9)O1—Fe1—O676.40 (10)
O9i—Ge3—O5ii108.75 (9)O9vi—Cu1—O4v178.02 (11)
O3—Ge3—O5ii111.83 (15)O9vi—Cu1—O9v77.61 (11)
O2—Ge4—O8110.22 (16)O4v—Cu1—O9v101.72 (9)
O2—Ge4—O6i99.46 (9)O9vi—Cu1—O7iv102.25 (10)
O8—Ge4—O6i114.27 (8)O4v—Cu1—O7iv78.31 (9)
O2—Ge4—O699.46 (9)O9v—Cu1—O7iv176.51 (10)
O8—Ge4—O6114.27 (8)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_050) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.917 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.0876 (8) ÅCell parameters from 4432 reflections
b = 8.5043 (7) Åθ = 2.9–28.1°
c = 4.8715 (5) ŵ = 18.99 mm1
β = 96.19 (2)°T = 320 K
V = 497.86 (7) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
955 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.038
rotation method, ϕ scansθmax = 28.1°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1516
Tmin = 0.12, Tmax = 0.25k = 1111
4481 measured reflectionsl = 55
1162 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0272P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.025(Δ/σ)max = 0.001
wR(F2) = 0.051Δρmax = 0.75 e Å3
S = 1.01Δρmin = 0.81 e Å3
1162 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0268 (8)
Crystal data top
Cu2Fe2Ge4O13V = 497.86 (7) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0876 (8) ŵ = 18.99 mm1
b = 8.5043 (7) ÅT = 320 K
c = 4.8715 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.19 (2)°
Data collection top
STOE IPDS-I
diffractometer
1162 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
955 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.038
4481 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.025110 parameters
wR(F2) = 0.0510 restraints
S = 1.01Δρmax = 0.75 e Å3
1162 reflectionsΔρmin = 0.81 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23988 (5)0.250.49305 (14)0.00620 (16)
Ge20.74738 (5)0.250.33752 (15)0.00633 (16)
Ge30.00508 (5)0.250.40544 (15)0.00758 (16)
Ge40.51226 (5)0.250.60642 (14)0.00566 (15)
Fe10.37596 (5)0.06135 (7)1.04831 (14)0.00639 (15)
Cu10.12556 (4)0.00334 (7)1.04342 (13)0.01159 (15)
O10.3322 (3)0.250.7949 (10)0.0079 (9)
O20.6532 (3)0.250.5721 (11)0.0132 (10)
O30.1129 (3)0.250.6458 (11)0.0098 (9)
O40.2481 (2)0.0836 (4)0.2853 (7)0.0095 (6)
O50.8717 (3)0.250.5671 (11)0.0098 (9)
O60.5034 (2)0.0745 (3)0.7915 (7)0.0091 (6)
O70.7429 (2)0.0800 (4)0.1339 (7)0.0105 (6)
O80.4359 (3)0.250.2825 (10)0.0078 (9)
O90.0030 (2)0.0830 (4)0.2016 (8)0.0171 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0033 (3)0.0056 (3)0.0095 (4)00.0000 (2)0
Ge20.0028 (3)0.0049 (3)0.0112 (4)00.0006 (2)0
Ge30.0027 (3)0.0094 (3)0.0107 (4)00.0006 (2)0
Ge40.0039 (3)0.0047 (3)0.0082 (4)00.0002 (2)0
Fe10.0035 (2)0.0048 (3)0.0110 (4)0.0002 (2)0.0010 (2)0.0002 (2)
Cu10.0032 (2)0.0140 (3)0.0175 (3)0.00094 (18)0.00106 (17)0.0067 (2)
O10.0063 (18)0.0038 (18)0.013 (3)00.0001 (15)0
O20.0034 (19)0.019 (2)0.018 (3)00.0041 (17)0
O30.0019 (17)0.016 (2)0.012 (3)00.0031 (15)0
O40.0039 (12)0.0094 (15)0.015 (2)0.0037 (10)0.0024 (11)0.0030 (12)
O50.0053 (17)0.014 (2)0.010 (3)00.0022 (16)0
O60.0061 (13)0.0074 (14)0.014 (2)0.0040 (11)0.0024 (11)0.0035 (12)
O70.0062 (13)0.0077 (14)0.018 (2)0.0007 (11)0.0007 (11)0.0051 (12)
O80.0061 (18)0.0064 (19)0.011 (3)00.0000 (15)0
O90.0045 (13)0.0216 (18)0.025 (2)0.0026 (12)0.0008 (12)0.0130 (15)
Geometric parameters (Å, º) top
Ge1—O11.748 (5)Ge4—O81.740 (5)
Ge1—O41.749 (3)Ge4—O6i1.753 (3)
Ge1—O4i1.749 (3)Ge4—O61.753 (3)
Ge1—O31.776 (4)Fe1—O6iii1.956 (3)
Ge2—O21.698 (5)Fe1—O7iv2.005 (3)
Ge2—O71.751 (3)Fe1—O4v2.035 (3)
Ge2—O7i1.751 (3)Fe1—O8v2.055 (3)
Ge2—O51.773 (5)Fe1—O12.058 (3)
Ge3—O91.734 (3)Fe1—O62.090 (3)
Ge3—O9i1.734 (3)Cu1—O9vi1.923 (3)
Ge3—O31.745 (5)Cu1—O4v1.937 (3)
Ge3—O5ii1.759 (5)Cu1—O9v1.951 (3)
Ge4—O21.729 (4)Cu1—O7iv1.999 (3)
O1—Ge1—O4114.59 (12)O6i—Ge4—O6116.7 (2)
O1—Ge1—O4i114.59 (12)O6iii—Fe1—O7iv106.86 (13)
O4—Ge1—O4i108.0 (2)O6iii—Fe1—O4v114.07 (14)
O1—Ge1—O398.6 (2)O7iv—Fe1—O4v75.84 (13)
O4—Ge1—O3110.35 (12)O6iii—Fe1—O8v92.10 (13)
O4i—Ge1—O3110.35 (12)O7iv—Fe1—O8v155.07 (14)
O2—Ge2—O7113.52 (13)O4v—Fe1—O8v81.76 (15)
O2—Ge2—O7i113.52 (13)O6iii—Fe1—O1146.30 (14)
O7—Ge2—O7i111.3 (2)O7iv—Fe1—O194.38 (14)
O2—Ge2—O599.2 (2)O4v—Fe1—O196.09 (15)
O7—Ge2—O5109.26 (13)O8v—Fe1—O177.11 (14)
O7i—Ge2—O5109.26 (13)O6iii—Fe1—O672.81 (15)
O9—Ge3—O9i109.9 (3)O7iv—Fe1—O6107.83 (13)
O9—Ge3—O3108.85 (13)O4v—Fe1—O6171.33 (12)
O9i—Ge3—O3108.85 (13)O8v—Fe1—O692.97 (15)
O9—Ge3—O5ii108.75 (13)O1—Fe1—O675.95 (14)
O9i—Ge3—O5ii108.75 (13)O9vi—Cu1—O4v178.16 (16)
O3—Ge3—O5ii111.7 (2)O9vi—Cu1—O9v77.58 (16)
O2—Ge4—O8110.1 (2)O4v—Cu1—O9v101.85 (13)
O2—Ge4—O6i99.51 (13)O9vi—Cu1—O7iv102.25 (14)
O8—Ge4—O6i114.25 (12)O4v—Cu1—O7iv78.21 (13)
O2—Ge4—O699.51 (13)O9v—Cu1—O7iv176.42 (16)
O8—Ge4—O6114.25 (12)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_100) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.915 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.0883 (8) ÅCell parameters from 4906 reflections
b = 8.5076 (7) Åθ = 2.9–28.0°
c = 4.8727 (5) ŵ = 18.98 mm1
β = 96.18 (2)°T = 362 K
V = 498.21 (8) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
956 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.049
rotation method, ϕ scansθmax = 28.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1515
Tmin = 0.12, Tmax = 0.25k = 1111
4515 measured reflectionsl = 55
1164 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0286P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max < 0.001
wR(F2) = 0.053Δρmax = 1.16 e Å3
S = 0.97Δρmin = 0.85 e Å3
1164 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0242 (8)
Crystal data top
Cu2Fe2Ge4O13V = 498.21 (8) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0883 (8) ŵ = 18.98 mm1
b = 8.5076 (7) ÅT = 362 K
c = 4.8727 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.18 (2)°
Data collection top
STOE IPDS-I
diffractometer
1164 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
956 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.049
4515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027110 parameters
wR(F2) = 0.0534 restraints
S = 0.97Δρmax = 1.16 e Å3
1164 reflectionsΔρmin = 0.85 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.23996 (4)0.250.49306 (14)0.00631 (16)
Ge20.74735 (4)0.250.33719 (14)0.00635 (16)
Ge30.00508 (4)0.250.40499 (14)0.00770 (16)
Ge40.51235 (5)0.250.60638 (14)0.00577 (16)
Fe10.37590 (4)0.06137 (7)1.04840 (14)0.00651 (16)
Cu10.12549 (4)0.00345 (7)1.04351 (13)0.01229 (15)
O10.3322 (3)0.250.7944 (10)0.0085 (9)
O20.6532 (3)0.250.5707 (11)0.0151 (10)
O30.1133 (3)0.250.6449 (11)0.0105 (9)
O40.2480 (2)0.0839 (4)0.2852 (7)0.0100 (6)
O50.8719 (3)0.250.5667 (11)0.0116 (9)
O60.5036 (2)0.0750 (3)0.7913 (6)0.0095 (6)
O70.74264 (10)0.0804 (3)0.1343 (5)0.0107 (7)
O80.4360 (3)0.250.2819 (10)0.0082 (9)
O90.0029 (2)0.0831 (4)0.2011 (8)0.0176 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0026 (3)0.0064 (3)0.0098 (4)00.0003 (2)0
Ge20.0020 (3)0.0057 (3)0.0115 (4)00.0010 (2)0
Ge30.0016 (3)0.0104 (3)0.0111 (4)00.0008 (2)0
Ge40.0036 (2)0.0051 (3)0.0085 (4)00.0001 (2)0
Fe10.0027 (2)0.0059 (3)0.0111 (4)0.00030 (19)0.0013 (2)0.0001 (2)
Cu10.0029 (2)0.0156 (3)0.0185 (4)0.00133 (18)0.00161 (17)0.0074 (2)
O10.0031 (16)0.0057 (19)0.017 (3)00.0008 (15)0
O20.0066 (19)0.026 (3)0.013 (3)00.0034 (16)0
O30.0023 (16)0.018 (2)0.011 (3)00.0014 (15)0
O40.0055 (12)0.0103 (15)0.014 (2)0.0013 (10)0.0013 (10)0.0030 (12)
O50.0036 (16)0.018 (2)0.013 (3)00.0026 (16)0
O60.0048 (12)0.0075 (14)0.017 (2)0.0049 (10)0.0030 (11)0.0048 (13)
O70.0070 (13)0.0077 (14)0.017 (2)0.0000 (10)0.0016 (11)0.0054 (12)
O80.0067 (18)0.0081 (19)0.010 (3)00.0001 (15)0
O90.0049 (13)0.0228 (18)0.025 (2)0.0021 (12)0.0012 (12)0.0134 (16)
Geometric parameters (Å, º) top
Ge1—O11.746 (5)Ge4—O81.743 (5)
Ge1—O41.748 (3)Ge4—O6i1.750 (4)
Ge1—O4i1.748 (3)Ge4—O61.750 (4)
Ge1—O31.771 (4)Fe1—O6iii1.958 (2)
Ge2—O21.694 (5)Fe1—O7iv2.007 (3)
Ge2—O71.747 (4)Fe1—O4v2.035 (3)
Ge2—O7i1.747 (4)Fe1—O8v2.054 (3)
Ge2—O51.776 (4)Fe1—O12.060 (3)
Ge3—O91.735 (3)Fe1—O62.093 (3)
Ge3—O9i1.735 (3)Cu1—O9vi1.922 (3)
Ge3—O31.747 (4)Cu1—O4v1.939 (3)
Ge3—O5ii1.756 (5)Cu1—O9v1.949 (3)
Ge4—O21.729 (4)Cu1—O7iv2.004 (3)
O1—Ge1—O4114.65 (12)O6i—Ge4—O6116.7 (2)
O1—Ge1—O4i114.65 (12)O6iii—Fe1—O7iv106.62 (11)
O4—Ge1—O4i107.9 (2)O6iii—Fe1—O4v114.04 (13)
O1—Ge1—O398.7 (2)O7iv—Fe1—O4v76.02 (10)
O4—Ge1—O3110.29 (12)O6iii—Fe1—O8v92.19 (13)
O4i—Ge1—O3110.29 (12)O7iv—Fe1—O8v155.30 (12)
O2—Ge2—O7113.38 (10)O4v—Fe1—O8v81.80 (15)
O2—Ge2—O7i113.38 (9)O6iii—Fe1—O1146.38 (13)
O7—Ge2—O7i111.4 (2)O7iv—Fe1—O194.43 (13)
O2—Ge2—O599.4 (2)O4v—Fe1—O196.09 (15)
O7—Ge2—O5109.29 (11)O8v—Fe1—O177.10 (14)
O7i—Ge2—O5109.29 (11)O6iii—Fe1—O672.94 (10)
O9—Ge3—O9i109.9 (3)O7iv—Fe1—O6107.76 (10)
O9—Ge3—O3108.76 (13)O4v—Fe1—O6171.19 (11)
O9i—Ge3—O3108.76 (13)O8v—Fe1—O692.79 (15)
O9—Ge3—O5ii108.82 (13)O1—Fe1—O675.83 (13)
O9i—Ge3—O5ii108.82 (13)O9vi—Cu1—O4v178.09 (16)
O3—Ge3—O5ii111.8 (2)O9vi—Cu1—O9v77.53 (16)
O2—Ge4—O8109.8 (2)O4v—Cu1—O9v101.82 (13)
O2—Ge4—O6i99.58 (13)O9vi—Cu1—O7iv102.27 (11)
O8—Ge4—O6i114.31 (12)O4v—Cu1—O7iv78.26 (10)
O2—Ge4—O699.58 (13)O9v—Cu1—O7iv176.34 (16)
O8—Ge4—O6114.31 (12)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_200) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.904 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.0943 (8) ÅCell parameters from 4453 reflections
b = 8.5142 (7) Åθ = 2.9–28.0°
c = 4.8763 (5) ŵ = 18.94 mm1
β = 96.21 (2)°T = 445 K
V = 499.19 (8) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
962 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.045
rotation method, ϕ scansθmax = 28.0°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1515
Tmin = 0.12, Tmax = 0.25k = 1111
4494 measured reflectionsl = 55
1164 independent reflections
Refinement top
Refinement on F26 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0372P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max < 0.001
wR(F2) = 0.062Δρmax = 0.92 e Å3
S = 0.97Δρmin = 0.77 e Å3
1164 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0257 (10)
Crystal data top
Cu2Fe2Ge4O13V = 499.19 (8) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0943 (8) ŵ = 18.94 mm1
b = 8.5142 (7) ÅT = 445 K
c = 4.8763 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.21 (2)°
Data collection top
STOE IPDS-I
diffractometer
1164 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
962 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.045
4494 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028110 parameters
wR(F2) = 0.0626 restraints
S = 0.97Δρmax = 0.92 e Å3
1164 reflectionsΔρmin = 0.77 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24005 (5)0.250.49269 (16)0.00776 (18)
Ge20.74729 (5)0.250.33662 (16)0.00788 (18)
Ge30.00512 (5)0.250.40452 (16)0.00941 (18)
Ge40.51243 (5)0.250.60659 (15)0.00709 (17)
Fe10.37578 (5)0.06149 (8)1.04840 (15)0.00783 (17)
Cu10.12545 (4)0.00338 (8)1.04345 (15)0.01485 (18)
O10.3318 (4)0.250.7953 (12)0.0118 (10)
O20.65277 (19)0.250.5682 (7)0.0185 (12)
O30.1129 (4)0.250.6445 (12)0.0124 (10)
O40.24817 (19)0.0842 (4)0.2837 (6)0.0118 (7)
O50.8722 (4)0.250.5657 (12)0.0127 (10)
O60.5038 (2)0.0753 (3)0.7916 (7)0.0112 (7)
O70.7425 (3)0.0806 (4)0.1340 (8)0.0131 (7)
O80.4360 (3)0.250.2822 (6)0.0102 (10)
O90.00284 (19)0.0831 (5)0.2014 (8)0.0212 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0044 (3)0.0072 (3)0.0114 (5)00.0006 (2)0
Ge20.0044 (3)0.0057 (3)0.0135 (4)00.0007 (2)0
Ge30.0038 (3)0.0119 (4)0.0125 (5)00.0006 (3)0
Ge40.0058 (3)0.0055 (3)0.0097 (4)00.0001 (2)0
Fe10.0051 (3)0.0057 (3)0.0126 (4)0.0002 (2)0.0009 (2)0.0000 (3)
Cu10.0052 (3)0.0177 (3)0.0216 (4)0.0016 (2)0.00132 (19)0.0089 (3)
O10.0075 (19)0.008 (2)0.019 (3)00.0012 (17)0
O20.009 (2)0.031 (3)0.016 (3)00.0063 (19)0
O30.0033 (18)0.018 (2)0.016 (3)00.0017 (17)0
O40.0073 (14)0.0133 (18)0.015 (2)0.0027 (12)0.0023 (12)0.0036 (14)
O50.0032 (18)0.019 (3)0.016 (3)00.0018 (17)0
O60.0068 (13)0.0083 (16)0.019 (2)0.0030 (12)0.0025 (12)0.0049 (14)
O70.0114 (15)0.0113 (17)0.016 (2)0.0030 (12)0.0002 (12)0.0052 (14)
O80.011 (2)0.009 (2)0.010 (3)00.0014 (17)0
O90.0074 (15)0.026 (2)0.031 (3)0.0011 (14)0.0015 (14)0.0165 (19)
Geometric parameters (Å, º) top
Ge1—O11.748 (5)Ge4—O81.744 (2)
Ge1—O41.750 (3)Ge4—O6i1.749 (3)
Ge1—O4i1.750 (3)Ge4—O61.749 (3)
Ge1—O31.777 (5)Fe1—O6iii1.960 (3)
Ge2—O21.692 (4)Fe1—O7iv2.007 (3)
Ge2—O71.746 (4)Fe1—O4v2.029 (3)
Ge2—O7i1.746 (4)Fe1—O8v2.056 (3)
Ge2—O51.779 (5)Fe1—O12.059 (3)
Ge3—O91.734 (3)Fe1—O62.097 (3)
Ge3—O9i1.734 (3)Cu1—O9vi1.924 (4)
Ge3—O31.746 (5)Cu1—O4v1.938 (4)
Ge3—O5ii1.752 (5)Cu1—O9v1.950 (4)
Ge4—O21.728 (3)Cu1—O7iv2.007 (4)
O1—Ge1—O4114.92 (12)O6i—Ge4—O6116.6 (2)
O1—Ge1—O4i114.92 (12)O6iii—Fe1—O7iv106.38 (14)
O4—Ge1—O4i107.5 (2)O6iii—Fe1—O4v114.18 (13)
O1—Ge1—O398.4 (2)O7iv—Fe1—O4v76.02 (12)
O4—Ge1—O3110.37 (13)O6iii—Fe1—O8v92.27 (13)
O4i—Ge1—O3110.37 (13)O7iv—Fe1—O8v155.40 (16)
O2—Ge2—O7113.25 (13)O4v—Fe1—O8v81.81 (15)
O2—Ge2—O7i113.25 (13)O6iii—Fe1—O1146.56 (14)
O7—Ge2—O7i111.4 (3)O7iv—Fe1—O194.51 (16)
O2—Ge2—O599.8 (2)O4v—Fe1—O195.83 (17)
O7—Ge2—O5109.21 (14)O8v—Fe1—O177.12 (13)
O7i—Ge2—O5109.21 (14)O6iii—Fe1—O672.90 (11)
O9—Ge3—O9i110.1 (3)O7iv—Fe1—O6107.84 (15)
O9—Ge3—O3108.70 (15)O4v—Fe1—O6171.08 (12)
O9i—Ge3—O3108.70 (15)O8v—Fe1—O692.72 (16)
O9—Ge3—O5ii108.83 (12)O1—Fe1—O676.01 (15)
O9i—Ge3—O5ii108.83 (12)O9vi—Cu1—O4v177.95 (18)
O3—Ge3—O5ii111.7 (2)O9vi—Cu1—O9v77.62 (14)
O2—Ge4—O8109.4 (2)O4v—Cu1—O9v101.89 (14)
O2—Ge4—O6i99.80 (12)O9vi—Cu1—O7iv102.27 (12)
O8—Ge4—O6i114.37 (13)O4v—Cu1—O7iv78.09 (14)
O2—Ge4—O699.80 (12)O9v—Cu1—O7iv176.46 (19)
O8—Ge4—O6114.37 (13)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_300) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.896 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.0971 (8) ÅCell parameters from 4318 reflections
b = 8.5205 (7) Åθ = 2.9–27.9°
c = 4.8803 (5) ŵ = 18.91 mm1
β = 96.22 (2)°T = 528 K
V = 500.07 (8) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
949 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.038
rotation method, ϕ scansθmax = 27.9°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1515
Tmin = 0.12, Tmax = 0.25k = 1111
4513 measured reflectionsl = 55
1167 independent reflections
Refinement top
Refinement on F21 restraint
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0309P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.026(Δ/σ)max = 0.001
wR(F2) = 0.054Δρmax = 1.00 e Å3
S = 0.98Δρmin = 0.70 e Å3
1167 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0212 (8)
Crystal data top
Cu2Fe2Ge4O13V = 500.07 (8) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.0971 (8) ŵ = 18.91 mm1
b = 8.5205 (7) ÅT = 528 K
c = 4.8803 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.22 (2)°
Data collection top
STOE IPDS-I
diffractometer
1167 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
949 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.038
4513 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.026110 parameters
wR(F2) = 0.0541 restraint
S = 0.98Δρmax = 1.00 e Å3
1167 reflectionsΔρmin = 0.70 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24013 (5)0.250.49253 (15)0.00790 (17)
Ge20.74727 (5)0.250.33601 (15)0.00811 (17)
Ge30.00513 (5)0.250.40419 (15)0.00966 (17)
Ge40.51257 (5)0.250.60660 (15)0.00699 (16)
Fe10.37571 (5)0.06146 (7)1.04840 (15)0.00805 (16)
Cu10.12532 (4)0.00333 (8)1.04367 (14)0.01626 (17)
O10.3322 (3)0.250.7947 (11)0.0106 (9)
O20.6524 (4)0.250.5669 (12)0.0213 (12)
O30.1131 (4)0.250.6433 (12)0.0141 (10)
O40.2480 (2)0.0836 (4)0.2843 (8)0.0133 (7)
O50.8719 (3)0.250.5646 (12)0.0132 (10)
O60.5042 (2)0.0755 (4)0.7922 (8)0.0121 (7)
O70.7427 (3)0.0813 (4)0.1327 (8)0.0133 (7)
O80.4361 (4)0.250.2831 (11)0.0114 (9)
O90.0030 (3)0.0833 (3)0.2002 (8)0.0239 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0050 (3)0.0079 (3)0.0104 (4)00.0009 (2)0
Ge20.0051 (3)0.0072 (3)0.0120 (4)00.0008 (2)0
Ge30.0045 (3)0.0127 (3)0.0117 (4)00.0007 (2)0
Ge40.0064 (3)0.0061 (3)0.0083 (4)00.0001 (2)0
Fe10.0060 (3)0.0064 (3)0.0118 (4)0.0007 (2)0.0010 (2)0.0001 (3)
Cu10.0058 (2)0.0202 (3)0.0228 (4)0.0019 (2)0.00150 (19)0.0102 (3)
O10.0078 (18)0.006 (2)0.017 (3)00.0027 (16)0
O20.012 (2)0.034 (3)0.019 (4)00.0057 (19)0
O30.0057 (18)0.022 (2)0.014 (3)00.0021 (16)0
O40.0063 (13)0.0151 (17)0.018 (2)0.0038 (11)0.0018 (11)0.0057 (14)
O50.0030 (17)0.020 (2)0.017 (3)00.0038 (16)0
O60.0086 (13)0.0098 (15)0.018 (2)0.0037 (11)0.0030 (12)0.0068 (14)
O70.0112 (14)0.0085 (15)0.020 (2)0.0010 (11)0.0010 (12)0.0070 (14)
O80.012 (2)0.009 (2)0.012 (3)00.0021 (17)0
O90.0118 (15)0.031 (2)0.028 (3)0.0007 (14)0.0003 (14)0.0176 (19)
Geometric parameters (Å, º) top
Ge1—O11.749 (5)Ge4—O81.741 (5)
Ge1—O41.753 (3)Ge4—O6i1.749 (3)
Ge1—O4i1.753 (3)Ge4—O61.749 (3)
Ge1—O31.775 (5)Fe1—O6iii1.958 (3)
Ge2—O21.693 (5)Fe1—O7iv2.009 (3)
Ge2—O71.744 (3)Fe1—O4v2.033 (3)
Ge2—O7i1.744 (3)Fe1—O8v2.061 (3)
Ge2—O51.776 (5)Fe1—O12.061 (3)
Ge3—O91.736 (3)Fe1—O62.101 (3)
Ge3—O9i1.736 (3)Cu1—O9vi1.921 (3)
Ge3—O31.745 (5)Cu1—O4v1.937 (3)
Ge3—O5ii1.754 (5)Cu1—O9v1.949 (3)
Ge4—O21.723 (5)Cu1—O7iv2.008 (3)
O1—Ge1—O4114.77 (13)O6i—Ge4—O6116.4 (2)
O1—Ge1—O4i114.77 (13)O6iii—Fe1—O7iv106.06 (14)
O4—Ge1—O4i108.0 (3)O6iii—Fe1—O4v114.02 (15)
O1—Ge1—O398.7 (2)O7iv—Fe1—O4v75.90 (14)
O4—Ge1—O3110.14 (13)O6iii—Fe1—O8v92.33 (14)
O4i—Ge1—O3110.14 (13)O7iv—Fe1—O8v155.44 (16)
O2—Ge2—O7113.35 (14)O4v—Fe1—O8v81.85 (16)
O2—Ge2—O7i113.35 (14)O6iii—Fe1—O1146.44 (15)
O7—Ge2—O7i111.0 (3)O7iv—Fe1—O194.84 (14)
O2—Ge2—O599.9 (3)O4v—Fe1—O196.18 (17)
O7—Ge2—O5109.27 (13)O8v—Fe1—O177.19 (15)
O7i—Ge2—O5109.27 (13)O6iii—Fe1—O672.88 (16)
O9—Ge3—O9i109.8 (3)O7iv—Fe1—O6108.10 (14)
O9—Ge3—O3108.76 (15)O4v—Fe1—O6171.19 (13)
O9i—Ge3—O3108.76 (15)O8v—Fe1—O692.62 (17)
O9—Ge3—O5ii108.77 (15)O1—Fe1—O675.82 (15)
O9i—Ge3—O5ii108.77 (15)O9vi—Cu1—O4v178.23 (17)
O3—Ge3—O5ii112.0 (2)O9vi—Cu1—O9v77.55 (9)
O2—Ge4—O8109.2 (3)O4v—Cu1—O9v102.00 (12)
O2—Ge4—O6i99.84 (14)O9vi—Cu1—O7iv102.23 (13)
O8—Ge4—O6i114.49 (13)O4v—Cu1—O7iv78.11 (14)
O2—Ge4—O699.84 (14)O9v—Cu1—O7iv176.55 (18)
O8—Ge4—O6114.49 (13)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_400) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.885 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.1011 (8) ÅCell parameters from 4497 reflections
b = 8.5290 (7) Åθ = 2.9–28.1°
c = 4.8841 (5) ŵ = 18.87 mm1
β = 96.24 (2)°T = 611 K
V = 501.10 (8) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
914 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.046
rotation method, ϕ scansθmax = 27.9°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1515
Tmin = 0.12, Tmax = 0.25k = 1111
4515 measured reflectionsl = 55
1165 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0335P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.028(Δ/σ)max = 0.001
wR(F2) = 0.062Δρmax = 0.83 e Å3
S = 0.99Δρmin = 0.90 e Å3
1165 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0211 (9)
Crystal data top
Cu2Fe2Ge4O13V = 501.10 (8) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.1011 (8) ŵ = 18.87 mm1
b = 8.5290 (7) ÅT = 611 K
c = 4.8841 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.24 (2)°
Data collection top
STOE IPDS-I
diffractometer
1165 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
914 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.046
4515 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.028110 parameters
wR(F2) = 0.0623 restraints
S = 0.99Δρmax = 0.83 e Å3
1165 reflectionsΔρmin = 0.90 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24021 (5)0.250.49216 (17)0.00973 (19)
Ge20.74727 (5)0.250.33568 (18)0.01009 (19)
Ge30.00516 (5)0.250.40374 (17)0.0119 (2)
Ge40.51268 (6)0.250.60690 (17)0.00892 (18)
Fe10.37569 (5)0.06147 (8)1.04850 (17)0.01032 (18)
Cu10.12516 (5)0.00330 (9)1.04360 (16)0.0195 (2)
O10.3319 (4)0.250.7946 (12)0.0136 (11)
O20.6524 (4)0.250.5652 (10)0.0236 (14)
O30.1135 (4)0.250.6420 (13)0.0145 (11)
O40.2478 (2)0.0839 (4)0.2845 (7)0.0150 (8)
O50.8720 (3)0.250.5646 (11)0.0161 (12)
O60.5046 (3)0.0755 (4)0.7924 (9)0.0138 (8)
O70.7428 (3)0.0808 (4)0.1329 (9)0.0161 (8)
O80.4357 (4)0.250.2834 (12)0.0130 (11)
O90.0030 (3)0.0836 (6)0.1995 (11)0.0288 (11)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0068 (3)0.0104 (4)0.0115 (5)00.0010 (3)0
Ge20.0060 (3)0.0093 (4)0.0149 (5)00.0010 (3)0
Ge30.0056 (3)0.0161 (4)0.0140 (5)00.0005 (3)0
Ge40.0080 (3)0.0081 (3)0.0104 (5)00.0005 (3)0
Fe10.0070 (3)0.0094 (3)0.0146 (5)0.0003 (2)0.0011 (2)0.0005 (3)
Cu10.0069 (3)0.0253 (4)0.0264 (5)0.0025 (2)0.0016 (2)0.0118 (3)
O10.012 (2)0.009 (2)0.018 (3)00.0024 (19)0
O20.008 (2)0.041 (4)0.022 (4)00.007 (2)0
O30.006 (2)0.027 (3)0.010 (3)00.0009 (18)0
O40.0078 (15)0.017 (2)0.021 (3)0.0044 (13)0.0027 (13)0.0068 (16)
O50.008 (2)0.025 (3)0.016 (4)00.0021 (19)0
O60.0110 (15)0.0128 (18)0.018 (2)0.0067 (13)0.0019 (13)0.0079 (16)
O70.0109 (16)0.0124 (18)0.025 (3)0.0011 (13)0.0023 (14)0.0090 (16)
O80.013 (2)0.012 (2)0.013 (3)00.0016 (19)0
O90.0098 (17)0.039 (3)0.037 (3)0.0006 (16)0.0004 (16)0.023 (2)
Geometric parameters (Å, º) top
Ge1—O11.749 (5)Ge4—O81.745 (6)
Ge1—O41.751 (3)Ge4—O6i1.751 (4)
Ge1—O4i1.751 (3)Ge4—O61.751 (4)
Ge1—O31.770 (5)Fe1—O6iii1.955 (3)
Ge2—O21.690 (5)Fe1—O7iv2.009 (4)
Ge2—O71.748 (4)Fe1—O4v2.037 (4)
Ge2—O7i1.748 (4)Fe1—O8v2.061 (4)
Ge2—O51.778 (5)Fe1—O12.064 (4)
Ge3—O91.737 (4)Fe1—O62.106 (4)
Ge3—O9i1.737 (4)Cu1—O9vi1.919 (4)
Ge3—O31.747 (5)Cu1—O4v1.939 (4)
Ge3—O5ii1.755 (4)Cu1—O9v1.947 (4)
Ge4—O21.725 (4)Cu1—O7iv2.009 (4)
O1—Ge1—O4114.90 (13)O6i—Ge4—O6116.5 (3)
O1—Ge1—O4i114.90 (13)O6iii—Fe1—O7iv106.08 (16)
O4—Ge1—O4i108.1 (3)O6iii—Fe1—O4v114.02 (16)
O1—Ge1—O398.6 (3)O7iv—Fe1—O4v75.90 (13)
O4—Ge1—O3109.99 (14)O6iii—Fe1—O8v92.51 (16)
O4i—Ge1—O3109.99 (14)O7iv—Fe1—O8v155.23 (18)
O2—Ge2—O7113.24 (16)O4v—Fe1—O8v81.68 (16)
O2—Ge2—O7i113.24 (15)O6iii—Fe1—O1146.59 (18)
O7—Ge2—O7i111.3 (3)O7iv—Fe1—O194.68 (17)
O2—Ge2—O5100.0 (2)O4v—Fe1—O196.07 (19)
O7—Ge2—O5109.17 (13)O8v—Fe1—O177.20 (17)
O7i—Ge2—O5109.17 (13)O6iii—Fe1—O672.86 (18)
O9—Ge3—O9i109.6 (4)O7iv—Fe1—O6108.13 (16)
O9—Ge3—O3108.67 (17)O4v—Fe1—O6171.18 (14)
O9i—Ge3—O3108.67 (17)O8v—Fe1—O692.73 (19)
O9—Ge3—O5ii108.88 (17)O1—Fe1—O675.95 (18)
O9i—Ge3—O5ii108.88 (17)O9vi—Cu1—O4v178.3 (2)
O3—Ge3—O5ii112.1 (3)O9vi—Cu1—O9v77.6 (2)
O2—Ge4—O8109.1 (2)O4v—Cu1—O9v101.90 (16)
O2—Ge4—O6i99.90 (14)O9vi—Cu1—O7iv102.27 (17)
O8—Ge4—O6i114.46 (14)O4v—Cu1—O7iv78.14 (15)
O2—Ge4—O699.90 (14)O9v—Cu1—O7iv176.3 (2)
O8—Ge4—O6114.46 (14)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_500) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.877 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.1039 (8) ÅCell parameters from 4536 reflections
b = 8.5353 (7) Åθ = 2.9–28.1°
c = 4.8886 (5) ŵ = 18.84 mm1
β = 96.28 (2)°T = 695 K
V = 502.01 (8) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
891 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.047
rotation method, ϕ scansθmax = 28.1°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1515
Tmin = 0.12, Tmax = 0.25k = 1111
4549 measured reflectionsl = 55
1169 independent reflections
Refinement top
Refinement on F25 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0295P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.029(Δ/σ)max < 0.001
wR(F2) = 0.061Δρmax = 0.85 e Å3
S = 1.01Δρmin = 0.81 e Å3
1169 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0232 (8)
Crystal data top
Cu2Fe2Ge4O13V = 502.01 (8) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.1039 (8) ŵ = 18.84 mm1
b = 8.5353 (7) ÅT = 695 K
c = 4.8886 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.28 (2)°
Data collection top
STOE IPDS-I
diffractometer
1169 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
891 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.047
4549 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.029110 parameters
wR(F2) = 0.0615 restraints
S = 1.01Δρmax = 0.85 e Å3
1169 reflectionsΔρmin = 0.81 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24022 (6)0.250.49198 (18)0.0107 (2)
Ge20.74723 (6)0.250.33510 (19)0.0107 (2)
Ge30.00515 (6)0.250.40311 (18)0.0131 (2)
Ge40.51278 (6)0.250.60688 (18)0.0097 (2)
Fe10.37556 (6)0.06141 (8)1.04865 (18)0.01115 (19)
Cu10.12522 (5)0.00337 (10)1.04390 (18)0.0216 (2)
O10.3317 (4)0.250.7948 (13)0.0140 (12)
O20.6523 (4)0.250.5638 (15)0.0263 (15)
O30.1130 (3)0.250.6419 (10)0.0177 (12)
O40.2475 (3)0.0839 (5)0.2849 (10)0.0177 (9)
O50.8720 (3)0.250.5637 (11)0.0171 (12)
O60.5049 (3)0.0760 (4)0.7928 (9)0.0146 (8)
O70.74281 (11)0.0806 (4)0.1335 (7)0.0179 (9)
O80.4359 (4)0.250.2841 (13)0.0132 (11)
O90.0031 (2)0.0838 (6)0.1983 (9)0.0305 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0073 (3)0.0118 (4)0.0125 (5)00.0011 (3)0
Ge20.0066 (3)0.0099 (4)0.0154 (5)00.0009 (3)0
Ge30.0063 (3)0.0183 (4)0.0146 (5)00.0005 (3)0
Ge40.0096 (3)0.0087 (4)0.0104 (5)00.0009 (3)0
Fe10.0076 (3)0.0098 (3)0.0159 (5)0.0007 (3)0.0007 (3)0.0003 (3)
Cu10.0082 (3)0.0282 (4)0.0282 (5)0.0022 (3)0.0013 (2)0.0131 (3)
O10.010 (2)0.010 (2)0.021 (4)00.003 (2)0
O20.010 (3)0.044 (4)0.025 (4)00.008 (2)0
O30.008 (2)0.029 (3)0.016 (4)00.002 (2)0
O40.0098 (16)0.018 (2)0.025 (3)0.0053 (14)0.0039 (14)0.0102 (18)
O50.008 (2)0.028 (3)0.015 (4)00.002 (2)0
O60.0103 (16)0.0151 (19)0.019 (3)0.0076 (14)0.0028 (14)0.0089 (17)
O70.0132 (17)0.016 (2)0.024 (3)0.0015 (15)0.0000 (14)0.0069 (18)
O80.017 (2)0.010 (2)0.013 (3)00.000 (2)0
O90.0118 (18)0.041 (3)0.038 (3)0.0032 (18)0.0004 (17)0.024 (2)
Geometric parameters (Å, º) top
Ge1—O11.749 (6)Ge4—O81.742 (6)
Ge1—O41.750 (4)Ge4—O6i1.750 (4)
Ge1—O4i1.750 (4)Ge4—O61.750 (4)
Ge1—O31.776 (6)Fe1—O6iii1.955 (3)
Ge2—O21.689 (6)Fe1—O7iv2.009 (3)
Ge2—O71.748 (6)Fe1—O4v2.041 (4)
Ge2—O7i1.748 (6)Fe1—O8v2.065 (4)
Ge2—O51.778 (6)Fe1—O12.066 (4)
Ge3—O91.738 (4)Fe1—O62.111 (4)
Ge3—O9i1.738 (4)Cu1—O9vi1.917 (4)
Ge3—O31.744 (2)Cu1—O4v1.937 (4)
Ge3—O5ii1.755 (2)Cu1—O9v1.947 (4)
Ge4—O21.724 (5)Cu1—O7iv2.010 (4)
O1—Ge1—O4115.00 (16)O6i—Ge4—O6116.2 (3)
O1—Ge1—O4i115.00 (16)O6iii—Fe1—O7iv105.97 (16)
O4—Ge1—O4i108.2 (3)O6iii—Fe1—O4v114.02 (18)
O1—Ge1—O398.5 (2)O7iv—Fe1—O4v76.03 (12)
O4—Ge1—O3109.85 (13)O6iii—Fe1—O8v92.59 (17)
O4i—Ge1—O3109.85 (13)O7iv—Fe1—O8v155.34 (15)
O2—Ge2—O7113.10 (13)O4v—Fe1—O8v81.68 (19)
O2—Ge2—O7i113.10 (13)O6iii—Fe1—O1146.69 (19)
O7—Ge2—O7i111.7 (3)O7iv—Fe1—O194.57 (17)
O2—Ge2—O5100.2 (3)O4v—Fe1—O196.0 (2)
O7—Ge2—O5109.02 (11)O8v—Fe1—O177.27 (18)
O7i—Ge2—O5109.02 (11)O6iii—Fe1—O672.88 (18)
O9—Ge3—O9i109.4 (4)O7iv—Fe1—O6108.18 (13)
O9—Ge3—O3108.86 (15)O4v—Fe1—O6171.05 (15)
O9i—Ge3—O3108.86 (15)O8v—Fe1—O692.5 (2)
O9—Ge3—O5ii108.89 (17)O1—Fe1—O675.94 (18)
O9i—Ge3—O5ii108.89 (17)O9vi—Cu1—O4v178.4 (2)
O3—Ge3—O5ii111.9 (3)O9vi—Cu1—O9v77.44 (16)
O2—Ge4—O8108.8 (3)O4v—Cu1—O9v101.89 (13)
O2—Ge4—O6i99.98 (17)O9vi—Cu1—O7iv102.21 (14)
O8—Ge4—O6i114.61 (15)O4v—Cu1—O7iv78.35 (13)
O2—Ge4—O699.98 (17)O9v—Cu1—O7iv176.0 (2)
O8—Ge4—O6114.61 (15)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_550) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.872 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.1073 (8) ÅCell parameters from 4541 reflections
b = 8.5380 (7) Åθ = 2.9–28.1°
c = 4.8899 (5) ŵ = 18.82 mm1
β = 96.28 (2)°T = 736 K
V = 502.45 (8) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
877 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.047
rotation method, ϕ scansθmax = 28.1°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1516
Tmin = 0.12, Tmax = 0.25k = 1111
4541 measured reflectionsl = 55
1171 independent reflections
Refinement top
Refinement on F23 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0246P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.027(Δ/σ)max = 0.001
wR(F2) = 0.054Δρmax = 0.73 e Å3
S = 0.97Δρmin = 0.67 e Å3
1171 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0323 (9)
Crystal data top
Cu2Fe2Ge4O13V = 502.45 (8) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.1073 (8) ŵ = 18.82 mm1
b = 8.5380 (7) ÅT = 736 K
c = 4.8899 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.28 (2)°
Data collection top
STOE IPDS-I
diffractometer
1171 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
877 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.047
4541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027110 parameters
wR(F2) = 0.0543 restraints
S = 0.97Δρmax = 0.73 e Å3
1171 reflectionsΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24026 (6)0.250.49185 (18)0.0125 (2)
Ge20.74725 (6)0.250.33482 (18)0.0127 (2)
Ge30.00509 (5)0.250.40275 (18)0.0150 (2)
Ge40.51282 (6)0.250.60671 (18)0.01136 (19)
Fe10.37561 (6)0.06141 (8)1.04885 (19)0.01295 (18)
Cu10.12524 (5)0.00328 (10)1.04395 (18)0.0241 (2)
O10.3322 (4)0.250.7949 (12)0.0164 (11)
O20.6519 (4)0.250.5624 (15)0.0303 (15)
O30.1133 (3)0.250.6407 (9)0.0188 (12)
O40.2476 (3)0.0840 (5)0.2848 (9)0.0185 (9)
O50.8721 (3)0.250.5633 (11)0.0195 (12)
O60.5048 (3)0.0762 (4)0.7927 (9)0.0171 (8)
O70.7426 (3)0.0810 (4)0.1318 (10)0.0205 (9)
O80.4360 (4)0.250.2846 (13)0.0164 (11)
O90.0034 (3)0.0842 (4)0.1974 (10)0.0342 (13)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0087 (3)0.0127 (4)0.0156 (5)00.0014 (3)0
Ge20.0077 (3)0.0114 (4)0.0188 (5)00.0006 (3)0
Ge30.0065 (3)0.0191 (4)0.0192 (5)00.0002 (3)0
Ge40.0096 (3)0.0093 (3)0.0148 (5)00.0008 (3)0
Fe10.0084 (3)0.0108 (3)0.0195 (5)0.0005 (3)0.0005 (2)0.0003 (3)
Cu10.0088 (3)0.0295 (4)0.0337 (5)0.0025 (2)0.0012 (2)0.0144 (3)
O10.016 (2)0.015 (3)0.018 (3)00.002 (2)0
O20.012 (3)0.048 (4)0.032 (4)00.008 (2)0
O30.009 (2)0.033 (3)0.013 (3)00.0012 (18)0
O40.0075 (15)0.019 (2)0.029 (3)0.0044 (13)0.0020 (13)0.0094 (17)
O50.009 (2)0.032 (3)0.017 (3)00.0010 (19)0
O60.0123 (16)0.0141 (18)0.025 (3)0.0056 (14)0.0046 (14)0.0062 (16)
O70.0149 (17)0.0140 (19)0.032 (3)0.0019 (14)0.0014 (14)0.0104 (18)
O80.018 (2)0.012 (2)0.019 (3)00.004 (2)0
O90.0108 (17)0.046 (3)0.044 (4)0.0017 (17)0.0020 (16)0.028 (3)
Geometric parameters (Å, º) top
Ge1—O41.750 (4)Ge4—O81.740 (6)
Ge1—O4i1.750 (4)Ge4—O6i1.749 (4)
Ge1—O11.753 (6)Ge4—O61.749 (4)
Ge1—O31.771 (5)Fe1—O6iii1.958 (3)
Ge2—O21.689 (6)Fe1—O7iv2.008 (4)
Ge2—O71.748 (4)Fe1—O4v2.040 (4)
Ge2—O7i1.748 (4)Fe1—O12.066 (4)
Ge2—O51.778 (5)Fe1—O8v2.067 (4)
Ge3—O91.737 (4)Fe1—O62.112 (4)
Ge3—O9i1.737 (4)Cu1—O9vi1.915 (3)
Ge3—O31.745 (4)Cu1—O4v1.938 (4)
Ge3—O5ii1.756 (4)Cu1—O9v1.950 (3)
Ge4—O21.721 (5)Cu1—O7iv2.010 (4)
O4—Ge1—O4i108.2 (3)O6i—Ge4—O6116.1 (3)
O4—Ge1—O1114.91 (15)O6iii—Fe1—O7iv105.75 (15)
O4i—Ge1—O1114.91 (15)O6iii—Fe1—O4v114.05 (17)
O4—Ge1—O3109.84 (13)O7iv—Fe1—O4v75.93 (16)
O4i—Ge1—O3109.84 (13)O6iii—Fe1—O1146.55 (18)
O1—Ge1—O398.7 (2)O7iv—Fe1—O194.89 (17)
O2—Ge2—O7113.10 (17)O4v—Fe1—O196.16 (19)
O2—Ge2—O7i113.10 (17)O6iii—Fe1—O8v92.63 (16)
O7—Ge2—O7i111.2 (3)O7iv—Fe1—O8v155.34 (19)
O2—Ge2—O5100.4 (2)O4v—Fe1—O8v81.66 (19)
O7—Ge2—O5109.20 (14)O1—Fe1—O8v77.24 (17)
O7i—Ge2—O5109.20 (14)O6iii—Fe1—O672.96 (18)
O9—Ge3—O9i109.2 (4)O7iv—Fe1—O6108.29 (17)
O9—Ge3—O3108.95 (17)O4v—Fe1—O6170.97 (14)
O9i—Ge3—O3108.95 (17)O1—Fe1—O675.71 (18)
O9—Ge3—O5ii108.83 (17)O8v—Fe1—O692.6 (2)
O9i—Ge3—O5ii108.83 (17)O9vi—Cu1—O4v178.5 (2)
O3—Ge3—O5ii112.1 (3)O9vi—Cu1—O9v77.39 (10)
O2—Ge4—O8108.7 (3)O4v—Cu1—O9v102.04 (14)
O2—Ge4—O6i100.15 (17)O9vi—Cu1—O7iv102.28 (15)
O8—Ge4—O6i114.60 (15)O4v—Cu1—O7iv78.20 (16)
O2—Ge4—O6100.15 (17)O9v—Cu1—O7iv176.1 (2)
O8—Ge4—O6114.60 (15)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_600) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684
Mr = 737.14Dx = 4.868 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.1083 (8) ÅCell parameters from 4473 reflections
b = 8.5422 (7) Åθ = 2.9–28.1°
c = 4.8916 (5) ŵ = 18.80 mm1
β = 96.295 (11)°T = 778 K
V = 502.90 (7) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
856 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.055
rotation method, ϕ scansθmax = 28.1°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1516
Tmin = 0.12, Tmax = 0.25k = 1111
4541 measured reflectionsl = 55
1170 independent reflections
Refinement top
Refinement on F22 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0259P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.032(Δ/σ)max < 0.001
wR(F2) = 0.060Δρmax = 0.64 e Å3
S = 0.98Δρmin = 0.78 e Å3
1170 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0324 (10)
Crystal data top
Cu2Fe2Ge4O13V = 502.90 (7) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.1083 (8) ŵ = 18.80 mm1
b = 8.5422 (7) ÅT = 778 K
c = 4.8916 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.295 (11)°
Data collection top
STOE IPDS-I
diffractometer
1170 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
856 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.055
4541 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032110 parameters
wR(F2) = 0.0602 restraints
S = 0.98Δρmax = 0.64 e Å3
1170 reflectionsΔρmin = 0.78 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24028 (6)0.250.4917 (2)0.0119 (2)
Ge20.74720 (6)0.250.3345 (2)0.0120 (2)
Ge30.00518 (6)0.250.4026 (2)0.0146 (2)
Ge40.51302 (7)0.250.6071 (2)0.0108 (2)
Fe10.37551 (7)0.06148 (9)1.0490 (2)0.0124 (2)
Cu10.12510 (6)0.00317 (11)1.0438 (2)0.0241 (2)
O10.3321 (4)0.250.7948 (14)0.0148 (13)
O20.6519 (5)0.250.5628 (18)0.0313 (18)
O30.1133 (5)0.250.6404 (15)0.0175 (13)
O40.2475 (3)0.0839 (5)0.2855 (11)0.0189 (10)
O50.8720 (3)0.250.5624 (13)0.0190 (14)
O60.5051 (3)0.0763 (5)0.7933 (10)0.0171 (10)
O70.7429 (3)0.0806 (5)0.1334 (11)0.0197 (10)
O80.4358 (5)0.250.2848 (14)0.0163 (13)
O90.0032 (2)0.0837 (6)0.1975 (12)0.0344 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0087 (4)0.0133 (5)0.0130 (6)00.0020 (3)0
Ge20.0078 (4)0.0117 (4)0.0163 (6)00.0001 (3)0
Ge30.0069 (4)0.0203 (5)0.0164 (6)00.0002 (3)0
Ge40.0102 (4)0.0102 (4)0.0116 (6)00.0010 (3)0
Fe10.0089 (3)0.0112 (4)0.0170 (5)0.0007 (3)0.0005 (3)0.0001 (4)
Cu10.0090 (3)0.0315 (4)0.0314 (6)0.0030 (3)0.0009 (3)0.0146 (4)
O10.013 (3)0.011 (3)0.019 (4)00.002 (2)0
O20.014 (3)0.053 (5)0.029 (5)00.011 (3)0
O30.011 (3)0.030 (3)0.011 (4)00.001 (2)0
O40.0103 (18)0.021 (2)0.026 (3)0.0051 (15)0.0038 (16)0.007 (2)
O50.011 (2)0.028 (3)0.018 (4)00.000 (2)0
O60.0137 (19)0.015 (2)0.023 (3)0.0070 (16)0.0031 (16)0.0074 (19)
O70.0155 (19)0.014 (2)0.030 (3)0.0019 (16)0.0032 (17)0.009 (2)
O80.016 (3)0.016 (3)0.015 (4)00.003 (2)0
O90.012 (2)0.046 (3)0.045 (4)0.001 (2)0.0004 (19)0.028 (3)
Geometric parameters (Å, º) top
Ge1—O4i1.749 (5)Ge4—O81.742 (7)
Ge1—O41.749 (5)Ge4—O6i1.749 (4)
Ge1—O11.753 (6)Ge4—O61.749 (4)
Ge1—O31.771 (6)Fe1—O6iii1.956 (4)
Ge2—O21.691 (7)Fe1—O7iv2.011 (4)
Ge2—O71.748 (5)Fe1—O4v2.042 (5)
Ge2—O7i1.748 (5)Fe1—O8v2.067 (4)
Ge2—O51.777 (6)Fe1—O12.067 (4)
Ge3—O91.741 (4)Fe1—O62.115 (5)
Ge3—O9i1.741 (4)Cu1—O9vi1.914 (5)
Ge3—O31.745 (6)Cu1—O4v1.940 (4)
Ge3—O5ii1.755 (4)Cu1—O9v1.946 (4)
Ge4—O21.719 (6)Cu1—O7iv2.012 (5)
O4i—Ge1—O4108.5 (3)O6i—Ge4—O6116.0 (3)
O4i—Ge1—O1114.87 (18)O6iii—Fe1—O7iv105.79 (18)
O4—Ge1—O1114.87 (18)O6iii—Fe1—O4v114.0 (2)
O4i—Ge1—O3109.71 (17)O7iv—Fe1—O4v76.08 (19)
O4—Ge1—O3109.71 (17)O6iii—Fe1—O8v92.76 (19)
O1—Ge1—O398.7 (3)O7iv—Fe1—O8v155.3 (2)
O2—Ge2—O7113.04 (19)O4v—Fe1—O8v81.6 (2)
O2—Ge2—O7i113.04 (19)O6iii—Fe1—O1146.5 (2)
O7—Ge2—O7i111.8 (4)O7iv—Fe1—O194.7 (2)
O2—Ge2—O5100.4 (3)O4v—Fe1—O196.3 (2)
O7—Ge2—O5108.91 (16)O8v—Fe1—O177.27 (19)
O7i—Ge2—O5108.91 (16)O6iii—Fe1—O672.8 (2)
O9—Ge3—O9i109.4 (4)O7iv—Fe1—O6108.2 (2)
O9—Ge3—O3108.76 (19)O4v—Fe1—O6171.05 (16)
O9i—Ge3—O3108.76 (19)O8v—Fe1—O692.5 (2)
O9—Ge3—O5ii108.84 (16)O1—Fe1—O675.8 (2)
O9i—Ge3—O5ii108.84 (16)O9vi—Cu1—O4v178.5 (2)
O3—Ge3—O5ii112.2 (3)O9vi—Cu1—O9v77.36 (18)
O2—Ge4—O8108.7 (4)O4v—Cu1—O9v101.94 (19)
O2—Ge4—O6i100.1 (2)O9vi—Cu1—O7iv102.22 (15)
O8—Ge4—O6i114.62 (17)O4v—Cu1—O7iv78.39 (19)
O2—Ge4—O6100.1 (2)O9v—Cu1—O7iv176.1 (3)
O8—Ge4—O6114.62 (17)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_650) top
Crystal data top
Cu2Fe2Ge4O13F(000) = 684.0
Mr = 737.14Dx = 4.819 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 12.149 (5) ÅCell parameters from 4513 reflections
b = 8.577 (3) Åθ = 2.9–28.1°
c = 4.9048 (19) ŵ = 18.61 mm1
β = 96.25 (3)°T = 819 K
V = 508.1 (3) Å3Prismatic, pale green
Z = 20.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
802 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.076
rotation method, ϕ scansθmax = 27.9°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1516
Tmin = 0.12, Tmax = 0.25k = 1111
4527 measured reflectionsl = 55
1164 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0302P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.039(Δ/σ)max < 0.001
wR(F2) = 0.072Δρmax = 1.09 e Å3
S = 0.97Δρmin = 1.10 e Å3
1164 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.0417 (14)
Crystal data top
Cu2Fe2Ge4O13V = 508.1 (3) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.149 (5) ŵ = 18.61 mm1
b = 8.577 (3) ÅT = 819 K
c = 4.9048 (19) Å0.12 × 0.11 × 0.08 mm
β = 96.25 (3)°
Data collection top
STOE IPDS-I
diffractometer
1164 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
802 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.076
4527 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.039110 parameters
wR(F2) = 0.0720 restraints
S = 0.97Δρmax = 1.09 e Å3
1164 reflectionsΔρmin = 1.10 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24042 (8)0.250.4912 (3)0.0126 (3)
Ge20.74706 (8)0.250.3345 (3)0.0127 (3)
Ge30.00517 (8)0.250.4023 (3)0.0148 (3)
Ge40.51296 (9)0.250.6067 (3)0.0111 (3)
Fe10.37562 (9)0.06129 (12)1.0489 (3)0.0128 (3)
Cu10.12521 (8)0.00315 (15)1.0440 (3)0.0250 (3)
O10.3322 (6)0.250.7945 (19)0.0160 (17)
O20.6525 (6)0.250.562 (2)0.029 (2)
O30.1129 (6)0.250.639 (2)0.0184 (18)
O40.2475 (4)0.0840 (7)0.2847 (14)0.0182 (13)
O50.8721 (7)0.250.561 (2)0.0206 (18)
O60.5052 (4)0.0771 (6)0.7939 (14)0.0191 (13)
O70.7432 (4)0.0806 (7)0.1298 (15)0.0221 (14)
O80.4358 (6)0.250.2855 (19)0.0164 (18)
O90.0021 (5)0.0831 (9)0.1983 (18)0.0373 (19)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0088 (5)0.0141 (6)0.0142 (9)00.0023 (4)0
Ge20.0076 (5)0.0118 (6)0.0187 (8)00.0005 (4)0
Ge30.0070 (5)0.0216 (6)0.0155 (9)00.0002 (4)0
Ge40.0110 (5)0.0110 (5)0.0107 (8)00.0011 (4)0
Fe10.0090 (4)0.0121 (5)0.0172 (7)0.0008 (4)0.0008 (4)0.0002 (5)
Cu10.0098 (4)0.0328 (5)0.0321 (8)0.0035 (4)0.0014 (4)0.0157 (5)
O10.013 (3)0.017 (4)0.017 (5)00.001 (3)0
O20.015 (4)0.048 (6)0.026 (7)00.012 (3)0
O30.008 (3)0.033 (4)0.014 (6)00.003 (3)0
O40.011 (2)0.021 (3)0.023 (4)0.005 (2)0.005 (2)0.010 (3)
O50.011 (3)0.031 (4)0.020 (6)00.001 (3)0
O60.014 (3)0.018 (3)0.026 (4)0.006 (2)0.005 (2)0.009 (3)
O70.016 (3)0.016 (3)0.034 (5)0.006 (2)0.002 (2)0.009 (3)
O80.017 (4)0.015 (4)0.016 (5)00.006 (3)0
O90.018 (3)0.049 (4)0.044 (6)0.000 (3)0.003 (3)0.021 (4)
Geometric parameters (Å, º) top
Ge1—O41.754 (6)Ge4—O81.743 (8)
Ge1—O4i1.754 (6)Ge4—O6i1.752 (6)
Ge1—O11.759 (8)Ge4—O61.752 (6)
Ge1—O31.780 (8)Fe1—O6iii1.964 (5)
Ge2—O21.688 (9)Fe1—O7iv2.014 (6)
Ge2—O71.764 (6)Fe1—O4v2.047 (6)
Ge2—O7i1.764 (6)Fe1—O12.076 (6)
Ge2—O51.783 (9)Fe1—O8v2.078 (5)
Ge3—O31.745 (8)Fe1—O62.119 (6)
Ge3—O91.749 (7)Cu1—O9vi1.932 (7)
Ge3—O9i1.749 (7)Cu1—O9v1.941 (7)
Ge3—O5ii1.756 (9)Cu1—O4v1.944 (6)
Ge4—O21.732 (8)Cu1—O7iv2.005 (6)
O4—Ge1—O4i108.4 (4)O6i—Ge4—O6115.7 (4)
O4—Ge1—O1114.9 (2)O6iii—Fe1—O7iv105.6 (2)
O4i—Ge1—O1114.9 (2)O6iii—Fe1—O4v114.1 (3)
O4—Ge1—O3109.6 (2)O7iv—Fe1—O4v75.6 (2)
O4i—Ge1—O3109.6 (2)O6iii—Fe1—O1146.7 (3)
O1—Ge1—O398.9 (4)O7iv—Fe1—O194.9 (3)
O2—Ge2—O7113.5 (2)O4v—Fe1—O196.1 (3)
O2—Ge2—O7i113.5 (2)O6iii—Fe1—O8v93.0 (2)
O7—Ge2—O7i110.9 (5)O7iv—Fe1—O8v154.9 (3)
O2—Ge2—O5100.5 (5)O4v—Fe1—O8v81.6 (3)
O7—Ge2—O5108.9 (3)O1—Fe1—O8v77.3 (2)
O7i—Ge2—O5108.9 (3)O6iii—Fe1—O673.0 (3)
O3—Ge3—O9108.3 (3)O7iv—Fe1—O6109.0 (3)
O3—Ge3—O9i108.3 (3)O4v—Fe1—O6170.7 (2)
O9—Ge3—O9i109.8 (6)O1—Fe1—O675.7 (3)
O3—Ge3—O5ii112.4 (4)O8v—Fe1—O692.3 (3)
O9—Ge3—O5ii109.0 (3)O9vi—Cu1—O9v77.2 (4)
O9i—Ge3—O5ii109.0 (3)O9vi—Cu1—O4v178.2 (3)
O2—Ge4—O8108.9 (5)O9v—Cu1—O4v101.9 (3)
O2—Ge4—O6i100.1 (3)O9vi—Cu1—O7iv102.7 (3)
O8—Ge4—O6i114.8 (2)O9v—Cu1—O7iv176.5 (4)
O2—Ge4—O6100.1 (3)O4v—Cu1—O7iv78.1 (2)
O8—Ge4—O6114.8 (2)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.
(cf9_750) top
Crystal data top
Cu2Fe2Ge4O13Z = 2
Mr = 737.14F(000) = 684
Monoclinic, P21/mDx = 4.853 Mg m3
a = 12.1165 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.5535 (7) ŵ = 18.75 mm1
c = 4.8974 (5) ÅT = 903 K
β = 96.326 (11)°Prismatic, pale green
V = 504.47 (7) Å30.12 × 0.11 × 0.08 mm
Data collection top
STOE IPDS-I
diffractometer
699 reflections with I > 2σ(I)
Radiation source: sealed x-ray tupeRint = 0.127
rotation method, ϕ scansθmax = 27.9°, θmin = 2.9°
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
h = 1515
Tmin = 0.12, Tmax = 0.25k = 1111
4491 measured reflectionsl = 55
1155 independent reflections
Refinement top
Refinement on F24 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0648P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.058(Δ/σ)max < 0.001
wR(F2) = 0.136Δρmax = 1.74 e Å3
S = 0.97Δρmin = 1.93 e Å3
1155 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
110 parametersExtinction coefficient: 0.055 (3)
Crystal data top
Cu2Fe2Ge4O13V = 504.47 (7) Å3
Mr = 737.14Z = 2
Monoclinic, P21/mMo Kα radiation
a = 12.1165 (8) ŵ = 18.75 mm1
b = 8.5535 (7) ÅT = 903 K
c = 4.8974 (5) Å0.12 × 0.11 × 0.08 mm
β = 96.326 (11)°
Data collection top
STOE IPDS-I
diffractometer
1155 independent reflections
Absorption correction: numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
699 reflections with I > 2σ(I)
Tmin = 0.12, Tmax = 0.25Rint = 0.127
4491 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.058110 parameters
wR(F2) = 0.1364 restraints
S = 0.97Δρmax = 1.74 e Å3
1155 reflectionsΔρmin = 1.93 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ge10.24039 (14)0.250.4914 (5)0.0115 (6)
Ge20.74722 (14)0.250.3337 (5)0.0113 (5)
Ge30.00519 (14)0.250.4015 (5)0.0139 (6)
Ge40.51322 (15)0.250.6066 (4)0.0092 (5)
Fe10.37523 (13)0.06107 (18)1.0491 (4)0.0118 (5)
Cu10.12515 (12)0.0033 (3)1.0449 (5)0.0251 (6)
O10.3311 (9)0.250.795 (3)0.013 (3)
O20.6518 (3)0.250.5591 (13)0.033 (4)
O30.1130 (7)0.250.639 (2)0.020 (3)
O40.2475 (2)0.0828 (11)0.2873 (9)0.017 (2)
O50.87212 (17)0.250.5609 (7)0.019 (3)
O60.5056 (3)0.0768 (7)0.7934 (19)0.017 (2)
O70.7430 (8)0.0806 (11)0.134 (3)0.020 (2)
O80.4365 (9)0.250.2842 (13)0.014 (3)
O90.00317 (15)0.0842 (7)0.1958 (13)0.032 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ge10.0047 (8)0.0162 (11)0.0126 (15)0.0000.0034 (7)0.000
Ge20.0022 (8)0.0132 (10)0.0183 (15)0.0000.0007 (7)0.000
Ge30.0016 (8)0.0221 (11)0.0173 (15)0.0000.0015 (8)0.000
Ge40.0072 (8)0.0111 (9)0.0088 (14)0.0000.0016 (7)0.000
Fe10.0048 (8)0.0152 (9)0.0149 (13)0.0024 (7)0.0005 (6)0.0009 (9)
Cu10.0049 (7)0.0369 (10)0.0331 (14)0.0045 (7)0.0006 (6)0.0183 (10)
O10.005 (5)0.018 (7)0.015 (9)0.0000.001 (5)0.000
O20.024 (8)0.053 (11)0.026 (13)0.0000.017 (7)0.000
O30.014 (6)0.041 (9)0.007 (10)0.0000.001 (5)0.000
O40.003 (4)0.026 (6)0.023 (7)0.005 (3)0.003 (4)0.012 (5)
O50.012 (6)0.036 (8)0.009 (9)0.0000.001 (5)0.000
O60.011 (4)0.011 (5)0.031 (8)0.002 (4)0.003 (4)0.011 (5)
O70.011 (4)0.014 (5)0.036 (8)0.005 (4)0.002 (4)0.010 (5)
O80.013 (6)0.015 (6)0.012 (9)0.0000.006 (5)0.000
O90.012 (5)0.045 (7)0.039 (10)0.004 (5)0.001 (5)0.020 (7)
Geometric parameters (Å, º) top
Ge1—O11.750 (14)Ge4—O81.742 (8)
Ge1—O41.752 (6)Ge4—O6i1.749 (8)
Ge1—O4i1.752 (6)Ge4—O61.749 (8)
Ge1—O31.776 (14)Fe1—O6iii1.956 (6)
Ge2—O21.684 (8)Fe1—O7iv2.010 (9)
Ge2—O71.747 (10)Fe1—O4v2.047 (6)
Ge2—O7i1.747 (10)Fe1—O12.073 (9)
Ge2—O51.777 (3)Fe1—O8v2.074 (6)
Ge3—O91.741 (9)Fe1—O62.125 (6)
Ge3—O9i1.741 (9)Cu1—O9vi1.915 (4)
Ge3—O31.743 (9)Cu1—O4v1.940 (9)
Ge3—O5ii1.754 (3)Cu1—O9v1.944 (9)
Ge4—O21.720 (8)Cu1—O7iv2.015 (10)
O1—Ge1—O4114.8 (3)O6i—Ge4—O6115.8 (7)
O1—Ge1—O4i114.8 (3)O6iii—Fe1—O7iv105.7 (4)
O4—Ge1—O4i109.4 (6)O6iii—Fe1—O4v113.7 (3)
O1—Ge1—O398.4 (5)O7iv—Fe1—O4v76.2 (3)
O4—Ge1—O3109.39 (16)O6iii—Fe1—O1146.8 (4)
O4i—Ge1—O3109.39 (15)O7iv—Fe1—O194.5 (4)
O2—Ge2—O7112.8 (4)O4v—Fe1—O196.3 (5)
O2—Ge2—O7i112.8 (4)O6iii—Fe1—O8v92.7 (3)
O7—Ge2—O7i112.1 (8)O7iv—Fe1—O8v155.7 (5)
O2—Ge2—O5100.9 (2)O4v—Fe1—O8v81.9 (4)
O7—Ge2—O5108.8 (3)O1—Fe1—O8v77.2 (3)
O7i—Ge2—O5108.8 (3)O6iii—Fe1—O672.9 (2)
O9—Ge3—O9i109.0 (6)O7iv—Fe1—O6108.4 (4)
O9—Ge3—O3108.9 (3)O4v—Fe1—O6171.1 (3)
O9i—Ge3—O3108.9 (3)O1—Fe1—O675.9 (4)
O9—Ge3—O5ii108.92 (18)O8v—Fe1—O691.9 (5)
O9i—Ge3—O5ii108.92 (18)O9vi—Cu1—O4v178.8 (4)
O3—Ge3—O5ii112.1 (5)O9vi—Cu1—O9v77.17 (15)
O2—Ge4—O8108.0 (5)O4v—Cu1—O9v102.12 (17)
O2—Ge4—O6i100.35 (16)O9vi—Cu1—O7iv102.1 (3)
O8—Ge4—O6i114.9 (3)O4v—Cu1—O7iv78.5 (3)
O2—Ge4—O6100.35 (16)O9v—Cu1—O7iv175.5 (5)
O8—Ge4—O6114.9 (4)
Symmetry codes: (i) x, y+1/2, z; (ii) x1, y, z; (iii) x+1, y, z+2; (iv) x+1, y, z+1; (v) x, y, z+1; (vi) x, y, z+1.

Experimental details

(cf5_090)(cf5_130)(cf5_170)(cf5_200)
Crystal data
Chemical formulaCu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13
Mr737.14737.14737.14737.14
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/m
Temperature (K)90130170200
a, b, c (Å)12.090 (2), 8.4901 (9), 4.8626 (8)12.0881 (9), 8.4914 (5), 4.8644 (4)12.0087 (9), 8.4931 (5), 4.8657 (4)12.0859 (9), 8.4947 (5), 4.8667 (4)
β (°) 96.13 (2) 96.137 (9) 96.139 (9) 96.143 (9)
V3)496.27 (13)496.44 (6)493.41 (6)496.78 (6)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)19.0619.0519.1719.04
Crystal size (mm)0.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS-II
diffractometer
STOE IPDS-II
diffractometer
STOE IPDS-II
diffractometer
STOE IPDS-II
diffractometer
Absorption correctionNumerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Tmin, Tmax0.12, 0.250.12, 0.250.12, 0.220.12, 0.25
No. of measured, independent and
observed [I > 2σ(I)] reflections
5776, 1527, 1202 5770, 1530, 1198 5729, 1518, 1171 5779, 1530, 1196
Rint0.0600.0560.0570.059
(sin θ/λ)max1)0.7040.7040.7040.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.058, 1.02 0.031, 0.055, 1.00 0.031, 0.062, 0.98 0.031, 0.055, 0.97
No. of reflections1527153015181530
No. of parameters110110110110
No. of restraints3134
Δρmax, Δρmin (e Å3)1.51, 1.161.31, 1.171.03, 1.150.92, 1.09


(cf5_250)(cf5_290)(cufege)(cf9_050)
Crystal data
Chemical formulaCu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13
Mr737.14737.14737.14737.14
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/m
Temperature (K)250290298320
a, b, c (Å)12.0858 (9), 8.4979 (5), 4.8691 (4)12.0861 (12), 8.5008 (8), 4.8704 (5)12.088 (2), 8.5019 (9), 4.8703 (8)12.0876 (8), 8.5043 (7), 4.8715 (5)
β (°) 96.161 (9) 96.167 (9) 96.17 (2) 96.19 (2)
V3)497.19 (6)497.50 (9)497.61 (13)497.86 (7)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)19.0219.0018.9918.99
Crystal size (mm)0.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS-II
diffractometer
STOE IPDS-II
diffractometer
STOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
Absorption correctionNumerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Tmin, Tmax0.12, 0.250.12, 0.250.12, 0.250.12, 0.25
No. of measured, independent and
observed [I > 2σ(I)] reflections
5751, 1523, 1172 7188, 1524, 1256 4906, 1267, 1087 4481, 1162, 955
Rint0.0650.0550.0390.038
(sin θ/λ)max1)0.7040.7040.6620.662
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.059, 1.00 0.026, 0.054, 1.02 0.021, 0.048, 1.02 0.025, 0.051, 1.01
No. of reflections1523152412671162
No. of parameters110110107110
No. of restraints8400
Δρmax, Δρmin (e Å3)1.38, 1.090.91, 1.041.45, 1.590.75, 0.81


(cf9_100)(cf9_200)(cf9_300)(cf9_400)
Crystal data
Chemical formulaCu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13
Mr737.14737.14737.14737.14
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/m
Temperature (K)362445528611
a, b, c (Å)12.0883 (8), 8.5076 (7), 4.8727 (5)12.0943 (8), 8.5142 (7), 4.8763 (5)12.0971 (8), 8.5205 (7), 4.8803 (5)12.1011 (8), 8.5290 (7), 4.8841 (5)
β (°) 96.18 (2) 96.21 (2) 96.22 (2) 96.24 (2)
V3)498.21 (8)499.19 (8)500.07 (8)501.10 (8)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)18.9818.9418.9118.87
Crystal size (mm)0.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
Absorption correctionNumerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Tmin, Tmax0.12, 0.250.12, 0.250.12, 0.250.12, 0.25
No. of measured, independent and
observed [I > 2σ(I)] reflections
4515, 1164, 956 4494, 1164, 962 4513, 1167, 949 4515, 1165, 914
Rint0.0490.0450.0380.046
(sin θ/λ)max1)0.6600.6590.6590.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.053, 0.97 0.028, 0.062, 0.97 0.026, 0.054, 0.98 0.028, 0.062, 0.99
No. of reflections1164116411671165
No. of parameters110110110110
No. of restraints4613
Δρmax, Δρmin (e Å3)1.16, 0.850.92, 0.771.00, 0.700.83, 0.90


(cf9_500)(cf9_550)(cf9_600)(cf9_650)
Crystal data
Chemical formulaCu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13Cu2Fe2Ge4O13
Mr737.14737.14737.14737.14
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/mMonoclinic, P21/m
Temperature (K)695736778819
a, b, c (Å)12.1039 (8), 8.5353 (7), 4.8886 (5)12.1073 (8), 8.5380 (7), 4.8899 (5)12.1083 (8), 8.5422 (7), 4.8916 (5)12.149 (5), 8.577 (3), 4.9048 (19)
β (°) 96.28 (2) 96.28 (2) 96.295 (11) 96.25 (3)
V3)502.01 (8)502.45 (8)502.90 (7)508.1 (3)
Z2222
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)18.8418.8218.8018.61
Crystal size (mm)0.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.080.12 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
STOE IPDS-I
diffractometer
Absorption correctionNumerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Numerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Tmin, Tmax0.12, 0.250.12, 0.250.12, 0.250.12, 0.25
No. of measured, independent and
observed [I > 2σ(I)] reflections
4549, 1169, 891 4541, 1171, 877 4541, 1170, 856 4527, 1164, 802
Rint0.0470.0470.0550.076
(sin θ/λ)max1)0.6620.6620.6620.659
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.061, 1.01 0.027, 0.054, 0.97 0.032, 0.060, 0.98 0.039, 0.072, 0.97
No. of reflections1169117111701164
No. of parameters110110110110
No. of restraints5320
Δρmax, Δρmin (e Å3)0.85, 0.810.73, 0.670.64, 0.781.09, 1.10


(cf9_750)
Crystal data
Chemical formulaCu2Fe2Ge4O13
Mr737.14
Crystal system, space groupMonoclinic, P21/m
Temperature (K)903
a, b, c (Å)12.1165 (8), 8.5535 (7), 4.8974 (5)
β (°) 96.326 (11)
V3)504.47 (7)
Z2
Radiation typeMo Kα
µ (mm1)18.75
Crystal size (mm)0.12 × 0.11 × 0.08
Data collection
DiffractometerSTOE IPDS-I
diffractometer
Absorption correctionNumerical
via equivalents using Stoe X-SHAPE and X-RED (Stoe & Cie 1996)
Tmin, Tmax0.12, 0.25
No. of measured, independent and
observed [I > 2σ(I)] reflections
4491, 1155, 699
Rint0.127
(sin θ/λ)max1)0.658
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.136, 0.97
No. of reflections1155
No. of parameters110
No. of restraints4
Δρmax, Δρmin (e Å3)1.74, 1.93

Computer programs: STOE X-AREA (Stoe & Cie, 2002), Stoe X-AREA (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), Diamond 3.0 Bradenburg & Berndt 1999), WinGX 1.70.00 (Farrugia, 1999)'.

 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds