Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
The title compound, C22H20N4O2S, was synthesized by the intermolecular [3 + 2]-cyclo­addition of azomethine yl­ide, derived from isatin and sarcosine by a de­carboxyl­ative route, and 2-benzyl­idene-5,6-di­hydro-imidazo­[2,1-b]­thia­zol-3-one. In the mol­ecule, the two spiro junctions link a planar 2-oxoindoline ring, a pyrrolidine ring in an envelope conformation, and a 5,6-di­hydro­imidazo­[2,1-b]­thia­zol-3(2H)-one ring. Two mol­ecules are connected into a dimer by two N—H...N hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680301746X/ww6106sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680301746X/ww6106Isup2.hkl
Contains datablock I

CCDC reference: 222858

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.041
  • wR factor = 0.101
  • Data-to-parameter ratio = 15.3

checkCIF/PLATON results

No syntax errors found



Alert level A PLAT029_ALERT_3_A _diffrn_measured_fraction_theta_full Low ..... 0.99
Alert level C PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) . 2.90 Ratio
1 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Spiro compounds represent an important class of naturally occurring substances characterized by highly pronounced biological properties. (Kobayashi et al., 1991; James et al., 1991). 1,3-Dipolar cycloaddition reactions are important processes for the construction of spiro compounds (Caramella & Grunanger, 1984). In this paper, the structure of the title compound, (I) (Fig. 1), is reported.

There exists a dispiro ring in the molecule that consists of a 2-oxoindoline ring, a pyrrolidine ring and a 5,6-dihydro-imidazo[2,1-b]thiazol-3(2H)-one ring. The pyrrolidine ring (N3/C6/C5/C15/C14) is not planar, with an envelope conformation. Atoms C6/C5/C15/C14 are almost planar and the mean deviation from this plane is 0.038 (3) Å. Atom N3 lies 0.609 (3) Å above the C6/C5/C15/C14 plane in the pyrrolidine ring, forming the flap of the envelope. The dihedral angle between the C6/N3/C14 plane and the C6/C5/C15/C14 mean plane is 44.4 (2)°. The dihedral angle between phenyl plane (C16–C21) and C6/C5/C15/C14 plane is 97.8 (2)°. The 2-oxoindoline ring (C6–C13/N4) is nearly planar and the mean deviation from this plane is 0.032 (3) Å. The dihedral angle between 2-oxoindoline ring mean plane and C6/C5/C15/C14 plane is 101.0 (2)°.

The dihedral angle between 5,6-dihydro-imidazo[2,1-b]thiazol-3(2H)-one plane and the C6/C5/C15/C14 plane is 91.7 (3)°. Two molecules are connected into a dimer by two self-complementary N—H···N hydrogen bonds with an N···N distance of 2.904 (2) Å and an N—H···N angle of 168.6 (3)°.

Experimental top

A mixture of 2-benzylidene-5,6-dihydroimidazo[2,1-b]thiazol-3-one (1 mmol), isatin (1 mmol) and sarcosine (1 m mol) were refluxed in methanol (60 ml) until the starting material has disappeared, as evidenced by thin-layer chromatography. After the reaction was over the solvent was removed in vacuo and the residue was separated by column chromatography (silica gel, petroleum ether/ethylacetate = 2:1) to give the title compound, (I). M.p.519–521 K; IR (KBr): 3352.3 (–NH), 1721.3, 1686.1 (CO) cm−1; 1H NMR (δ, p.p.m.): 1.67 (s, 4H, CH2), 2.27 (s, 3H, N—CH3), 3.29 (m, 1H,-CH2), 3.92 (m, 1H, –CH2), 4.61 (m, 1H, –CH), 6.81–7.52 (m, 9H, ArH), 7.85 (bs, 1H, –NH); 20 mg of (I) was dissolved in 15 ml dioxane; the solution was kept at room temperature for 15 d and natural evaporation gave colorless single crystals of (I) suitable for X-ray analysis.

Refinement top

H atoms were positioned geometrically (C—H = 0.93–0.98 Å) and refined with a riding model, with Uiso(H) = 1.2Ueq(carrier).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SMART; data reduction: SAINT (Bruker, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme, drawn with 30% probability ellipsoids.
[Figure 2] Fig. 2. The crystal packing diagram of (I), viewed along a axis
(I) top
Crystal data top
C22H20N4O2SZ = 2
Mr = 404.48F(000) = 424
Triclinic, P1Dx = 1.356 Mg m3
Hall symbol: -P 1Melting point = 519–521 K
a = 8.538 (3) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.488 (3) ÅCell parameters from 875 reflections
c = 14.227 (5) Åθ = 2.4–26.3°
α = 86.206 (6)°µ = 0.19 mm1
β = 73.315 (6)°T = 293 K
γ = 64.091 (5)°Block, colorless
V = 990.7 (6) Å30.26 × 0.24 × 0.20 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
4015 independent reflections
Radiation source: fine-focus sealed tube3129 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
ϕ and ω scansθmax = 26.4°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 910
Tmin = 0.938, Tmax = 0.960k = 1111
5754 measured reflectionsl = 1716
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.041 w = 1/[σ2(Fo2) + (0.084P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.101(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.28 e Å3
4015 reflectionsΔρmin = 0.27 e Å3
263 parameters
Crystal data top
C22H20N4O2Sγ = 64.091 (5)°
Mr = 404.48V = 990.7 (6) Å3
Triclinic, P1Z = 2
a = 8.538 (3) ÅMo Kα radiation
b = 9.488 (3) ŵ = 0.19 mm1
c = 14.227 (5) ÅT = 293 K
α = 86.206 (6)°0.26 × 0.24 × 0.20 mm
β = 73.315 (6)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4015 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
3129 reflections with I > 2σ(I)
Tmin = 0.938, Tmax = 0.960Rint = 0.015
5754 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0410 restraints
wR(F2) = 0.101H-atom parameters constrained
S = 1.03Δρmax = 0.28 e Å3
4015 reflectionsΔρmin = 0.27 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S11.19775 (6)0.06478 (5)0.28434 (3)0.03664 (14)
N11.0268 (2)0.22874 (17)0.25654 (11)0.0358 (3)
N21.1535 (2)0.1976 (2)0.38000 (12)0.0472 (4)
N30.8216 (2)0.08458 (18)0.18404 (10)0.0368 (4)
N40.7995 (2)0.0742 (2)0.43256 (11)0.0486 (4)
H40.80300.11610.48790.058*
O10.92705 (18)0.22923 (15)0.12472 (9)0.0421 (3)
O21.0097 (2)0.29029 (16)0.32959 (10)0.0534 (4)
C10.9923 (2)0.16162 (19)0.18886 (12)0.0302 (4)
C20.9819 (3)0.3911 (2)0.28259 (16)0.0507 (5)
H2A0.85160.45620.30190.061*
H2B1.04010.43640.22890.061*
C31.0605 (4)0.3688 (3)0.36989 (19)0.0640 (6)
H3A1.14600.41410.35810.077*
H3B0.96380.42010.42960.077*
C41.1262 (2)0.1317 (2)0.31607 (12)0.0332 (4)
C51.0417 (2)0.01304 (19)0.20735 (11)0.0282 (3)
C60.8627 (2)0.0320 (2)0.26362 (12)0.0313 (4)
C70.7085 (2)0.1125 (2)0.32522 (13)0.0367 (4)
C80.5997 (3)0.2570 (2)0.29937 (17)0.0510 (5)
H80.60930.27720.23360.061*
C90.4748 (3)0.3722 (3)0.3737 (2)0.0710 (7)
H90.40230.47130.35750.085*
C100.4579 (3)0.3410 (4)0.4705 (2)0.0816 (9)
H100.37540.42020.51910.098*
C110.5604 (3)0.1948 (4)0.49759 (18)0.0703 (7)
H110.54580.17330.56350.084*
C120.6853 (3)0.0816 (3)0.42381 (14)0.0450 (5)
C130.9042 (3)0.1522 (2)0.34433 (13)0.0383 (4)
C140.9952 (3)0.1979 (2)0.12039 (13)0.0401 (4)
H14A0.98340.21910.05760.048*
H14B1.04250.29590.15140.048*
C151.1159 (2)0.1138 (2)0.10801 (12)0.0326 (4)
H151.08560.03890.05780.039*
C161.3183 (2)0.2127 (2)0.07271 (13)0.0358 (4)
C171.4080 (3)0.3473 (2)0.11585 (16)0.0496 (5)
H171.34210.38160.16820.059*
C181.5948 (3)0.4315 (3)0.0820 (2)0.0641 (7)
H181.65350.52190.11190.077*
C191.6936 (3)0.3830 (3)0.0052 (2)0.0710 (8)
H191.81940.43920.01700.085*
C201.6065 (3)0.2515 (3)0.0387 (2)0.0727 (7)
H201.67350.21850.09130.087*
C211.4202 (3)0.1666 (3)0.00618 (16)0.0538 (5)
H211.36260.07780.03750.065*
C220.6782 (3)0.1365 (3)0.21529 (16)0.0533 (5)
H22A0.71730.22870.25130.080*
H22B0.65250.16050.15850.080*
H22C0.57050.05460.25660.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0406 (3)0.0316 (2)0.0429 (3)0.0140 (2)0.0234 (2)0.00699 (18)
N10.0413 (8)0.0285 (8)0.0397 (8)0.0152 (7)0.0153 (7)0.0052 (6)
N20.0620 (11)0.0452 (10)0.0435 (9)0.0264 (9)0.0230 (8)0.0022 (8)
N30.0386 (8)0.0484 (9)0.0302 (7)0.0240 (7)0.0108 (6)0.0000 (7)
N40.0630 (11)0.0628 (12)0.0266 (8)0.0349 (10)0.0115 (8)0.0098 (8)
O10.0476 (8)0.0373 (7)0.0358 (7)0.0113 (6)0.0176 (6)0.0108 (6)
O20.0762 (10)0.0365 (8)0.0519 (8)0.0257 (8)0.0254 (8)0.0134 (6)
C10.0274 (8)0.0315 (9)0.0280 (8)0.0112 (7)0.0057 (7)0.0047 (7)
C20.0651 (14)0.0314 (10)0.0544 (12)0.0192 (10)0.0178 (11)0.0002 (9)
C30.0821 (17)0.0428 (12)0.0736 (16)0.0227 (12)0.0371 (13)0.0050 (11)
C40.0337 (9)0.0377 (10)0.0303 (9)0.0179 (8)0.0090 (7)0.0041 (7)
C50.0289 (8)0.0293 (8)0.0262 (8)0.0109 (7)0.0109 (7)0.0040 (7)
C60.0351 (9)0.0349 (9)0.0271 (8)0.0181 (8)0.0094 (7)0.0039 (7)
C70.0328 (9)0.0423 (10)0.0362 (9)0.0203 (8)0.0046 (7)0.0022 (8)
C80.0342 (10)0.0490 (12)0.0620 (13)0.0153 (9)0.0068 (9)0.0018 (10)
C90.0389 (12)0.0544 (15)0.099 (2)0.0088 (11)0.0046 (13)0.0136 (14)
C100.0498 (15)0.085 (2)0.085 (2)0.0192 (15)0.0119 (14)0.0439 (17)
C110.0618 (15)0.096 (2)0.0442 (13)0.0356 (15)0.0048 (11)0.0225 (13)
C120.0447 (11)0.0594 (13)0.0354 (10)0.0294 (10)0.0053 (8)0.0048 (9)
C130.0510 (11)0.0430 (11)0.0340 (9)0.0305 (10)0.0166 (8)0.0099 (8)
C140.0472 (11)0.0446 (11)0.0321 (9)0.0223 (9)0.0114 (8)0.0032 (8)
C150.0364 (9)0.0330 (9)0.0261 (8)0.0127 (8)0.0098 (7)0.0031 (7)
C160.0370 (10)0.0320 (9)0.0340 (9)0.0114 (8)0.0083 (8)0.0043 (7)
C170.0515 (12)0.0378 (11)0.0526 (12)0.0124 (10)0.0166 (10)0.0030 (9)
C180.0547 (14)0.0392 (12)0.0841 (18)0.0013 (11)0.0317 (13)0.0107 (12)
C190.0369 (12)0.0692 (17)0.0865 (19)0.0057 (12)0.0085 (13)0.0317 (15)
C200.0505 (14)0.0797 (19)0.0681 (16)0.0267 (14)0.0117 (12)0.0099 (14)
C210.0469 (12)0.0514 (13)0.0479 (12)0.0165 (10)0.0000 (10)0.0029 (10)
C220.0527 (13)0.0730 (15)0.0493 (12)0.0406 (12)0.0137 (10)0.0029 (11)
Geometric parameters (Å, º) top
S1—C41.7349 (19)C8—C91.392 (3)
S1—C51.8471 (16)C8—H80.9300
N1—C11.351 (2)C9—C101.369 (4)
N1—C41.383 (2)C9—H90.9300
N1—C21.461 (2)C10—C111.379 (4)
N2—C41.264 (2)C10—H100.9300
N2—C31.482 (3)C11—C121.378 (3)
N3—C61.453 (2)C11—H110.9300
N3—C221.458 (2)C14—C151.525 (3)
N3—C141.462 (2)C14—H14A0.9700
N4—C131.350 (2)C14—H14B0.9700
N4—C121.392 (3)C15—C161.506 (2)
N4—H40.8600C15—H150.9800
O1—C11.207 (2)C16—C171.380 (3)
O2—C131.212 (2)C16—C211.384 (3)
C1—C51.546 (2)C17—C181.382 (3)
C2—C31.535 (3)C17—H170.9300
C2—H2A0.9700C18—C191.365 (4)
C2—H2B0.9700C18—H180.9300
C3—H3A0.9700C19—C201.361 (4)
C3—H3B0.9700C19—H190.9300
C5—C151.565 (2)C20—C211.378 (3)
C5—C61.589 (2)C20—H200.9300
C6—C71.517 (2)C21—H210.9300
C6—C131.566 (2)C22—H22A0.9600
C7—C81.376 (3)C22—H22B0.9600
C7—C121.389 (3)C22—H22C0.9600
C4—S1—C591.48 (8)C8—C9—H9119.7
C1—N1—C4118.09 (15)C9—C10—C11121.5 (2)
C1—N1—C2133.35 (15)C9—C10—H10119.3
C4—N1—C2108.56 (15)C11—C10—H10119.3
C4—N2—C3106.19 (16)C12—C11—C10117.8 (2)
C6—N3—C22114.87 (14)C12—C11—H11121.1
C6—N3—C14106.50 (14)C10—C11—H11121.1
C22—N3—C14115.72 (16)C11—C12—C7121.6 (2)
C13—N4—C12112.32 (16)C11—C12—N4128.3 (2)
C13—N4—H4123.8C7—C12—N4110.08 (17)
C12—N4—H4123.8O2—C13—N4126.60 (17)
O1—C1—N1124.99 (16)O2—C13—C6125.91 (17)
O1—C1—C5124.53 (16)N4—C13—C6107.48 (16)
N1—C1—C5110.45 (13)N3—C14—C15102.50 (14)
N1—C2—C3100.80 (16)N3—C14—H14A111.3
N1—C2—H2A111.6C15—C14—H14A111.3
C3—C2—H2A111.6N3—C14—H14B111.3
N1—C2—H2B111.6C15—C14—H14B111.3
C3—C2—H2B111.6H14A—C14—H14B109.2
H2A—C2—H2B109.4C16—C15—C14117.20 (15)
N2—C3—C2107.43 (16)C16—C15—C5116.37 (14)
N2—C3—H3A110.2C14—C15—C5104.19 (13)
C2—C3—H3A110.2C16—C15—H15106.1
N2—C3—H3B110.2C14—C15—H15106.1
C2—C3—H3B110.2C5—C15—H15106.1
H3A—C3—H3B108.5C17—C16—C21118.15 (18)
N2—C4—N1116.84 (17)C17—C16—C15123.06 (17)
N2—C4—S1131.68 (14)C21—C16—C15118.80 (17)
N1—C4—S1111.44 (12)C16—C17—C18120.7 (2)
C1—C5—C15110.84 (13)C16—C17—H17119.7
C1—C5—C6109.70 (13)C18—C17—H17119.7
C15—C5—C6104.13 (13)C19—C18—C17120.4 (2)
C1—C5—S1104.45 (11)C19—C18—H18119.8
C15—C5—S1116.56 (11)C17—C18—H18119.8
C6—C5—S1111.19 (11)C20—C19—C18119.4 (2)
N3—C6—C7114.95 (15)C20—C19—H19120.3
N3—C6—C13114.41 (14)C18—C19—H19120.3
C7—C6—C13101.22 (14)C19—C20—C21120.8 (2)
N3—C6—C5102.09 (12)C19—C20—H20119.6
C7—C6—C5115.30 (14)C21—C20—H20119.6
C13—C6—C5109.26 (13)C20—C21—C16120.5 (2)
C8—C7—C12119.87 (18)C20—C21—H21119.8
C8—C7—C6131.62 (17)C16—C21—H21119.8
C12—C7—C6108.50 (16)N3—C22—H22A109.5
C7—C8—C9118.6 (2)N3—C22—H22B109.5
C7—C8—H8120.7H22A—C22—H22B109.5
C9—C8—H8120.7N3—C22—H22C109.5
C10—C9—C8120.6 (2)H22A—C22—H22C109.5
C10—C9—H9119.7H22B—C22—H22C109.5
C4—N1—C1—O1170.58 (16)C5—C6—C7—C12111.60 (16)
C2—N1—C1—O18.6 (3)C12—C7—C8—C93.5 (3)
C4—N1—C1—C511.5 (2)C6—C7—C8—C9175.8 (2)
C2—N1—C1—C5169.29 (18)C7—C8—C9—C101.5 (4)
C1—N1—C2—C3177.04 (19)C8—C9—C10—C111.3 (4)
C4—N1—C2—C33.7 (2)C9—C10—C11—C122.0 (4)
C4—N2—C3—C23.4 (3)C10—C11—C12—C70.1 (4)
N1—C2—C3—N24.3 (2)C10—C11—C12—N4178.0 (2)
C3—N2—C4—N11.0 (2)C8—C7—C12—C112.9 (3)
C3—N2—C4—S1178.56 (17)C6—C7—C12—C11176.59 (19)
C1—N1—C4—N2178.68 (16)C8—C7—C12—N4175.49 (17)
C2—N1—C4—N21.9 (2)C6—C7—C12—N45.0 (2)
C1—N1—C4—S13.28 (19)C13—N4—C12—C11179.6 (2)
C2—N1—C4—S1176.10 (13)C13—N4—C12—C71.4 (2)
C5—S1—C4—N2169.12 (19)C12—N4—C13—O2176.52 (19)
C5—S1—C4—N113.23 (13)C12—N4—C13—C62.8 (2)
O1—C1—C5—C1536.3 (2)N3—C6—C13—O249.7 (2)
N1—C1—C5—C15145.82 (14)C7—C6—C13—O2173.93 (18)
O1—C1—C5—C678.2 (2)C5—C6—C13—O264.0 (2)
N1—C1—C5—C699.74 (15)N3—C6—C13—N4129.56 (16)
O1—C1—C5—S1162.57 (14)C7—C6—C13—N45.35 (18)
N1—C1—C5—S119.51 (16)C5—C6—C13—N4116.72 (16)
C4—S1—C5—C118.03 (11)C6—N3—C14—C1546.97 (17)
C4—S1—C5—C15140.67 (13)C22—N3—C14—C15175.98 (15)
C4—S1—C5—C6100.22 (12)N3—C14—C15—C16161.85 (14)
C22—N3—C6—C763.8 (2)N3—C14—C15—C531.68 (16)
C14—N3—C6—C7166.72 (14)C1—C5—C15—C16103.89 (17)
C22—N3—C6—C1352.8 (2)C6—C5—C15—C16138.22 (15)
C14—N3—C6—C1376.74 (18)S1—C5—C15—C1615.4 (2)
C22—N3—C6—C5170.66 (15)C1—C5—C15—C14125.46 (14)
C14—N3—C6—C541.14 (16)C6—C5—C15—C147.57 (16)
C1—C5—C6—N399.39 (15)S1—C5—C15—C14115.28 (14)
C15—C5—C6—N319.28 (15)C14—C15—C16—C1751.3 (2)
S1—C5—C6—N3145.58 (11)C5—C15—C16—C1772.9 (2)
C1—C5—C6—C725.96 (18)C14—C15—C16—C21129.15 (19)
C15—C5—C6—C7144.62 (14)C5—C15—C16—C21106.6 (2)
S1—C5—C6—C789.07 (15)C21—C16—C17—C181.2 (3)
C1—C5—C6—C13139.11 (14)C15—C16—C17—C18178.35 (19)
C15—C5—C6—C13102.22 (15)C16—C17—C18—C190.1 (3)
S1—C5—C6—C1324.08 (16)C17—C18—C19—C200.7 (4)
N3—C6—C7—C850.6 (3)C18—C19—C20—C210.3 (4)
C13—C6—C7—C8174.46 (19)C19—C20—C21—C160.8 (4)
C5—C6—C7—C867.8 (2)C17—C16—C21—C201.5 (3)
N3—C6—C7—C12130.01 (16)C15—C16—C21—C20178.0 (2)
C13—C6—C7—C126.16 (18)

Experimental details

Crystal data
Chemical formulaC22H20N4O2S
Mr404.48
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)8.538 (3), 9.488 (3), 14.227 (5)
α, β, γ (°)86.206 (6), 73.315 (6), 64.091 (5)
V3)990.7 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.19
Crystal size (mm)0.26 × 0.24 × 0.20
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.938, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
5754, 4015, 3129
Rint0.015
(sin θ/λ)max1)0.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.041, 0.101, 1.03
No. of reflections4015
No. of parameters263
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.27

Computer programs: SMART (Bruker, 1997), SMART, SAINT (Bruker, 1997), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

 

Subscribe to Acta Crystallographica Section E: Crystallographic Communications

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds