Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C18H18O5, was synthesized by the reaction of 3,4-methyl­ene­dioxy­benz­aldehyde, 5,5-di­methyl-1,3-cyclo­hexanedione and iso­propyl­idene malonate in the presence of triethyl­benzyl­ammonium chloride in water. X-ray analysis reveals that the pyran ring and the fused six-membered ring adopt distorted boat conformations.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803016945/ww6104sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803016945/ww6104Isup2.hkl
Contains datablock I

CCDC reference: 217032

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.038
  • wR factor = 0.101
  • Data-to-parameter ratio = 12.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT230_ALERT_2_C Hirshfeld Test Diff for C3 - C17 = 5.94 su PLAT242_ALERT_2_C Check Low U(eq) as Compared to Neighbors .. C3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Coumarin and coumarin derivatives are natural compounds and are important chemicals in the perfume, cosmetic and pharmaceutical industrial production (Soine, 1964). As part of our program aimed at developing new and environmental friendly methodologies for the preparation of fine chemicals (Shi et al., 2003). We performed the synthesis of coumarin derivatives through a three-component reaction employing water as the reaction medium.

We report here the crystal structure of 4-(3,4-methylenedioxyphenyl)-7,7-dimethyl-5-oxo-3,4,5,6,7,8-hexahydrocoumarin, (I), synthesized by the reaction of 3,4-methylenedioxylbenzaldehyde, 5,5-dimethyl-1,3-cyclohexandione and isopropylidene malonate in the presence of triethylbenzylammonium chloride in water.

In (I), atoms O1, C1, C6, C7, C8 and C9 form a pyran ring, and the O1—C1, O1—C9 and C1—C6 bond lengths of 1.386 (2), 1.381 (2) and 1.341 (2) Å, respectively, are slightly longer than those of 2-amino-7,7-dimethyl-4-phenyl-5-oxo-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile (Gao et al., 2001). In addition, this pyran ring adopts a distorted boat conformation; atoms O1, C1, C6 and C7 are on one plane, while atoms C8 and C9 deviate from the plane by 0.77 and 0.28 Å, respectively. X-Ray analysis reveals that the six-membered C1–C6 ring adopts a distorted boat conformation which is different from the envelope conformation (Tu et al., 2001).

Experimental top

The title compound, (I), was prepared by the reaction of 3,4-methylenedioxylbenzaldehyde, 5,5-dimethyl-1,3-cyclohexandione and isopropylidene malonate in the presence of triethylbenzylammonium chloride in water at 348 K for 6 h (m.p. 427–429 K). The single crystals suitable for X-ray diffraction were obtained by slow evaporation of ethanol solution.

Refinement top

The positions of all H atoms were fixed geometrically and refined as riding (C—H = 0.93–0.98 Å).

Computing details top

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: SHELXTL; program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure drawing for (I), showing 50% probability of displacement ellipsoids and the atom-numbering scheme.
4-(3,4-methylenedioxyphenyl)-7,7-dimethyl-5-oxo-3,4,5,6,7,8-hexahydrocoumarin top
Crystal data top
C18H18O5Z = 2
Mr = 314.32F(000) = 332
Triclinic, P1Dx = 1.347 Mg m3
Hall symbol: -P 1Melting point = 427–429 K
a = 6.963 (1) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.957 (2) ÅCell parameters from 28 reflections
c = 13.594 (3) Åθ = 3.3–17.0°
α = 90.16 (2)°µ = 0.10 mm1
β = 103.11 (2)°T = 296 K
γ = 109.60 (2)°Block, colorless
V = 775.0 (3) Å30.54 × 0.48 × 0.24 mm
Data collection top
Siemens P4
diffractometer
Rint = 0.014
Radiation source: normal-focus sealed tubeθmax = 25.0°, θmin = 1.5°
Graphite monochromatorh = 08
ω scansk = 109
3072 measured reflectionsl = 1615
2731 independent reflections3 standard reflections every 97 reflections
1937 reflections with I > 2σ(I) intensity decay: 6.0%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.102 w = 1/[σ2(Fo2) + (0.0542P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
2731 reflectionsΔρmax = 0.17 e Å3
211 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXTL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.041 (5)
Crystal data top
C18H18O5γ = 109.60 (2)°
Mr = 314.32V = 775.0 (3) Å3
Triclinic, P1Z = 2
a = 6.963 (1) ÅMo Kα radiation
b = 8.957 (2) ŵ = 0.10 mm1
c = 13.594 (3) ÅT = 296 K
α = 90.16 (2)°0.54 × 0.48 × 0.24 mm
β = 103.11 (2)°
Data collection top
Siemens P4
diffractometer
Rint = 0.014
3072 measured reflections3 standard reflections every 97 reflections
2731 independent reflections intensity decay: 6.0%
1937 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.03Δρmax = 0.17 e Å3
2731 reflectionsΔρmin = 0.16 e Å3
211 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13514 (18)0.54308 (14)0.13021 (8)0.0545 (3)
O20.85495 (19)1.14456 (14)0.50051 (9)0.0620 (4)
O31.01742 (19)1.20478 (14)0.36817 (10)0.0675 (4)
O40.5954 (2)0.40580 (17)0.39569 (9)0.0783 (4)
O50.0147 (2)0.73684 (16)0.14565 (10)0.0705 (4)
C10.2442 (2)0.44709 (18)0.17532 (12)0.0440 (4)
C20.2199 (3)0.3133 (2)0.10370 (13)0.0556 (5)
H2A0.21920.35050.03670.067*
H2B0.08530.23070.09990.067*
C30.3937 (3)0.2418 (2)0.13387 (13)0.0532 (5)
C40.4296 (3)0.2229 (2)0.24763 (14)0.0611 (5)
H4A0.30630.14180.26000.073*
H4B0.54730.18580.26870.073*
C50.4729 (3)0.3733 (2)0.31177 (13)0.0527 (4)
C60.3592 (2)0.47907 (18)0.27140 (11)0.0430 (4)
C70.3631 (2)0.61509 (19)0.33727 (11)0.0451 (4)
H70.37270.58290.40660.054*
C80.1511 (3)0.6401 (2)0.30052 (12)0.0515 (4)
H8A0.04180.55260.31870.062*
H8B0.15730.73740.33470.062*
C90.0961 (3)0.6501 (2)0.18920 (13)0.0501 (4)
C100.5462 (2)0.77008 (19)0.34060 (11)0.0423 (4)
C110.6075 (2)0.88055 (19)0.42492 (11)0.0444 (4)
H110.54290.85880.47860.053*
C120.7650 (2)1.02084 (19)0.42544 (11)0.0435 (4)
C130.8631 (2)1.05607 (19)0.34699 (13)0.0488 (4)
C140.8088 (3)0.9507 (2)0.26496 (13)0.0594 (5)
H140.87640.97390.21230.071*
C150.6475 (3)0.8062 (2)0.26271 (13)0.0537 (5)
H150.60700.73210.20720.064*
C160.9975 (3)1.2682 (2)0.45983 (14)0.0588 (5)
H16A0.94501.35550.44660.071*
H16B1.13341.30810.50790.071*
C170.3261 (4)0.0808 (2)0.07398 (17)0.0780 (6)
H17A0.30360.09490.00280.094*
H17B0.19810.01140.08790.094*
H17C0.43400.03490.09360.094*
C180.5966 (3)0.3507 (3)0.11116 (19)0.0847 (7)
H18A0.57490.36130.03960.102*
H18B0.70530.30610.13280.102*
H18C0.63770.45350.14680.102*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0605 (8)0.0604 (7)0.0408 (6)0.0271 (6)0.0005 (5)0.0020 (5)
O20.0675 (8)0.0537 (7)0.0547 (7)0.0078 (6)0.0153 (6)0.0092 (6)
O30.0609 (8)0.0563 (8)0.0749 (9)0.0015 (7)0.0253 (7)0.0061 (7)
O40.0792 (10)0.1013 (11)0.0519 (8)0.0464 (9)0.0122 (7)0.0011 (7)
O50.0756 (9)0.0720 (9)0.0688 (9)0.0395 (8)0.0057 (7)0.0086 (7)
C10.0412 (9)0.0449 (9)0.0415 (9)0.0121 (7)0.0054 (7)0.0052 (7)
C20.0559 (11)0.0534 (10)0.0482 (10)0.0136 (9)0.0022 (8)0.0037 (8)
C30.0522 (10)0.0492 (10)0.0545 (10)0.0124 (9)0.0136 (8)0.0006 (8)
C40.0610 (12)0.0625 (12)0.0646 (12)0.0306 (10)0.0105 (9)0.0100 (9)
C50.0486 (10)0.0636 (11)0.0440 (10)0.0200 (9)0.0065 (8)0.0089 (8)
C60.0392 (8)0.0464 (9)0.0378 (8)0.0096 (7)0.0066 (7)0.0047 (7)
C70.0429 (9)0.0540 (10)0.0334 (8)0.0123 (8)0.0062 (7)0.0032 (7)
C80.0437 (9)0.0592 (11)0.0492 (10)0.0128 (8)0.0141 (8)0.0027 (8)
C90.0400 (9)0.0520 (10)0.0525 (10)0.0122 (8)0.0054 (8)0.0014 (8)
C100.0388 (8)0.0505 (10)0.0373 (8)0.0173 (8)0.0056 (7)0.0033 (7)
C110.0434 (9)0.0539 (10)0.0371 (8)0.0178 (8)0.0103 (7)0.0033 (7)
C120.0410 (9)0.0489 (10)0.0399 (9)0.0182 (8)0.0044 (7)0.0006 (7)
C130.0397 (9)0.0517 (10)0.0531 (10)0.0137 (8)0.0108 (8)0.0041 (8)
C140.0590 (12)0.0641 (12)0.0533 (11)0.0110 (10)0.0257 (9)0.0010 (9)
C150.0547 (10)0.0570 (11)0.0441 (9)0.0107 (9)0.0148 (8)0.0060 (8)
C160.0488 (10)0.0522 (11)0.0665 (12)0.0117 (9)0.0053 (9)0.0026 (9)
C170.0876 (15)0.0659 (13)0.0806 (14)0.0277 (12)0.0190 (12)0.0068 (11)
C180.0732 (14)0.0807 (15)0.1004 (17)0.0126 (12)0.0430 (13)0.0001 (13)
Geometric parameters (Å, º) top
O1—C91.381 (2)C7—C81.539 (2)
O1—C11.3864 (18)C7—H70.9800
O2—C121.3784 (19)C8—C91.485 (2)
O2—C161.426 (2)C8—H8A0.9700
O3—C131.382 (2)C8—H8B0.9700
O3—C161.422 (2)C10—C151.382 (2)
O4—C51.2264 (19)C10—C111.401 (2)
O5—C91.192 (2)C11—C121.361 (2)
C1—C61.341 (2)C11—H110.9300
C1—C21.482 (2)C12—C131.375 (2)
C2—C31.529 (2)C13—C141.357 (2)
C2—H2A0.9700C14—C151.395 (2)
C2—H2B0.9700C14—H140.9300
C3—C181.523 (3)C15—H150.9300
C3—C171.525 (2)C16—H16A0.9700
C3—C41.529 (2)C16—H16B0.9700
C4—C51.506 (2)C17—H17A0.9600
C4—H4A0.9700C17—H17B0.9600
C4—H4B0.9700C17—H17C0.9600
C5—C61.461 (2)C18—H18A0.9600
C6—C71.499 (2)C18—H18B0.9600
C7—C101.530 (2)C18—H18C0.9600
C9—O1—C1120.18 (12)H8A—C8—H8B107.9
C12—O2—C16105.65 (13)O5—C9—O1116.87 (15)
C13—O3—C16105.47 (13)O5—C9—C8126.67 (17)
C6—C1—O1122.06 (14)O1—C9—C8116.40 (15)
C6—C1—C2126.44 (15)C15—C10—C11119.43 (15)
O1—C1—C2111.48 (13)C15—C10—C7122.52 (14)
C1—C2—C3113.28 (14)C11—C10—C7118.02 (14)
C1—C2—H2A108.9C12—C11—C10117.66 (15)
C3—C2—H2A108.9C12—C11—H11121.2
C1—C2—H2B108.9C10—C11—H11121.2
C3—C2—H2B108.9C11—C12—C13122.35 (15)
H2A—C2—H2B107.7C11—C12—O2128.05 (15)
C18—C3—C17108.95 (16)C13—C12—O2109.57 (15)
C18—C3—C4109.42 (16)C14—C13—C12121.28 (16)
C17—C3—C4110.61 (15)C14—C13—O3128.78 (16)
C18—C3—C2110.57 (16)C12—C13—O3109.92 (14)
C17—C3—C2109.29 (15)C13—C14—C15117.36 (16)
C4—C3—C2108.00 (14)C13—C14—H14121.3
C5—C4—C3114.06 (15)C15—C14—H14121.3
C5—C4—H4A108.7C10—C15—C14121.90 (16)
C3—C4—H4A108.7C10—C15—H15119.1
C5—C4—H4B108.7C14—C15—H15119.1
C3—C4—H4B108.7O3—C16—O2108.29 (13)
H4A—C4—H4B107.6O3—C16—H16A110.0
O4—C5—C6120.57 (17)O2—C16—H16A110.0
O4—C5—C4121.93 (17)O3—C16—H16B110.0
C6—C5—C4117.48 (14)O2—C16—H16B110.0
C1—C6—C5118.22 (15)H16A—C16—H16B108.4
C1—C6—C7120.98 (15)C3—C17—H17A109.5
C5—C6—C7120.74 (14)C3—C17—H17B109.5
C6—C7—C10115.02 (13)H17A—C17—H17B109.5
C6—C7—C8107.43 (13)C3—C17—H17C109.5
C10—C7—C8110.91 (13)H17A—C17—H17C109.5
C6—C7—H7107.7H17B—C17—H17C109.5
C10—C7—H7107.7C3—C18—H18A109.5
C8—C7—H7107.7C3—C18—H18B109.5
C9—C8—C7112.28 (14)H18A—C18—H18B109.5
C9—C8—H8A109.1C3—C18—H18C109.5
C7—C8—H8A109.1H18A—C18—H18C109.5
C9—C8—H8B109.1H18B—C18—H18C109.5
C7—C8—H8B109.1
C9—O1—C1—C616.9 (2)C1—O1—C9—C87.8 (2)
C9—O1—C1—C2164.54 (14)C7—C8—C9—O5140.99 (18)
C6—C1—C2—C319.7 (2)C7—C8—C9—O142.0 (2)
O1—C1—C2—C3158.79 (13)C6—C7—C10—C1525.4 (2)
C1—C2—C3—C1875.18 (19)C8—C7—C10—C1596.77 (18)
C1—C2—C3—C17164.90 (15)C6—C7—C10—C11156.64 (14)
C1—C2—C3—C444.5 (2)C8—C7—C10—C1181.21 (17)
C18—C3—C4—C566.6 (2)C15—C10—C11—C120.6 (2)
C17—C3—C4—C5173.39 (16)C7—C10—C11—C12177.43 (14)
C2—C3—C4—C553.84 (19)C10—C11—C12—C130.0 (2)
C3—C4—C5—O4144.53 (18)C10—C11—C12—O2178.04 (14)
C3—C4—C5—C636.9 (2)C16—O2—C12—C11174.70 (16)
O1—C1—C6—C5178.56 (13)C16—O2—C12—C137.04 (18)
C2—C1—C6—C50.2 (3)C11—C12—C13—C140.8 (3)
O1—C1—C6—C74.3 (2)O2—C12—C13—C14177.59 (15)
C2—C1—C6—C7177.43 (15)C11—C12—C13—O3179.33 (14)
O4—C5—C6—C1173.12 (17)O2—C12—C13—O30.95 (19)
C4—C5—C6—C18.3 (2)C16—O3—C13—C14176.03 (18)
O4—C5—C6—C79.7 (2)C16—O3—C13—C125.57 (18)
C4—C5—C6—C7168.93 (15)C12—C13—C14—C150.9 (3)
C1—C6—C7—C1095.19 (18)O3—C13—C14—C15179.10 (16)
C5—C6—C7—C1087.70 (18)C11—C10—C15—C140.5 (3)
C1—C6—C7—C828.8 (2)C7—C10—C15—C14177.42 (15)
C5—C6—C7—C8148.29 (14)C13—C14—C15—C100.2 (3)
C6—C7—C8—C950.09 (18)C13—O3—C16—O29.87 (18)
C10—C7—C8—C976.39 (17)C12—O2—C16—O310.46 (18)
C1—O1—C9—O5174.88 (14)

Experimental details

Crystal data
Chemical formulaC18H18O5
Mr314.32
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)6.963 (1), 8.957 (2), 13.594 (3)
α, β, γ (°)90.16 (2), 103.11 (2), 109.60 (2)
V3)775.0 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.54 × 0.48 × 0.24
Data collection
DiffractometerSiemens P4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3072, 2731, 1937
Rint0.014
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.102, 1.03
No. of reflections2731
No. of parameters211
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.17, 0.16

Computer programs: XSCANS (Siemens, 1994), XSCANS, SHELXTL (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
O1—C91.381 (2)C1—C61.341 (2)
O1—C11.3864 (18)C5—C61.461 (2)
O4—C51.2264 (19)C8—C91.485 (2)
O5—C91.192 (2)
C6—C1—O1122.06 (14)C6—C7—C8107.43 (13)
C6—C1—C2126.44 (15)O5—C9—O1116.87 (15)
C1—C6—C5118.22 (15)O1—C9—C8116.40 (15)
C6—C7—C10115.02 (13)
C9—O1—C1—C616.9 (2)C4—C5—C6—C18.3 (2)
C2—C1—C6—C50.2 (3)C1—C6—C7—C828.8 (2)
 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds