Buy article online - an online subscription or single-article purchase is required to access this article.
The title compound, a promising new energetic material, 3,3-bis(difluoroaminomethyl)oxetane, (F2NCH2)2C(CH2)2O or C5H8F4N2O, contains two difluoroamine (NF2) substituents, rather uncommon energetic groups, which tend to be disordered in crystal structures. The molecule occupies a special position on a twofold axis, and its two equivalent difluoroamine groups show no signs of disorder.
Supporting information
CCDC reference: 227923
Key indicators
- Single-crystal X-ray study
- T = 93 K
- Mean (C-C) = 0.001 Å
- R factor = 0.036
- wR factor = 0.102
- Data-to-parameter ratio = 12.2
checkCIF/PLATON results
No syntax errors found
Alert level B
PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.98
Alert level C
PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.70 mm
PLAT230_ALERT_2_C Hirshfeld Test Diff for N5 - C4 = 5.30 su
0 ALERT level A = In general: serious problem
1 ALERT level B = Potentially serious problem
2 ALERT level C = Check and explain
0 ALERT level G = General alerts; check
0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
Data collection: SMART (Bruker,2001); cell refinement: SAINT (Bruker,2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXTL (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.
3,3-bis(difluoroaminomethyl)oxetane
top
Crystal data top
C5H8F4N2O | F(000) = 384 |
Mr = 188.13 | Dx = 1.728 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -C 2yc | Cell parameters from 2766 reflections |
a = 10.3304 (13) Å | θ = 2.9–28.5° |
b = 10.6065 (13) Å | µ = 0.19 mm−1 |
c = 6.8638 (8) Å | T = 93 K |
β = 105.931 (2)° | Rounded chunk, colorless |
V = 723.18 (15) Å3 | 0.70 × 0.65 × 0.60 mm |
Z = 4 | |
Data collection top
Bruker CCD area-detector diffractometer | 877 independent reflections |
Radiation source: fine-focus sealed tube | 840 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.060 |
φ and ω scans | θmax = 28.2°, θmin = 2.8° |
Absorption correction: integration (Wuensch & Prewitt, 1965) | h = −12→13 |
Tmin = 0.858, Tmax = 0.919 | k = −14→14 |
2995 measured reflections | l = −8→8 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: structure-invariant direct methods |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: difference Fourier map |
wR(F2) = 0.102 | Only H-atom coordinates refined |
S = 1.00 | w = 1/[σ2(Fo2) + (0.0627P)2 + 0.609P] where P = (Fo2 + 2Fc2)/3 |
877 reflections | (Δ/σ)max = 0.002 |
72 parameters | Δρmax = 0.47 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
2σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
F5A | 0.12220 (7) | 0.42556 (7) | −0.04368 (11) | 0.0225 (3) | |
F5B | 0.23894 (7) | 0.30290 (7) | 0.19704 (11) | 0.0214 (3) | |
O1 | 0.0000 | −0.01437 (11) | 0.2500 | 0.0202 (3) | |
C2 | −0.10373 (11) | 0.08116 (10) | 0.18578 (17) | 0.0160 (3) | |
H2A | −0.1480 (16) | 0.0769 (14) | 0.042 (3) | 0.019* | |
H2B | −0.1717 (17) | 0.0754 (13) | 0.262 (3) | 0.019* | |
C3 | 0.0000 | 0.18930 (13) | 0.2500 | 0.0125 (3) | |
N5 | 0.11361 (9) | 0.36818 (9) | 0.13797 (14) | 0.0161 (3) | |
C4 | 0.01238 (11) | 0.26786 (10) | 0.06953 (16) | 0.0138 (3) | |
H4A | −0.0654 (16) | 0.3128 (14) | 0.009 (2) | 0.017* | |
H4B | 0.0346 (15) | 0.2159 (14) | −0.026 (2) | 0.017* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
F5A | 0.0229 (4) | 0.0209 (4) | 0.0261 (4) | −0.0036 (3) | 0.0110 (3) | 0.0075 (3) |
F5B | 0.0110 (4) | 0.0238 (4) | 0.0284 (4) | −0.0008 (2) | 0.0035 (3) | 0.0017 (3) |
O1 | 0.0200 (6) | 0.0106 (5) | 0.0306 (6) | 0.000 | 0.0076 (5) | 0.000 |
C2 | 0.0148 (5) | 0.0116 (5) | 0.0222 (6) | −0.0023 (4) | 0.0060 (4) | −0.0001 (4) |
C3 | 0.0105 (6) | 0.0106 (7) | 0.0172 (7) | 0.000 | 0.0052 (5) | 0.000 |
N5 | 0.0141 (5) | 0.0155 (5) | 0.0206 (5) | −0.0007 (3) | 0.0076 (4) | 0.0025 (3) |
C4 | 0.0122 (5) | 0.0131 (5) | 0.0165 (5) | −0.0014 (4) | 0.0048 (4) | −0.0001 (4) |
Geometric parameters (Å, º) top
F5A—N5 | 1.4120 (11) | C2—H2B | 0.987 (17) |
F5B—N5 | 1.4255 (11) | C3—C4 | 1.5271 (13) |
O1—C2 | 1.4526 (13) | N5—C4 | 1.4754 (14) |
C2—C3 | 1.5488 (14) | C4—H4A | 0.929 (16) |
C2—H2A | 0.968 (16) | C4—H4B | 0.931 (16) |
| | | |
C2i—O1—C2 | 91.54 (11) | C2—C3—C2i | 84.45 (11) |
O1—C2—C3 | 92.01 (8) | F5A—N5—F5B | 100.85 (7) |
O1—C2—H2A | 112.3 (9) | F5A—N5—C4 | 103.92 (8) |
C3—C2—H2A | 114.9 (9) | F5B—N5—C4 | 104.44 (8) |
O1—C2—H2B | 111.6 (9) | N5—C4—C3 | 110.19 (8) |
C3—C2—H2B | 115.6 (9) | N5—C4—H4A | 102.9 (9) |
H2A—C2—H2B | 109.5 (14) | C3—C4—H4A | 113.0 (9) |
C4i—C3—C4 | 113.86 (12) | N5—C4—H4B | 111.2 (9) |
C4i—C3—C2 | 115.43 (6) | C3—C4—H4B | 109.8 (9) |
C4—C3—C2 | 112.25 (6) | H4A—C4—H4B | 109.7 (14) |
| | | |
C2i—O1—C2—C3 | 0.0 | F5B—N5—C4—C3 | 70.06 (10) |
O1—C2—C3—C4i | −112.03 (8) | C4i—C3—C4—N5 | 47.35 (6) |
O1—C2—C3—C4 | 115.24 (8) | C2—C3—C4—N5 | −179.15 (8) |
O1—C2—C3—C2i | 0.0 | C2i—C3—C4—N5 | −84.63 (11) |
F5A—N5—C4—C3 | 175.36 (7) | | |
Symmetry code: (i) −x, y, −z+1/2. |
Subscribe to Acta Crystallographica Section E: Crystallographic Communications
The full text of this article is available to subscribers to the journal.
If you have already registered and are using a computer listed in your registration details, please email
support@iucr.org for assistance.