Buy article online - an online subscription or single-article purchase is required to access this article.
Download citation
Download citation
link to html
Tetra­chloro­benzenes represent one of the best known, but not yet fully understood, group of isomers of the structure–melting point relationship. The differences in melting temperatures of these structurally related compounds were rationalized in terms of the hierarchy and nature of formed noncovalent interactions, and the molecular aggregation that is influenced by molecular symmetry. The highest melting point is associated with the highly symmetric 1,2,4,5-tetra­chloro­benzene isomer. The structures of less symmetrical 1,2,3,4-tetra­chloro­benzene and 1,2,3,5-tetra­chloro­benzene, determined at 270 and 90 K, show a distinct pattern of halogen bonds, characterized by the different numbers and types of interactions. The evolution of Cl...Cl/H distances with temperature indicates the attractive character of intermolecular interactions and their importance to the structural and thermodynamic parameters of isomeric compounds. The favoured Cl...Cl halogen bonds were found to play a decisive role in differentiating the melting temperatures of tetra­chloro­benzene isomers. It was also found that, besides the molecular symmetry and ability to form specific intermolecular interactions, both the type and the distribution of interactions are the important factors responsible for the melting behaviour of the studied isomers. The observed preferences, in tetra­chloro­benzenes, for the formation of specific noncovalent interactions correspond to the distribution of calculated partial atomic charges and to the magnitudes of electrostatic potential on the molecular surfaces as well as correlate with the enthalpy of melting parameters.

Supporting information

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2052520618012295/xk5047sup2.pdf
Tables S1, S2, S3 and Figs. S1, S2 and S3

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520618012295/xk5047sup1.cif
Contains datablocks global, 1234TCB_270K, 1234TCB_90K, 1235TCB_270K, 1235TCB_90K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520618012295/xk50471234TCB_270Ksup3.hkl
Contains datablock 1234TCB_270K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520618012295/xk50471234TCB_90Ksup4.hkl
Contains datablock 1234TCB_90K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520618012295/xk50471235TCB_270Ksup5.hkl
Contains datablock 1235TCB_270K

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520618012295/xk50471235TCB_90Ksup6.hkl
Contains datablock 1235TCB_90K

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520618012295/xk50471234TCB_270Ksup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520618012295/xk50471234TCB_90Ksup8.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520618012295/xk50471235TCB_270Ksup9.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2052520618012295/xk50471235TCB_90Ksup10.cml
Supplementary material

CCDC references: 1857059; 1857060; 1857061; 1857062

Computing details top

For all structures, data collection: CrysAlis CCD ver. 1.171.33.57 (Oxford Diffraction Ltd., 2010); cell refinement: CrysAlis PRO ver. 1.171.39.15e (Rigaku Oxford Diffraction, 2015); data reduction: CrysAlis PRO ver. 1.171.39.15e (Rigaku Oxford Diffraction, 2015); program(s) used to solve structure: SHELXS97 (G.M.Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (G.M.Sheldrick, 2008, 2015); molecular graphics: Mercury (C.F.Macrae at al., 2008); software used to prepare material for publication: SHELXL97 (G.M.Sheldrick, 2008, 2015).

1,2,3,4-Tetrachlorobenzene (1234TCB_270K) top
Crystal data top
C6H2Cl4Dx = 1.837 Mg m3
Mr = 215.88Melting point: 320.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.8682 (3) ÅCell parameters from 2263 reflections
b = 14.9766 (9) Åθ = 3.3–28.4°
c = 13.4758 (9) ŵ = 1.43 mm1
β = 90.378 (6)°T = 270 K
V = 780.67 (9) Å3Tabular, colourless
Z = 40.46 × 0.35 × 0.26 mm
F(000) = 424
Data collection top
Xcalibur
diffractometer
1520 independent reflections
Radiation source: fine-focus sealed tube1252 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.027
ω–scanθmax = 26.0°, θmin = 3.0°
Absorption correction: multi-scan
CrysAlisPro ver. 1.171.39.15e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.906, Tmax = 1.000k = 1518
5063 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.160 w = 1/[σ2(Fo2) + (0.0378P)2 + 3.6776P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1520 reflectionsΔρmax = 0.57 e Å3
92 parametersΔρmin = 0.42 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.019 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1255 (15)0.2526 (4)0.1690 (4)0.0465 (13)
Cl10.0467 (5)0.17466 (11)0.08858 (14)0.0678 (6)
C20.1635 (15)0.3405 (4)0.1405 (4)0.0442 (13)
Cl20.0361 (5)0.37454 (12)0.02399 (11)0.0652 (5)
C30.3085 (15)0.4016 (4)0.2066 (4)0.0452 (12)
Cl30.3591 (5)0.51143 (11)0.17090 (15)0.0717 (6)
C40.4055 (15)0.3748 (4)0.3011 (4)0.0457 (13)
Cl40.5782 (5)0.45067 (13)0.38398 (13)0.0686 (6)
C50.3675 (17)0.2864 (4)0.3293 (4)0.0558 (15)
H50.43470.26790.39240.067*
C60.2285 (17)0.2259 (4)0.2625 (5)0.0584 (16)
H60.20420.16640.28090.070*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.044 (3)0.043 (3)0.053 (3)0.004 (2)0.010 (2)0.006 (2)
Cl10.0696 (11)0.0536 (9)0.0803 (12)0.0056 (8)0.0022 (9)0.0189 (8)
C20.045 (3)0.048 (3)0.040 (3)0.004 (2)0.004 (2)0.001 (2)
Cl20.0831 (12)0.0678 (11)0.0448 (8)0.0067 (9)0.0101 (8)0.0051 (7)
C30.044 (3)0.043 (3)0.049 (3)0.004 (2)0.001 (2)0.001 (2)
Cl30.0909 (13)0.0417 (9)0.0825 (12)0.0050 (8)0.0106 (10)0.0090 (8)
C40.044 (3)0.051 (3)0.042 (3)0.004 (3)0.002 (2)0.005 (2)
Cl40.0689 (11)0.0777 (12)0.0591 (10)0.0033 (9)0.0092 (8)0.0215 (8)
C50.061 (4)0.065 (4)0.041 (3)0.007 (3)0.001 (3)0.012 (3)
C60.065 (4)0.042 (3)0.069 (4)0.001 (3)0.003 (3)0.017 (3)
Geometric parameters (Å, º) top
C1—C61.378 (8)C3—Cl31.725 (6)
C1—C21.380 (8)C4—C51.387 (8)
C1—Cl11.724 (6)C4—Cl41.725 (6)
C2—C31.393 (8)C5—C61.384 (9)
C2—Cl21.720 (6)C5—H50.9300
C3—C41.384 (8)C6—H60.9300
C6—C1—C2120.1 (5)C3—C4—C5120.1 (5)
C6—C1—Cl1119.1 (5)C3—C4—Cl4120.4 (5)
C2—C1—Cl1120.8 (5)C5—C4—Cl4119.5 (4)
C1—C2—C3119.5 (5)C6—C5—C4119.2 (5)
C1—C2—Cl2120.4 (4)C6—C5—H5120.4
C3—C2—Cl2120.1 (4)C4—C5—H5120.4
C4—C3—C2120.2 (5)C1—C6—C5120.9 (5)
C4—C3—Cl3120.2 (4)C1—C6—H6119.6
C2—C3—Cl3119.6 (4)C5—C6—H6119.6
C6—C1—C2—C30.4 (8)Cl3—C3—C4—C5179.4 (5)
Cl1—C1—C2—C3179.0 (4)C2—C3—C4—Cl4178.9 (4)
C6—C1—C2—Cl2180.0 (5)Cl3—C3—C4—Cl40.1 (7)
Cl1—C1—C2—Cl20.6 (7)C3—C4—C5—C60.7 (9)
C1—C2—C3—C41.7 (8)Cl4—C4—C5—C6179.9 (5)
Cl2—C2—C3—C4178.8 (4)C2—C1—C6—C50.7 (9)
C1—C2—C3—Cl3179.6 (4)Cl1—C1—C6—C5179.9 (5)
Cl2—C2—C3—Cl30.0 (7)C4—C5—C6—C10.5 (10)
C2—C3—C4—C51.8 (9)
1,2,3,4-Tetrachlorobenzene (1234TCB_90K) top
Crystal data top
C6H2Cl4Dx = 1.905 Mg m3
Mr = 215.88Melting point: 320.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.79937 (12) ÅCell parameters from 3724 reflections
b = 14.8635 (4) Åθ = 3.1–29.4°
c = 13.3272 (4) ŵ = 1.48 mm1
β = 89.674 (3)°T = 90 K
V = 752.60 (4) Å3Tabular, colourless
Z = 40.46 × 0.35 × 0.26 mm
F(000) = 424
Data collection top
Xcalibur
diffractometer
1469 independent reflections
Radiation source: fine-focus sealed tube1343 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
ω–scanθmax = 26.0°, θmin = 3.1°
Absorption correction: multi-scan
CrysAlisPro ver. 1.171.39.15e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 44
Tmin = 0.953, Tmax = 1.000k = 1518
4993 measured reflectionsl = 1616
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.131 w = 1/[σ^2^(Fo^2^) + (0.P)^2^ + 6.5793P]
where P = (Fo^2^ + 2Fc^2^)/3
S = 1.36(Δ/σ)max < 0.001
1469 reflectionsΔρmax = 0.61 e Å3
92 parametersΔρmin = 0.51 e Å3
0 restraintsExtinction correction: SHELXL, Fc^*^=kFc[1+0.001xFc^2^λ^3^/sin(2θ)]^-1/4^
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0059 (14)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1177 (14)0.2518 (4)0.1684 (4)0.0151 (11)
Cl10.0570 (4)0.17365 (9)0.08651 (11)0.0204 (4)
C20.1575 (15)0.3414 (4)0.1394 (4)0.0153 (11)
Cl20.0294 (4)0.37671 (10)0.02238 (10)0.0195 (4)
C30.3025 (15)0.4025 (4)0.2074 (4)0.0160 (11)
Cl30.3591 (4)0.51373 (9)0.17186 (11)0.0215 (4)
C40.4009 (14)0.3745 (4)0.3023 (4)0.0138 (11)
Cl40.5782 (4)0.45046 (10)0.38660 (11)0.0203 (4)
C50.3590 (15)0.2846 (4)0.3309 (4)0.0177 (12)
H50.42600.26560.39450.021*
C60.2162 (15)0.2241 (4)0.2632 (4)0.0180 (12)
H60.18640.16420.28170.022*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.011 (3)0.015 (3)0.019 (3)0.001 (2)0.003 (2)0.006 (2)
Cl10.0205 (7)0.0160 (7)0.0246 (8)0.0017 (5)0.0013 (6)0.0057 (6)
C20.013 (3)0.019 (3)0.013 (3)0.001 (2)0.000 (2)0.001 (2)
Cl20.0241 (8)0.0202 (7)0.0141 (7)0.0012 (6)0.0028 (5)0.0018 (5)
C30.013 (3)0.015 (3)0.020 (3)0.000 (2)0.002 (2)0.002 (2)
Cl30.0261 (8)0.0134 (7)0.0250 (8)0.0017 (6)0.0032 (6)0.0028 (6)
C40.011 (3)0.017 (3)0.014 (3)0.000 (2)0.000 (2)0.002 (2)
Cl40.0204 (7)0.0230 (7)0.0176 (7)0.0004 (6)0.0028 (5)0.0061 (6)
C50.015 (3)0.025 (3)0.013 (3)0.002 (2)0.000 (2)0.002 (2)
C60.018 (3)0.014 (3)0.022 (3)0.000 (2)0.003 (2)0.005 (2)
Geometric parameters (Å, º) top
C1—C61.382 (8)C3—Cl31.732 (6)
C1—C21.395 (8)C4—C51.398 (8)
C1—Cl11.729 (6)C4—Cl41.732 (6)
C2—C31.399 (8)C5—C61.386 (8)
C2—Cl21.718 (6)C5—H50.9300
C3—C41.385 (8)C6—H60.9300
C6—C1—C2120.6 (5)C3—C4—C5120.3 (5)
C6—C1—Cl1118.9 (4)C3—C4—Cl4120.3 (4)
C2—C1—Cl1120.5 (4)C5—C4—Cl4119.4 (4)
C1—C2—C3118.8 (5)C6—C5—C4119.2 (5)
C1—C2—Cl2120.9 (4)C6—C5—H5120.4
C3—C2—Cl2120.3 (4)C4—C5—H5120.4
C4—C3—C2120.4 (5)C1—C6—C5120.7 (5)
C4—C3—Cl3120.2 (4)C1—C6—H6119.7
C2—C3—Cl3119.4 (4)C5—C6—H6119.7
C6—C1—C2—C30.7 (8)Cl3—C3—C4—C5179.3 (4)
Cl1—C1—C2—C3179.5 (4)C2—C3—C4—Cl4179.7 (4)
C6—C1—C2—Cl2179.0 (4)Cl3—C3—C4—Cl40.5 (7)
Cl1—C1—C2—Cl20.8 (7)C3—C4—C5—C60.3 (8)
C1—C2—C3—C40.7 (8)Cl4—C4—C5—C6179.9 (4)
Cl2—C2—C3—C4179.0 (4)C2—C1—C6—C50.5 (8)
C1—C2—C3—Cl3179.2 (4)Cl1—C1—C6—C5179.7 (4)
Cl2—C2—C3—Cl31.1 (7)C4—C5—C6—C10.3 (8)
C2—C3—C4—C50.5 (8)
1,2,3,5-Tetrachlorobenzene (1235TCB_270K) top
Crystal data top
C6H2Cl4Dx = 1.818 Mg m3
Mr = 215.88Melting point: 327.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.83433 (11) ÅCell parameters from 5103 reflections
b = 23.9377 (6) Åθ = 3.4–28.8°
c = 17.2355 (4) ŵ = 1.41 mm1
β = 94.293 (3)°T = 270 K
V = 1577.52 (7) Å3Pillar, colourless
Z = 80.40 × 0.26 × 0.25 mm
F(000) = 848
Data collection top
Xcalibur
diffractometer
3097 independent reflections
Radiation source: fine-focus sealed tube2317 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω–scanθmax = 26.0°, θmin = 3.4°
Absorption correction: multi-scan
CrysAlisPro ver. 1.171.39.15e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 24
Tmin = 0.981, Tmax = 1.000k = 2929
10692 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.025Hydrogen site location: difference Fourier map
wR(F2) = 0.060H-atom parameters constrained
S = 0.98 w = 1/[σ^2^(Fo^2^) + (0.032P)^2^]
where P = (Fo^2^ + 2Fc^2^)/3
3097 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.24 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1928 (4)0.03197 (7)0.36377 (10)0.0391 (4)
Cl10.36535 (14)0.07516 (2)0.43755 (3)0.05800 (15)
C20.1674 (4)0.05067 (7)0.28738 (10)0.0358 (4)
Cl20.30717 (13)0.116412 (18)0.26445 (3)0.05096 (14)
C30.0261 (4)0.01461 (7)0.22987 (10)0.0378 (4)
Cl30.00755 (15)0.03547 (2)0.13382 (3)0.05990 (16)
C40.0867 (4)0.03816 (7)0.24784 (10)0.0393 (4)
H40.18070.06190.20900.047*
C50.0577 (4)0.05504 (7)0.32425 (10)0.0409 (4)
Cl50.19961 (14)0.121523 (19)0.34728 (3)0.06024 (15)
C60.0818 (5)0.02079 (7)0.38276 (11)0.0439 (4)
H60.10100.03300.43410.053*
C70.4340 (5)0.35148 (7)0.51498 (10)0.0391 (4)
Cl70.55033 (15)0.41901 (2)0.54078 (3)0.05906 (15)
C80.3166 (5)0.31475 (7)0.57000 (10)0.0404 (4)
Cl80.28425 (16)0.33537 (2)0.66451 (3)0.06430 (17)
C90.2287 (5)0.26081 (7)0.54648 (11)0.0428 (4)
Cl90.08067 (14)0.21350 (2)0.61234 (3)0.06384 (16)
C100.2565 (5)0.24360 (7)0.47127 (12)0.0478 (5)
H100.19790.20720.45640.057*
C110.3731 (5)0.28108 (8)0.41788 (10)0.0452 (5)
Cl110.41105 (19)0.25968 (2)0.32310 (3)0.07385 (19)
C120.4624 (5)0.33506 (7)0.43896 (10)0.0410 (4)
H120.54030.36000.40260.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0382 (10)0.0376 (10)0.0408 (10)0.0026 (8)0.0003 (8)0.0058 (8)
Cl10.0705 (3)0.0537 (3)0.0479 (3)0.0054 (3)0.0086 (2)0.0102 (2)
C20.0345 (9)0.0296 (9)0.0436 (10)0.0024 (7)0.0046 (8)0.0016 (8)
Cl20.0626 (3)0.0361 (3)0.0553 (3)0.0078 (2)0.0115 (2)0.0011 (2)
C30.0380 (10)0.0386 (10)0.0368 (9)0.0052 (8)0.0028 (8)0.0022 (8)
Cl30.0887 (4)0.0521 (3)0.0382 (3)0.0086 (3)0.0004 (3)0.0031 (2)
C40.0396 (10)0.0327 (9)0.0451 (10)0.0018 (8)0.0008 (8)0.0044 (8)
C50.0397 (10)0.0307 (9)0.0523 (11)0.0016 (8)0.0029 (9)0.0048 (8)
Cl50.0733 (4)0.0363 (3)0.0706 (3)0.0068 (2)0.0022 (3)0.0115 (2)
C60.0485 (11)0.0439 (11)0.0390 (10)0.0044 (9)0.0003 (9)0.0050 (8)
C70.0434 (10)0.0318 (9)0.0410 (10)0.0008 (8)0.0033 (8)0.0009 (8)
Cl70.0893 (4)0.0382 (3)0.0487 (3)0.0132 (3)0.0019 (3)0.0037 (2)
C80.0419 (10)0.0432 (10)0.0354 (9)0.0049 (9)0.0010 (8)0.0044 (8)
Cl80.0914 (4)0.0638 (3)0.0385 (3)0.0025 (3)0.0098 (3)0.0019 (2)
C90.0389 (11)0.0397 (10)0.0492 (11)0.0014 (8)0.0005 (9)0.0133 (9)
Cl90.0662 (3)0.0546 (3)0.0708 (4)0.0081 (3)0.0059 (3)0.0269 (3)
C100.0548 (12)0.0323 (10)0.0551 (12)0.0032 (9)0.0039 (10)0.0003 (9)
C110.0540 (12)0.0406 (10)0.0407 (10)0.0016 (9)0.0010 (9)0.0041 (8)
Cl110.1174 (5)0.0561 (3)0.0489 (3)0.0062 (3)0.0128 (3)0.0152 (2)
C120.0486 (11)0.0360 (10)0.0386 (10)0.0007 (8)0.0034 (9)0.0059 (8)
Geometric parameters (Å, º) top
C1—C61.380 (2)C7—C121.380 (2)
C1—C21.387 (2)C7—C81.393 (2)
C1—Cl11.7314 (17)C7—Cl71.7263 (17)
C2—C31.393 (2)C8—C91.387 (2)
C2—Cl21.7179 (17)C8—Cl81.7153 (18)
C3—C41.378 (2)C9—C101.372 (3)
C3—Cl31.7248 (17)C9—Cl91.7291 (18)
C4—C51.374 (2)C10—C111.383 (3)
C4—H40.9300C10—H100.9300
C5—C61.376 (2)C11—C121.378 (2)
C5—Cl51.7374 (18)C11—Cl111.7286 (18)
C6—H60.9300C12—H120.9300
C6—C1—C2121.30 (16)C12—C7—C8121.28 (16)
C6—C1—Cl1118.68 (14)C12—C7—Cl7118.31 (13)
C2—C1—Cl1120.02 (13)C8—C7—Cl7120.41 (14)
C1—C2—C3118.11 (15)C9—C8—C7118.19 (16)
C1—C2—Cl2120.87 (13)C9—C8—Cl8120.81 (14)
C3—C2—Cl2121.02 (13)C7—C8—Cl8121.00 (14)
C4—C3—C2121.34 (16)C10—C9—C8121.42 (17)
C4—C3—Cl3118.61 (14)C10—C9—Cl9118.43 (14)
C2—C3—Cl3120.05 (13)C8—C9—Cl9120.15 (15)
C5—C4—C3118.73 (16)C9—C10—C11119.05 (17)
C5—C4—H4120.6C9—C10—H10120.5
C3—C4—H4120.6C11—C10—H10120.5
C4—C5—C6121.74 (16)C12—C11—C10121.26 (17)
C4—C5—Cl5118.95 (14)C12—C11—Cl11119.34 (14)
C6—C5—Cl5119.31 (14)C10—C11—Cl11119.39 (14)
C5—C6—C1118.77 (17)C11—C12—C7118.79 (16)
C5—C6—H6120.6C11—C12—H12120.6
C1—C6—H6120.6C7—C12—H12120.6
C6—C1—C2—C30.0 (3)C12—C7—C8—C90.1 (3)
Cl1—C1—C2—C3179.83 (12)Cl7—C7—C8—C9179.55 (14)
C6—C1—C2—Cl2179.89 (13)C12—C7—C8—Cl8179.66 (14)
Cl1—C1—C2—Cl20.3 (2)Cl7—C7—C8—Cl80.0 (2)
C1—C2—C3—C40.2 (2)C7—C8—C9—C100.2 (3)
Cl2—C2—C3—C4179.96 (14)Cl8—C8—C9—C10179.35 (15)
C1—C2—C3—Cl3179.36 (13)C7—C8—C9—Cl9179.89 (13)
Cl2—C2—C3—Cl30.5 (2)Cl8—C8—C9—Cl90.6 (2)
C2—C3—C4—C50.0 (3)C8—C9—C10—C110.4 (3)
Cl3—C3—C4—C5179.51 (13)Cl9—C9—C10—C11179.71 (15)
C3—C4—C5—C60.3 (3)C9—C10—C11—C120.2 (3)
C3—C4—C5—Cl5179.99 (13)C9—C10—C11—Cl11179.69 (15)
C4—C5—C6—C10.5 (3)C10—C11—C12—C70.0 (3)
Cl5—C5—C6—C1179.84 (13)Cl11—C11—C12—C7179.39 (14)
C2—C1—C6—C50.3 (3)C8—C7—C12—C110.2 (3)
Cl1—C1—C6—C5179.54 (13)Cl7—C7—C12—C11179.45 (14)
1,2,3,5-Tetrachlorobenzene (1235TCB_90K) top
Crystal data top
C6H2Cl4Dx = 1.884 Mg m3
Mr = 215.88Melting point: 327.7 K
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 3.76927 (10) ÅCell parameters from 7572 reflections
b = 23.6053 (6) Åθ = 3.4–29.5°
c = 17.1740 (4) ŵ = 1.46 mm1
β = 94.902 (2)°T = 90 K
V = 1522.46 (7) Å3Pillar, colourless
Z = 80.40 × 0.26 × 0.25 mm
F(000) = 848
Data collection top
Xcalibur
diffractometer
2994 independent reflections
Radiation source: fine-focus sealed tube2634 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
ω–scanθmax = 26.0°, θmin = 3.5°
Absorption correction: multi-scan
CrysAlisPro ver. 1.171.39.15e (Rigaku Oxford Diffraction, 2015) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
h = 24
Tmin = 0.970, Tmax = 1.000k = 2929
10291 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.018Hydrogen site location: difference Fourier map
wR(F2) = 0.047H-atom parameters constrained
S = 1.06 w = 1/[σ^2^(Fo^2^) + (0.0266P)^2^ + 0.0934P]
where P = (Fo^2^ + 2Fc^2^)/3
2994 reflections(Δ/σ)max = 0.001
181 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.20 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2^ against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^2^, conventional R-factors R are based on F, with F set to zero for negative F^2^. The threshold expression of F^2^ > 2sigma(F^2^) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2^ are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1923 (4)0.03345 (6)0.36523 (8)0.0138 (3)
Cl10.36967 (10)0.077100 (16)0.44003 (2)0.01819 (9)
C20.1734 (4)0.05217 (6)0.28804 (8)0.0125 (3)
Cl20.32340 (10)0.118568 (14)0.26517 (2)0.01590 (9)
C30.0297 (4)0.01565 (6)0.22961 (8)0.0125 (3)
Cl30.00618 (10)0.036308 (15)0.13281 (2)0.01842 (9)
C40.0932 (4)0.03784 (6)0.24733 (9)0.0134 (3)
H40.18940.06180.20810.016*
C50.0694 (4)0.05469 (6)0.32478 (9)0.0141 (3)
Cl50.22052 (10)0.121814 (15)0.34747 (2)0.01856 (9)
C60.0732 (4)0.01995 (6)0.38434 (9)0.0147 (3)
H60.08890.03210.43600.018*
C70.4363 (4)0.35277 (6)0.51414 (8)0.0131 (3)
Cl70.56850 (10)0.420938 (15)0.53986 (2)0.01757 (9)
C80.3156 (4)0.31611 (6)0.57008 (8)0.0132 (3)
Cl80.29511 (10)0.337546 (16)0.66543 (2)0.01921 (9)
C90.2152 (4)0.26137 (6)0.54699 (9)0.0143 (3)
Cl90.06403 (10)0.214333 (15)0.61401 (2)0.01882 (9)
C100.2348 (4)0.24324 (6)0.47094 (9)0.0149 (3)
H100.16870.20650.45630.018*
C110.3547 (4)0.28079 (6)0.41680 (8)0.0149 (3)
Cl110.38266 (11)0.258378 (16)0.32143 (2)0.02154 (10)
C120.4551 (4)0.33561 (6)0.43748 (8)0.0135 (3)
H120.53350.36040.40050.016*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0118 (7)0.0136 (7)0.0158 (8)0.0008 (6)0.0000 (6)0.0034 (6)
Cl10.02215 (19)0.01674 (19)0.01499 (18)0.00191 (15)0.00248 (15)0.00325 (14)
C20.0108 (7)0.0096 (7)0.0173 (7)0.0002 (6)0.0016 (6)0.0003 (6)
Cl20.01909 (19)0.01119 (18)0.01773 (19)0.00284 (14)0.00335 (15)0.00040 (14)
C30.0119 (7)0.0145 (7)0.0112 (7)0.0028 (6)0.0013 (6)0.0017 (6)
Cl30.0266 (2)0.01678 (19)0.01175 (18)0.00343 (15)0.00066 (15)0.00115 (14)
C40.0124 (7)0.0123 (7)0.0154 (7)0.0012 (6)0.0002 (6)0.0023 (6)
C50.0123 (7)0.0097 (7)0.0203 (8)0.0006 (6)0.0024 (6)0.0023 (6)
Cl50.0224 (2)0.01135 (18)0.0217 (2)0.00232 (14)0.00063 (15)0.00351 (14)
C60.0152 (7)0.0158 (8)0.0130 (7)0.0026 (6)0.0005 (6)0.0025 (6)
C70.0125 (7)0.0102 (7)0.0162 (7)0.0009 (6)0.0010 (6)0.0008 (6)
Cl70.0252 (2)0.01169 (18)0.01561 (18)0.00436 (15)0.00036 (15)0.00117 (14)
C80.0117 (7)0.0153 (7)0.0123 (7)0.0023 (6)0.0003 (6)0.0003 (6)
Cl80.0268 (2)0.0190 (2)0.01208 (18)0.00095 (16)0.00295 (15)0.00027 (14)
C90.0115 (7)0.0146 (8)0.0168 (8)0.0005 (6)0.0003 (6)0.0050 (6)
Cl90.02011 (19)0.01587 (19)0.02052 (19)0.00263 (15)0.00195 (15)0.00699 (15)
C100.0154 (8)0.0096 (7)0.0191 (8)0.0007 (6)0.0019 (6)0.0004 (6)
C110.0150 (7)0.0173 (8)0.0124 (7)0.0028 (6)0.0001 (6)0.0022 (6)
Cl110.0324 (2)0.0175 (2)0.01504 (19)0.00236 (16)0.00424 (16)0.00473 (15)
C120.0132 (7)0.0136 (7)0.0137 (7)0.0003 (6)0.0005 (6)0.0031 (6)
Geometric parameters (Å, º) top
C1—C61.387 (2)C7—C121.385 (2)
C1—C21.393 (2)C7—C81.398 (2)
C1—Cl11.7355 (14)C7—Cl71.7307 (14)
C2—C31.3967 (19)C8—C91.394 (2)
C2—Cl21.7229 (14)C8—Cl81.7219 (15)
C3—C41.388 (2)C9—C101.382 (2)
C3—Cl31.7275 (14)C9—Cl91.7304 (15)
C4—C51.384 (2)C10—C111.388 (2)
C4—H40.9300C10—H100.9300
C5—C61.383 (2)C11—C121.386 (2)
C5—Cl51.7392 (15)C11—Cl111.7330 (15)
C6—H60.9300C12—H120.9300
C6—C1—C2121.47 (13)C12—C7—C8121.22 (13)
C6—C1—Cl1118.46 (11)C12—C7—Cl7118.53 (11)
C2—C1—Cl1120.07 (11)C8—C7—Cl7120.25 (11)
C1—C2—C3118.23 (13)C9—C8—C7118.34 (13)
C1—C2—Cl2120.95 (11)C9—C8—Cl8120.63 (11)
C3—C2—Cl2120.82 (11)C7—C8—Cl8121.03 (11)
C4—C3—C2121.35 (13)C10—C9—C8121.36 (13)
C4—C3—Cl3118.51 (11)C10—C9—Cl9118.49 (11)
C2—C3—Cl3120.14 (11)C8—C9—Cl9120.15 (11)
C5—C4—C3118.48 (13)C9—C10—C11118.81 (13)
C5—C4—H4120.8C9—C10—H10120.6
C3—C4—H4120.8C11—C10—H10120.6
C6—C5—C4121.97 (13)C12—C11—C10121.47 (14)
C6—C5—Cl5119.24 (11)C12—C11—Cl11119.33 (11)
C4—C5—Cl5118.79 (11)C10—C11—Cl11119.19 (11)
C5—C6—C1118.50 (13)C7—C12—C11118.79 (13)
C5—C6—H6120.8C7—C12—H12120.6
C1—C6—H6120.8C11—C12—H12120.6
C6—C1—C2—C30.1 (2)C12—C7—C8—C90.3 (2)
Cl1—C1—C2—C3179.83 (11)Cl7—C7—C8—C9179.36 (11)
C6—C1—C2—Cl2179.85 (11)C12—C7—C8—Cl8179.65 (11)
Cl1—C1—C2—Cl20.16 (17)Cl7—C7—C8—Cl80.00 (17)
C1—C2—C3—C40.3 (2)C7—C8—C9—C100.3 (2)
Cl2—C2—C3—C4179.75 (11)Cl8—C8—C9—C10179.08 (11)
C1—C2—C3—Cl3179.03 (11)C7—C8—C9—Cl9179.97 (11)
Cl2—C2—C3—Cl30.96 (17)Cl8—C8—C9—Cl90.61 (18)
C2—C3—C4—C50.3 (2)C8—C9—C10—C110.5 (2)
Cl3—C3—C4—C5179.05 (11)Cl9—C9—C10—C11179.81 (11)
C3—C4—C5—C60.2 (2)C9—C10—C11—C120.1 (2)
C3—C4—C5—Cl5179.64 (11)C9—C10—C11—Cl11179.65 (11)
C4—C5—C6—C10.6 (2)C8—C7—C12—C110.6 (2)
Cl5—C5—C6—C1179.97 (11)Cl7—C7—C12—C11179.03 (11)
C2—C1—C6—C50.5 (2)C10—C11—C12—C70.4 (2)
Cl1—C1—C6—C5179.76 (11)Cl11—C11—C12—C7179.10 (11)
 

Subscribe to Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials

The full text of this article is available to subscribers to the journal.

If you have already registered and are using a computer listed in your registration details, please email support@iucr.org for assistance.

Buy online

You may purchase this article in PDF and/or HTML formats. For purchasers in the European Community who do not have a VAT number, VAT will be added at the local rate. Payments to the IUCr are handled by WorldPay, who will accept payment by credit card in several currencies. To purchase the article, please complete the form below (fields marked * are required), and then click on `Continue'.
E-mail address* 
Repeat e-mail address* 
(for error checking) 

Format*   PDF (US $40)
   HTML (US $40)
   PDF+HTML (US $50)
In order for VAT to be shown for your country javascript needs to be enabled.

VAT number 
(non-UK EC countries only) 
Country* 
 

Terms and conditions of use
Contact us

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds