Buy article online - an online subscription or single-article purchase is required to access this article.
The crystal structure of indole-3-carboxylic acid, C
9H
7NO
2, shows the presence of centrosymmetric hydrogen-bonded cyclic carboxylic acid dimers [O
O = 2.649 (2) Å]. These dimers are linked into a sheet structure through peripheral intermolecular hydrogen bonds between the carboxylic acid groups and the hetero-amine group of the
n-glide-related indole ring [O
N = 3.013 (2) Å].
Supporting information
CCDC reference: 227000
Key indicators
- Single-crystal X-ray study
- T = 295 K
- Mean (C-C) = 0.003 Å
- R factor = 0.043
- wR factor = 0.152
- Data-to-parameter ratio = 14.6
checkCIF/PLATON results
No syntax errors found
No errors found in this datablock
Data collection: MSC/AFC Diffractometer Control Software
(Molecular Structure Corporation, 1999); cell refinement: TEXSAN for Windows (Molecular Structure Corporation, 1999); data reduction: TEXSAN for Windows; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON for Windows (Spek, 1999); software used to prepare material for publication: PLATON for Windows.
1
H-indole-3-carboxylic acid
top
Crystal data top
C9H7NO2 | F(000) = 336 |
Mr = 161.16 | Dx = 1.415 Mg m−3 |
Monoclinic, P21/n | Melting point = 483–484 K |
Hall symbol: -P 2yn | Mo Kα radiation, λ = 0.71069 Å |
a = 16.048 (3) Å | Cell parameters from 25 reflections |
b = 10.611 (3) Å | θ = 12.5–17.4° |
c = 4.4588 (16) Å | µ = 0.10 mm−1 |
β = 94.95 (2)° | T = 295 K |
V = 756.5 (4) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.35 × 0.15 mm |
Data collection top
Rigaku AFC-7R diffractometer | Rint = 0.054 |
Radiation source: Rigaku rotating anode | θmax = 27.5°, θmin = 2.6° |
Graphite monochromator | h = −20→20 |
ω–2θ scans | k = 0→13 |
2023 measured reflections | l = −5→2 |
1723 independent reflections | 3 standard reflections every 150 reflections |
1148 reflections with I > 2σ(I) | intensity decay: 1.0% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.043 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.152 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.93 | w = 1/[σ2(Fo2) + (0.1P)2 + 0.2856P] where P = (Fo2 + 2Fc2)/3 |
1723 reflections | (Δ/σ)max = 0.004 |
118 parameters | Δρmax = 0.20 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Special details top
Geometry. Bond distances, angles etc. have been calculated using the rounded
fractional coordinates. All e.s.d.'s are estimated from the variances of the
(full) variance-covariance matrix. The cell e.s.d.'s are taken into account in
the estimation of distances, angles and torsion angles |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O31 | 0.95392 (8) | 0.63915 (14) | −0.1747 (4) | 0.0617 (6) | |
O32 | 0.90078 (8) | 0.47819 (13) | 0.0703 (3) | 0.0494 (5) | |
N1 | 0.71411 (11) | 0.77920 (16) | −0.2844 (4) | 0.0440 (5) | |
C2 | 0.79524 (12) | 0.74662 (18) | −0.2885 (4) | 0.0420 (6) | |
C3 | 0.81204 (11) | 0.64470 (16) | −0.1034 (4) | 0.0369 (5) | |
C4 | 0.71154 (12) | 0.52017 (17) | 0.2253 (4) | 0.0418 (6) | |
C5 | 0.62999 (14) | 0.5186 (2) | 0.2969 (5) | 0.0513 (7) | |
C6 | 0.57115 (13) | 0.6065 (2) | 0.1756 (5) | 0.0538 (7) | |
C7 | 0.59325 (12) | 0.6977 (2) | −0.0201 (5) | 0.0496 (7) | |
C8 | 0.67524 (12) | 0.69927 (17) | −0.0952 (4) | 0.0389 (6) | |
C9 | 0.73551 (11) | 0.61164 (16) | 0.0239 (4) | 0.0355 (5) | |
C31 | 0.89139 (11) | 0.58096 (18) | −0.0611 (4) | 0.0390 (5) | |
H1 | 0.6893 (14) | 0.842 (2) | −0.386 (5) | 0.054 (6)* | |
H2 | 0.835100 | 0.788000 | −0.403700 | 0.0480* | |
H4 | 0.750800 | 0.459600 | 0.310700 | 0.0470* | |
H5 | 0.612900 | 0.456400 | 0.433900 | 0.0600* | |
H6 | 0.514600 | 0.601500 | 0.229900 | 0.0620* | |
H7 | 0.553900 | 0.760500 | −0.100700 | 0.0570* | |
H31 | 1.0030 (14) | 0.586 (2) | −0.137 (5) | 0.0380* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O31 | 0.0321 (7) | 0.0524 (9) | 0.1008 (13) | 0.0004 (6) | 0.0067 (8) | 0.0273 (8) |
O32 | 0.0304 (7) | 0.0400 (8) | 0.0766 (10) | 0.0011 (5) | −0.0022 (6) | 0.0133 (7) |
N1 | 0.0427 (9) | 0.0381 (9) | 0.0501 (9) | 0.0092 (7) | −0.0030 (7) | 0.0022 (7) |
C2 | 0.0391 (10) | 0.0363 (10) | 0.0499 (11) | 0.0001 (8) | −0.0002 (8) | 0.0011 (8) |
C3 | 0.0319 (9) | 0.0335 (9) | 0.0441 (9) | −0.0010 (7) | −0.0034 (7) | −0.0032 (7) |
C4 | 0.0420 (10) | 0.0397 (10) | 0.0431 (10) | 0.0007 (8) | 0.0006 (8) | −0.0037 (8) |
C5 | 0.0507 (12) | 0.0534 (13) | 0.0512 (11) | −0.0038 (9) | 0.0133 (10) | −0.0030 (10) |
C6 | 0.0369 (10) | 0.0674 (14) | 0.0581 (12) | 0.0007 (9) | 0.0096 (9) | −0.0116 (11) |
C7 | 0.0372 (10) | 0.0586 (13) | 0.0518 (11) | 0.0135 (9) | −0.0022 (9) | −0.0126 (10) |
C8 | 0.0382 (10) | 0.0384 (10) | 0.0390 (9) | 0.0067 (7) | −0.0034 (7) | −0.0085 (8) |
C9 | 0.0324 (9) | 0.0347 (9) | 0.0384 (9) | 0.0007 (7) | −0.0033 (7) | −0.0080 (7) |
C31 | 0.0288 (8) | 0.0360 (9) | 0.0509 (10) | −0.0042 (7) | −0.0033 (7) | −0.0008 (8) |
Geometric parameters (Å, º) top
O31—C31 | 1.316 (2) | C4—C5 | 1.374 (3) |
O32—C31 | 1.241 (2) | C5—C6 | 1.402 (3) |
O31—H31 | 0.97 (2) | C6—C7 | 1.370 (3) |
N1—C2 | 1.349 (3) | C7—C8 | 1.386 (3) |
N1—C8 | 1.382 (3) | C8—C9 | 1.412 (3) |
N1—H1 | 0.88 (2) | C2—H2 | 0.9605 |
C2—C3 | 1.373 (3) | C4—H4 | 0.9558 |
C3—C9 | 1.440 (3) | C5—H5 | 0.9554 |
C3—C31 | 1.440 (3) | C6—H6 | 0.9607 |
C4—C9 | 1.399 (3) | C7—H7 | 0.9658 |
| | | |
C31—O31—H31 | 107.1 (13) | C3—C9—C4 | 135.50 (17) |
C2—N1—C8 | 109.75 (16) | C3—C9—C8 | 105.73 (15) |
C2—N1—H1 | 125.5 (15) | O31—C31—O32 | 121.90 (17) |
C8—N1—H1 | 124.7 (15) | O31—C31—C3 | 115.10 (16) |
N1—C2—C3 | 109.48 (17) | O32—C31—C3 | 123.00 (16) |
C2—C3—C9 | 107.39 (16) | N1—C2—H2 | 125.33 |
C9—C3—C31 | 127.49 (16) | C3—C2—H2 | 125.19 |
C2—C3—C31 | 125.05 (17) | C5—C4—H4 | 120.51 |
C5—C4—C9 | 118.55 (18) | C9—C4—H4 | 120.93 |
C4—C5—C6 | 121.7 (2) | C4—C5—H5 | 119.26 |
C5—C6—C7 | 120.9 (2) | C6—C5—H5 | 119.03 |
C6—C7—C8 | 117.76 (19) | C5—C6—H6 | 119.04 |
N1—C8—C7 | 130.00 (18) | C7—C6—H6 | 120.11 |
N1—C8—C9 | 107.64 (16) | C6—C7—H7 | 121.83 |
C7—C8—C9 | 122.36 (17) | C8—C7—H7 | 120.39 |
C4—C9—C8 | 118.76 (17) | | |
| | | |
C2—N1—C8—C7 | 179.4 (2) | C9—C3—C31—O32 | 8.2 (3) |
C8—N1—C2—C3 | 0.1 (2) | C5—C4—C9—C8 | 0.6 (3) |
C2—N1—C8—C9 | −0.3 (2) | C9—C4—C5—C6 | −0.6 (3) |
N1—C2—C3—C9 | 0.17 (19) | C5—C4—C9—C3 | 179.5 (2) |
N1—C2—C3—C31 | 177.40 (17) | C4—C5—C6—C7 | 0.0 (3) |
C2—C3—C9—C4 | −179.4 (2) | C5—C6—C7—C8 | 0.5 (3) |
C2—C3—C9—C8 | −0.3 (2) | C6—C7—C8—N1 | 179.9 (2) |
C31—C3—C9—C4 | 3.5 (3) | C6—C7—C8—C9 | −0.4 (3) |
C31—C3—C9—C8 | −177.49 (18) | N1—C8—C9—C3 | 0.4 (2) |
C9—C3—C31—O31 | −172.38 (18) | N1—C8—C9—C4 | 179.61 (16) |
C2—C3—C31—O31 | 11.0 (3) | C7—C8—C9—C3 | −179.34 (18) |
C2—C3—C31—O32 | −168.49 (18) | C7—C8—C9—C4 | −0.1 (3) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O32i | 0.88 (2) | 2.16 (2) | 3.013 (2) | 164 (2) |
O31—H31···O32ii | 0.97 (2) | 1.69 (2) | 2.649 (2) | 168 (2) |
Symmetry codes: (i) −x+3/2, y+1/2, −z−1/2; (ii) −x+2, −y+1, −z. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.