In the title compound, [Mg(C
2H
5NO
2)
2(H
2O)
4][Mg(H
2O)
6](SO
4)
2, the Mg
II atoms of both dications lie on inversion centres, and each of them is in an octahedral coordination environment. The glycine molecule exists in the zwitterionic form. The [Mg(H
2O)
6]
2+ and [Mg(C
2H
5NO
2)
2(H
2O)
4]
2+ dications pack as alternate layers parallel to the
ab plane, with the sulfate anions lying between them. The ions are linked to form a three-dimensional network by O—H

O and N—H

O hydrogen bonds.
Supporting information
CCDC reference: 672589
Key indicators
- Single-crystal X-ray study
- T = 293 K
- Mean
(C-C) = 0.004 Å
- R factor = 0.066
- wR factor = 0.171
- Data-to-parameter ratio = 9.9
checkCIF/PLATON results
No syntax errors found
Alert level C
PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ?
PLAT088_ALERT_3_C Poor Data / Parameter Ratio .................... 9.94
PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 2000 Deg.
PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.35
PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.846(10) ...... 3.00 su-Ra
O5 -H5B 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.842(10) ...... 3.00 su-Ra
O5 -H5A 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.838(10) ...... 3.00 su-Ra
O6 -H6B 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.838(10) ...... 3.00 su-Ra
O6 -H6A 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.835(10) ...... 3.00 su-Ra
O9 -H9B 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.844(10) ...... 3.00 su-Ra
O10 -H10B 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(4), Rep 0.842(10) ...... 4.00 su-Ra
O10 -H10A 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.83(3), Rep 0.837(10) ...... 3.00 su-Ra
O11 -H11B 1.555 1.555
PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.836(10) ...... 3.00 su-Ra
O11 -H11A 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra
O5 -H5A 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Ra
O5 -H5B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra
O6 -H6A 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.83(3), Rep 0.840(10) ...... 3.00 su-Ra
O6 -H6B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra
O9 -H9B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(4), Rep 0.840(10) ...... 4.00 su-Ra
O10 -H10A 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra
O10 -H10B 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra
O11 -H11A 1.555 1.555
PLAT735_ALERT_1_C D-H Calc 0.83(3), Rep 0.840(10) ...... 3.00 su-Ra
O11 -H11B 1.555 1.555
Alert level G
PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K
PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K
PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 18
0 ALERT level A = In general: serious problem
0 ALERT level B = Potentially serious problem
22 ALERT level C = Check and explain
3 ALERT level G = General alerts; check
22 ALERT type 1 CIF construction/syntax error, inconsistent or missing data
1 ALERT type 2 Indicator that the structure model may be wrong or deficient
2 ALERT type 3 Indicator that the structure quality may be low
0 ALERT type 4 Improvement, methodology, query or suggestion
0 ALERT type 5 Informative message, check
Colourless single crystals of the title compound were grown from a saturated
aqueous solution. Glycine (3 g, 1.6 mol) was added to 25 ml of magnesium
sulfate heptahydrate (40 g, 6.5 mol) solution at 313 K using a constant
temperature water both. The solution was continuously stirred upto complete
dissolution of glycine and the temperature was raised to 318 K to avoid
nucleation during the filtration of the solution. This solution was subjected
to solvent evaporation at room temperature and after 10 days, white tabular
form of crystals were collected.
C-bound H atoms were positioned geometrically (C—H = 0.97 Å) and allowed to
ride on their parent atoms, with Uiso(H) = 1.2Ueq(C). The
water H atoms were located and refined with distance restraints [O—H =
0.84 (1) Å and H···H = 1.37 (2) Å]. The three N—H distances were
restrained to be equal.
Data collection: AED software/Program name? (Belletti, 2004); cell refinement: AED software/Program name? (Belletti, 2004); data reduction: AED software/Program name? (Belletti, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
Tetraaquadiglycinemagnesium(II) hexaaquamagnesium(II) bis(sulfate)
top
Crystal data top
[Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2 | Z = 1 |
Mr = 571.04 | F(000) = 300 |
Triclinic, P1 | Dx = 1.775 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71073 Å |
a = 5.988 (3) Å | Cell parameters from 36 reflections |
b = 6.783 (2) Å | θ = 7.9–17.5° |
c = 13.391 (2) Å | µ = 0.41 mm−1 |
α = 85.39 (2)° | T = 293 K |
β = 82.87 (2)° | Block, colourless |
γ = 82.88 (2)° | 0.21 × 0.19 × 0.16 mm |
V = 534.4 (3) Å3 | |
Data collection top
Siemens AED diffractometer | Rint = 0.000 |
Radiation source: fine-focus sealed tube | θmax = 25.5°, θmin = 1.5° |
Graphite monochromator | h = −7→6 |
ω–2θ scans | k = −6→8 |
1998 measured reflections | l = −12→16 |
1998 independent reflections | 1 standard reflections every 50 reflections |
1992 reflections with I > 2σ(I) | intensity decay: none |
Refinement top
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.066 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.171 | w = 1/[σ2(Fo2) + (0.1149P)2 + 0.6843P] where P = (Fo2 + 2Fc2)/3 |
S = 1.16 | (Δ/σ)max = 0.007 |
1998 reflections | Δρmax = 0.94 e Å−3 |
201 parameters | Δρmin = −1.07 e Å−3 |
18 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.37 (3) |
Crystal data top
[Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2 | γ = 82.88 (2)° |
Mr = 571.04 | V = 534.4 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 5.988 (3) Å | Mo Kα radiation |
b = 6.783 (2) Å | µ = 0.41 mm−1 |
c = 13.391 (2) Å | T = 293 K |
α = 85.39 (2)° | 0.21 × 0.19 × 0.16 mm |
β = 82.87 (2)° | |
Data collection top
Siemens AED diffractometer | Rint = 0.000 |
1998 measured reflections | 1 standard reflections every 50 reflections |
1998 independent reflections | intensity decay: none |
1992 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.066 | 18 restraints |
wR(F2) = 0.171 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.16 | Δρmax = 0.94 e Å−3 |
1998 reflections | Δρmin = −1.07 e Å−3 |
201 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes)
are estimated using the full covariance matrix. The cell e.s.d.'s are taken
into account individually in the estimation of e.s.d.'s in distances, angles
and torsion angles; correlations between e.s.d.'s in cell parameters are only
used when they are defined by crystal symmetry. An approximate (isotropic)
treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s.
planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor
wR and goodness of fit S are based on F2, conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of F2 >
σ(F2) is used only for calculating R-factors(gt) etc.
and is not relevant to the choice of reflections for refinement.
R-factors based on F2 are statistically about twice as large
as those based on F, and R- factors based on ALL data will be
even larger. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
S1 | 0.01345 (11) | 0.91384 (10) | 0.18807 (5) | 0.0170 (3) | |
O1 | 0.1835 (4) | 1.0199 (3) | 0.12319 (18) | 0.0300 (6) | |
O2 | −0.0271 (4) | 0.7357 (3) | 0.13906 (17) | 0.0279 (6) | |
O3 | −0.2019 (4) | 1.0445 (3) | 0.20413 (17) | 0.0282 (6) | |
O4 | 0.0986 (4) | 0.8490 (4) | 0.28613 (17) | 0.0294 (6) | |
Mg1 | 0.5000 | 0.0000 | 0.5000 | 0.0184 (4) | |
O5 | 0.1910 (4) | 0.1538 (4) | 0.53615 (18) | 0.0318 (6) | |
H5B | 0.116 (6) | 0.206 (6) | 0.489 (2) | 0.044 (12)* | |
H5A | 0.101 (6) | 0.150 (7) | 0.5897 (17) | 0.046 (13)* | |
O6 | 0.4411 (4) | 0.0276 (4) | 0.34899 (15) | 0.0289 (6) | |
H6B | 0.326 (4) | −0.002 (6) | 0.327 (3) | 0.040 (12)* | |
H6A | 0.547 (4) | 0.032 (6) | 0.302 (2) | 0.033 (11)* | |
O7 | 0.6414 (4) | 0.2747 (3) | 0.47278 (16) | 0.0271 (6) | |
O8 | 0.9719 (4) | 0.3338 (5) | 0.3855 (2) | 0.0440 (8) | |
N1 | 0.3922 (5) | 0.5024 (5) | 0.3456 (2) | 0.0317 (7) | |
H2N | 0.314 (7) | 0.580 (6) | 0.304 (3) | 0.039 (11)* | |
H1N | 0.369 (10) | 0.555 (8) | 0.404 (3) | 0.069 (17)* | |
H3N | 0.330 (10) | 0.392 (6) | 0.351 (5) | 0.073 (18)* | |
C1 | 0.7621 (5) | 0.3521 (5) | 0.3988 (2) | 0.0238 (7) | |
C2 | 0.6414 (6) | 0.4810 (5) | 0.3195 (2) | 0.0285 (7) | |
H2A | 0.6936 | 0.6117 | 0.3127 | 0.034* | |
H2B | 0.6794 | 0.4221 | 0.2550 | 0.034* | |
Mg2 | 0.5000 | 0.5000 | 0.0000 | 0.0186 (4) | |
O9 | 0.2942 (4) | 0.3973 (3) | 0.12778 (17) | 0.0273 (6) | |
H9B | 0.178 (4) | 0.478 (4) | 0.139 (3) | 0.026 (10)* | |
H9A | 0.264 (6) | 0.281 (2) | 0.126 (4) | 0.055 (14)* | |
O10 | 0.7834 (4) | 0.3371 (4) | 0.04927 (17) | 0.0283 (6) | |
H10B | 0.885 (6) | 0.292 (6) | 0.005 (2) | 0.041 (12)* | |
H10A | 0.777 (9) | 0.249 (6) | 0.097 (3) | 0.067 (17)* | |
O11 | 0.5499 (4) | 0.7319 (4) | 0.0805 (2) | 0.0351 (6) | |
H11B | 0.462 (5) | 0.835 (4) | 0.092 (3) | 0.040 (12)* | |
H11A | 0.678 (4) | 0.740 (6) | 0.098 (4) | 0.054 (14)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
S1 | 0.0201 (5) | 0.0216 (5) | 0.0101 (5) | −0.0058 (3) | −0.0018 (3) | −0.0006 (3) |
O1 | 0.0306 (13) | 0.0290 (12) | 0.0293 (13) | −0.0113 (10) | 0.0076 (10) | 0.0004 (10) |
O2 | 0.0299 (12) | 0.0317 (12) | 0.0255 (12) | −0.0102 (9) | −0.0044 (9) | −0.0095 (9) |
O3 | 0.0299 (13) | 0.0316 (12) | 0.0204 (11) | 0.0002 (9) | 0.0013 (9) | 0.0032 (9) |
O4 | 0.0335 (13) | 0.0385 (13) | 0.0173 (11) | −0.0045 (10) | −0.0091 (9) | 0.0022 (9) |
Mg1 | 0.0209 (7) | 0.0262 (8) | 0.0090 (7) | −0.0065 (5) | −0.0031 (5) | 0.0016 (5) |
O5 | 0.0248 (12) | 0.0476 (14) | 0.0208 (12) | 0.0000 (10) | −0.0015 (9) | 0.0021 (10) |
O6 | 0.0265 (12) | 0.0520 (15) | 0.0109 (10) | −0.0142 (10) | −0.0034 (9) | −0.0020 (9) |
O7 | 0.0350 (13) | 0.0319 (12) | 0.0158 (11) | −0.0122 (10) | −0.0032 (9) | 0.0034 (9) |
O8 | 0.0279 (13) | 0.0605 (18) | 0.0419 (16) | −0.0090 (12) | −0.0067 (11) | 0.0176 (13) |
N1 | 0.0319 (16) | 0.0396 (17) | 0.0240 (14) | −0.0035 (13) | −0.0102 (12) | 0.0045 (12) |
C1 | 0.0296 (16) | 0.0278 (15) | 0.0160 (14) | −0.0101 (12) | −0.0050 (12) | 0.0009 (11) |
C2 | 0.0323 (17) | 0.0359 (17) | 0.0172 (15) | −0.0078 (14) | −0.0018 (12) | 0.0034 (13) |
Mg2 | 0.0230 (8) | 0.0219 (7) | 0.0124 (7) | −0.0054 (5) | −0.0050 (5) | −0.0015 (5) |
O9 | 0.0310 (12) | 0.0282 (12) | 0.0227 (12) | −0.0086 (10) | −0.0001 (9) | 0.0011 (9) |
O10 | 0.0315 (13) | 0.0344 (13) | 0.0171 (11) | 0.0021 (10) | −0.0032 (9) | 0.0016 (9) |
O11 | 0.0277 (13) | 0.0348 (13) | 0.0475 (15) | −0.0036 (10) | −0.0113 (11) | −0.0199 (12) |
Geometric parameters (Å, º) top
S1—O1 | 1.473 (2) | N1—H1N | 0.87 (3) |
S1—O3 | 1.474 (2) | N1—H3N | 0.87 (3) |
S1—O2 | 1.480 (2) | C1—C2 | 1.517 (4) |
S1—O4 | 1.482 (2) | C2—H2A | 0.97 |
Mg1—O5i | 2.031 (2) | C2—H2B | 0.97 |
Mg1—O5 | 2.031 (2) | Mg2—O11ii | 2.048 (2) |
Mg1—O6i | 2.085 (2) | Mg2—O11 | 2.048 (2) |
Mg1—O6 | 2.085 (2) | Mg2—O10ii | 2.057 (2) |
Mg1—O7 | 2.128 (2) | Mg2—O10 | 2.057 (2) |
Mg1—O7i | 2.128 (2) | Mg2—O9 | 2.105 (2) |
O5—H5B | 0.846 (10) | Mg2—O9ii | 2.105 (2) |
O5—H5A | 0.842 (10) | O9—H9B | 0.835 (10) |
O6—H6B | 0.838 (10) | O9—H9A | 0.834 (10) |
O6—H6A | 0.838 (10) | O10—H10B | 0.844 (10) |
O7—C1 | 1.269 (4) | O10—H10A | 0.842 (10) |
O8—C1 | 1.239 (4) | O11—H11B | 0.837 (10) |
N1—C2 | 1.481 (5) | O11—H11A | 0.836 (10) |
N1—H2N | 0.87 (3) | | |
| | | |
O1—S1—O3 | 110.14 (14) | O8—C1—O7 | 125.9 (3) |
O1—S1—O2 | 109.60 (14) | O8—C1—C2 | 116.3 (3) |
O3—S1—O2 | 108.77 (14) | O7—C1—C2 | 117.8 (3) |
O1—S1—O4 | 109.55 (15) | N1—C2—C1 | 111.9 (3) |
O3—S1—O4 | 110.07 (14) | N1—C2—H2A | 109.2 |
O2—S1—O4 | 108.69 (14) | C1—C2—H2A | 109.2 |
O5i—Mg1—O5 | 180.00 (13) | N1—C2—H2B | 109.2 |
O5i—Mg1—O6i | 89.18 (10) | C1—C2—H2B | 109.2 |
O5—Mg1—O6i | 90.82 (10) | H2A—C2—H2B | 107.9 |
O5i—Mg1—O6 | 90.82 (10) | O11ii—Mg2—O11 | 180.00 (13) |
O5—Mg1—O6 | 89.18 (10) | O11ii—Mg2—O10ii | 89.87 (10) |
O6i—Mg1—O6 | 180.0 | O11—Mg2—O10ii | 90.13 (10) |
O5i—Mg1—O7 | 90.78 (10) | O11ii—Mg2—O10 | 90.13 (10) |
O5—Mg1—O7 | 89.22 (10) | O11—Mg2—O10 | 89.87 (10) |
O6i—Mg1—O7 | 92.84 (9) | O10ii—Mg2—O10 | 180.00 (12) |
O6—Mg1—O7 | 87.16 (9) | O11ii—Mg2—O9 | 92.24 (11) |
O5i—Mg1—O7i | 89.22 (10) | O11—Mg2—O9 | 87.76 (11) |
O5—Mg1—O7i | 90.78 (10) | O10ii—Mg2—O9 | 88.69 (10) |
O6i—Mg1—O7i | 87.16 (9) | O10—Mg2—O9 | 91.31 (10) |
O6—Mg1—O7i | 92.84 (9) | O11ii—Mg2—O9ii | 87.76 (11) |
O7—Mg1—O7i | 180.0 | O11—Mg2—O9ii | 92.24 (11) |
Mg1—O5—H5B | 119 (3) | O10ii—Mg2—O9ii | 91.31 (10) |
Mg1—O5—H5A | 131 (3) | O10—Mg2—O9ii | 88.69 (10) |
H5B—O5—H5A | 108 (2) | O9—Mg2—O9ii | 180.00 (15) |
Mg1—O6—H6B | 125 (3) | Mg2—O9—H9B | 110 (3) |
Mg1—O6—H6A | 122 (2) | Mg2—O9—H9A | 115 (3) |
H6B—O6—H6A | 110 (2) | H9B—O9—H9A | 112 (3) |
C1—O7—Mg1 | 133.9 (2) | Mg2—O10—H10B | 117 (3) |
C2—N1—H2N | 116 (3) | Mg2—O10—H10A | 123 (3) |
C2—N1—H1N | 105 (4) | H10B—O10—H10A | 106 (2) |
H2N—N1—H1N | 107 (5) | Mg2—O11—H11B | 128 (3) |
C2—N1—H3N | 115 (4) | Mg2—O11—H11A | 120 (3) |
H2N—N1—H3N | 104 (5) | H11B—O11—H11A | 111 (2) |
H1N—N1—H3N | 109 (6) | | |
| | | |
O5i—Mg1—O7—C1 | 53.2 (3) | Mg1—O7—C1—O8 | −90.2 (4) |
O5—Mg1—O7—C1 | −126.8 (3) | Mg1—O7—C1—C2 | 90.6 (4) |
O6i—Mg1—O7—C1 | 142.4 (3) | O8—C1—C2—N1 | −176.7 (3) |
O6—Mg1—O7—C1 | −37.6 (3) | O7—C1—C2—N1 | 2.6 (4) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y+1, −z. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O7iii | 0.87 (3) | 2.08 (5) | 2.939 (4) | 168 (4) |
N1—H2N···O4 | 0.87 (3) | 2.12 (4) | 2.877 (4) | 145 (4) |
N1—H3N···O6 | 0.87 (3) | 2.48 (4) | 3.195 (5) | 140 (5) |
N1—H3N···O8iv | 0.87 (3) | 2.21 (6) | 2.865 (4) | 131 (4) |
O5—H5A···O4v | 0.84 (1) | 1.92 (3) | 2.765 (4) | 178 (6) |
O5—H5B···O8iv | 0.85 (1) | 1.83 (3) | 2.673 (4) | 175 (3) |
O6—H6A···O3vi | 0.84 (1) | 1.87 (3) | 2.710 (4) | 176 (3) |
O6—H6B···O4vii | 0.84 (1) | 1.95 (3) | 2.755 (4) | 163 (4) |
O9—H9A···O1vii | 0.83 (1) | 1.90 (2) | 2.730 (3) | 178 (5) |
O9—H9B···O2 | 0.84 (1) | 2.01 (3) | 2.808 (3) | 160 (3) |
O10—H10A···O3vi | 0.84 (1) | 1.92 (4) | 2.755 (4) | 174 (5) |
O10—H10B···O2ii | 0.84 (1) | 2.02 (3) | 2.800 (4) | 153 (3) |
O11—H11A···O2viii | 0.84 (1) | 1.91 (3) | 2.747 (4) | 175 (4) |
O11—H11B···O1 | 0.84 (1) | 1.98 (3) | 2.786 (4) | 162 (3) |
Symmetry codes: (ii) −x+1, −y+1, −z; (iii) −x+1, −y+1, −z+1; (iv) x−1, y, z; (v) −x, −y+1, −z+1; (vi) x+1, y−1, z; (vii) x, y−1, z; (viii) x+1, y, z. |
Experimental details
Crystal data |
Chemical formula | [Mg(C2H5NO2)2(H2O)4][Mg(H2O)6](SO4)2 |
Mr | 571.04 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 5.988 (3), 6.783 (2), 13.391 (2) |
α, β, γ (°) | 85.39 (2), 82.87 (2), 82.88 (2) |
V (Å3) | 534.4 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.41 |
Crystal size (mm) | 0.21 × 0.19 × 0.16 |
|
Data collection |
Diffractometer | Siemens AED diffractometer |
Absorption correction | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 1998, 1998, 1992 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.606 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.066, 0.171, 1.16 |
No. of reflections | 1998 |
No. of parameters | 201 |
No. of restraints | 18 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.94, −1.07 |
Selected bond lengths (Å) topMg1—O5 | 2.031 (2) | Mg2—O11 | 2.048 (2) |
Mg1—O6 | 2.085 (2) | Mg2—O10 | 2.057 (2) |
Mg1—O7 | 2.128 (2) | Mg2—O9 | 2.105 (2) |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1N···O7i | 0.87 (3) | 2.08 (5) | 2.939 (4) | 168 (4) |
N1—H2N···O4 | 0.87 (3) | 2.12 (4) | 2.877 (4) | 145 (4) |
N1—H3N···O6 | 0.87 (3) | 2.48 (4) | 3.195 (5) | 140 (5) |
N1—H3N···O8ii | 0.87 (3) | 2.21 (6) | 2.865 (4) | 131 (4) |
O5—H5A···O4iii | 0.84 (1) | 1.92 (3) | 2.765 (4) | 178 (6) |
O5—H5B···O8ii | 0.85 (1) | 1.83 (3) | 2.673 (4) | 175 (3) |
O6—H6A···O3iv | 0.84 (1) | 1.87 (3) | 2.710 (4) | 176 (3) |
O6—H6B···O4v | 0.84 (1) | 1.95 (3) | 2.755 (4) | 163 (4) |
O9—H9A···O1v | 0.83 (1) | 1.90 (2) | 2.730 (3) | 178 (5) |
O9—H9B···O2 | 0.84 (1) | 2.01 (3) | 2.808 (3) | 160 (3) |
O10—H10A···O3iv | 0.84 (1) | 1.92 (4) | 2.755 (4) | 174 (5) |
O10—H10B···O2vi | 0.84 (1) | 2.02 (3) | 2.800 (4) | 153 (3) |
O11—H11A···O2vii | 0.84 (1) | 1.91 (3) | 2.747 (4) | 175 (4) |
O11—H11B···O1 | 0.84 (1) | 1.98 (3) | 2.786 (4) | 162 (3) |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x−1, y, z; (iii) −x, −y+1, −z+1; (iv) x+1, y−1, z; (v) x, y−1, z; (vi) −x+1, −y+1, −z; (vii) x+1, y, z. |
The glycine molecule is found to form many compounds with metal sulfates, metal halogenides and acids. There are many examples in the literature on glycine metallic sulfates (Peterková et al., 1991; Fleck & Bohatý, 2005). We report here the crystal structure of the title magnesium sulfate complex, with glycine.
The asymmetric unit of the title compound consists of one-half each of [Mg(H2O)6]2+ and [Mg(C2H5NO2)2(H2O)4]2+ dications, and one SO42- anion (Fig. 1). The MgII atoms of both dications lie on inversion centres, and they are in an octahedral coordination environment. The Mg—O distances of the [Mg(H2O)6]2+ dication lie in the range 2.048 (2) Å-2.105 (2) Å (Table 1), which is in good agreement with the literature value [2.045 (4)–2.099 (4) Å; Baur, 1964]. In the [Mg(C2H5NO2)2(H2O)4]2+ dication, the MgII atom is coordinated by two O atoms from two glycine ligands, and four water molecules. The Mg—O distance [2.128 (2) Å] involving the glycine molecule is longer than that involving the water molecule (Table 1).
The [Mg(H2O)6]2+ and [Mg(C2H5NO2)2(H2O)4]2+ dications pack as alternate layers parallel to the ab plane, with the sulfate anions lying between them. The complex cations and sulfate anions are linked to form a three-dimensional network by O—H···O and N—H···O hydrogen bonds (Table 2).
In the crystal structure, the glycine molecule exists in the zwitterionic form, which is normal for compounds of amino acids with inorganic salts. There are also many examples in the literature of glycinum and glycinate compounds (Muller et al., 1994). The non-hydrogen atoms of the glycine molecule are coplanar, with the caboxylate C—O distances being 1.269 (4) Å [C1—O7] and 1.239 (4) Å [C1—O8].