Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017392/ci6250sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017392/ci6250Isup2.hkl |
CCDC reference: 222794
The yellow prismatic crystals of (I) were obtained by slow evaporation of the mixture of flavonol and Cu(OH)2 in pyridine solution (molar ratio 2: 1).
After checking the presence in a difference map, all H atoms were placed at calculated positions [C—H = 0.93 Å and Uiso(H) = 1.5Ueq(C)].
Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku, 2000); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Scheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.
[Cu(C15H9O3)2(C5H5N)2] | Z = 1 |
Mr = 696.19 | F(000) = 359.0 |
Triclinic, P1 | Dx = 1.460 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.7107 Å |
a = 8.539 (2) Å | Cell parameters from 25 reflections |
b = 10.029 (2) Å | θ = 13.9–14.9° |
c = 11.098 (2) Å | µ = 0.74 mm−1 |
α = 114.70 (1)° | T = 296 K |
β = 97.18 (2)° | Prismatic, yellow |
γ = 107.00 (1)° | 0.30 × 0.30 × 0.20 mm |
V = 791.6 (3) Å3 |
Rigaku AFC-5R diffractometer | Rint = 0.018 |
ω–2θ scans | θmax = 27.5° |
Absorption correction: psi scan (North et al., 1968) | h = −11→10 |
Tmin = 0.799, Tmax = 0.859 | k = 0→13 |
3834 measured reflections | l = −14→13 |
3632 independent reflections | 3 standard reflections every 150 reflections |
2303 reflections with I > 2σ(I) | intensity decay: 0.5% |
Refinement on F2 | H-atom parameters constrained |
R[F2 > 2σ(F2)] = 0.043 | w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3 |
wR(F2) = 0.152 | (Δ/σ)max = −0.001 |
S = 0.95 | Δρmax = 0.56 e Å−3 |
3632 reflections | Δρmin = −0.24 e Å−3 |
223 parameters |
[Cu(C15H9O3)2(C5H5N)2] | γ = 107.00 (1)° |
Mr = 696.19 | V = 791.6 (3) Å3 |
Triclinic, P1 | Z = 1 |
a = 8.539 (2) Å | Mo Kα radiation |
b = 10.029 (2) Å | µ = 0.74 mm−1 |
c = 11.098 (2) Å | T = 296 K |
α = 114.70 (1)° | 0.30 × 0.30 × 0.20 mm |
β = 97.18 (2)° |
Rigaku AFC-5R diffractometer | 2303 reflections with I > 2σ(I) |
Absorption correction: psi scan (North et al., 1968) | Rint = 0.018 |
Tmin = 0.799, Tmax = 0.859 | 3 standard reflections every 150 reflections |
3834 measured reflections | intensity decay: 0.5% |
3632 independent reflections |
R[F2 > 2σ(F2)] = 0.043 | 223 parameters |
wR(F2) = 0.152 | H-atom parameters constrained |
S = 0.95 | Δρmax = 0.56 e Å−3 |
3632 reflections | Δρmin = −0.24 e Å−3 |
Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.0000 | 0.0000 | 0.5000 | 0.0542 (2) | |
O1 | 0.0333 (3) | 0.2204 (2) | 0.6062 (2) | 0.0506 (5) | |
O2 | 0.1504 (3) | 0.0412 (2) | 0.6797 (2) | 0.0521 (5) | |
O3 | 0.2376 (3) | 0.4857 (2) | 0.9725 (2) | 0.0513 (5) | |
N1 | 0.2583 (4) | 0.0735 (4) | 0.4218 (3) | 0.0766 (9) | |
C1 | 0.1173 (3) | 0.2812 (3) | 0.7364 (3) | 0.0425 (6) | |
C2 | 0.1818 (3) | 0.1795 (3) | 0.7724 (3) | 0.0436 (6) | |
C3 | 0.2793 (3) | 0.2421 (3) | 0.9131 (3) | 0.0462 (6) | |
C4 | 0.3512 (4) | 0.1570 (4) | 0.9585 (3) | 0.0551 (7) | |
C5 | 0.4420 (5) | 0.2231 (5) | 1.0934 (4) | 0.0666 (9) | |
C6 | 0.4641 (5) | 0.3774 (4) | 1.1866 (3) | 0.0689 (9) | |
C7 | 0.3965 (4) | 0.4648 (4) | 1.1459 (3) | 0.0617 (8) | |
C8 | 0.3023 (4) | 0.3960 (3) | 1.0077 (3) | 0.0477 (6) | |
C9 | 0.1448 (3) | 0.4309 (3) | 0.8382 (3) | 0.0430 (6) | |
C10 | 0.0889 (4) | 0.5495 (3) | 0.8252 (3) | 0.0464 (6) | |
C11 | 0.1125 (4) | 0.6898 (3) | 0.9434 (3) | 0.0587 (8) | |
C12 | 0.0621 (5) | 0.8034 (4) | 0.9317 (4) | 0.0694 (10) | |
C13 | −0.0101 (5) | 0.7845 (4) | 0.8060 (4) | 0.0709 (10) | |
C14 | −0.0333 (5) | 0.6481 (4) | 0.6879 (4) | 0.0723 (10) | |
C15 | 0.0139 (5) | 0.5311 (4) | 0.6983 (3) | 0.0631 (9) | |
C16 | 0.3649 (5) | 0.2228 (5) | 0.4778 (4) | 0.076 (1) | |
C17 | 0.5329 (6) | 0.2696 (5) | 0.4706 (4) | 0.083 (1) | |
C18 | 0.5886 (5) | 0.1509 (6) | 0.3976 (4) | 0.079 (1) | |
C19 | 0.4754 (5) | −0.0011 (6) | 0.3372 (4) | 0.078 (1) | |
C20 | 0.3146 (5) | −0.0351 (5) | 0.3504 (4) | 0.077 (1) | |
H4 | 0.3371 | 0.0543 | 0.8962 | 0.0661* | |
H5 | 0.4889 | 0.1654 | 1.1230 | 0.0800* | |
H6 | 0.5262 | 0.4218 | 1.2784 | 0.0827* | |
H7 | 0.4127 | 0.5679 | 1.2089 | 0.0740* | |
H11 | 0.1625 | 0.7062 | 1.0305 | 0.0705* | |
H12 | 0.0778 | 0.8951 | 1.0114 | 0.0833* | |
H13 | −0.0434 | 0.8624 | 0.7999 | 0.0850* | |
H14 | −0.0804 | 0.6345 | 0.6014 | 0.0868* | |
H15 | −0.0054 | 0.4383 | 0.6183 | 0.0757* | |
H16 | 0.3257 | 0.3018 | 0.5249 | 0.0917* | |
H17 | 0.6046 | 0.3762 | 0.5131 | 0.1002* | |
H18 | 0.6996 | 0.1749 | 0.3904 | 0.0950* | |
H19 | 0.5083 | −0.0834 | 0.2860 | 0.0938* | |
H20 | 0.2402 | −0.1411 | 0.3066 | 0.0920* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.0637 (4) | 0.0376 (3) | 0.0367 (3) | 0.0255 (2) | −0.0054 (2) | −0.0024 (2) |
O1 | 0.059 (1) | 0.0375 (10) | 0.0371 (9) | 0.0207 (9) | 0.0028 (8) | 0.0030 (8) |
O2 | 0.054 (1) | 0.038 (1) | 0.046 (1) | 0.0207 (9) | 0.0063 (9) | 0.0045 (8) |
O3 | 0.060 (1) | 0.0355 (10) | 0.0348 (9) | 0.0110 (9) | 0.0065 (8) | 0.0031 (8) |
N1 | 0.064 (2) | 0.075 (2) | 0.064 (2) | 0.033 (2) | 0.003 (1) | 0.010 (2) |
C1 | 0.041 (1) | 0.033 (1) | 0.038 (1) | 0.010 (1) | 0.012 (1) | 0.007 (1) |
C2 | 0.037 (1) | 0.036 (1) | 0.039 (1) | 0.009 (1) | 0.009 (1) | 0.006 (1) |
C3 | 0.039 (1) | 0.044 (1) | 0.041 (1) | 0.008 (1) | 0.009 (1) | 0.014 (1) |
C4 | 0.053 (2) | 0.052 (2) | 0.055 (2) | 0.018 (1) | 0.013 (1) | 0.023 (1) |
C5 | 0.068 (2) | 0.070 (2) | 0.061 (2) | 0.023 (2) | 0.009 (2) | 0.036 (2) |
C6 | 0.068 (2) | 0.070 (2) | 0.044 (2) | 0.009 (2) | 0.000 (1) | 0.022 (2) |
C7 | 0.066 (2) | 0.050 (2) | 0.038 (1) | 0.004 (1) | 0.003 (1) | 0.009 (1) |
C8 | 0.048 (2) | 0.041 (1) | 0.039 (1) | 0.007 (1) | 0.010 (1) | 0.013 (1) |
C9 | 0.044 (1) | 0.034 (1) | 0.035 (1) | 0.010 (1) | 0.009 (1) | 0.0069 (10) |
C10 | 0.047 (2) | 0.031 (1) | 0.048 (1) | 0.010 (1) | 0.017 (1) | 0.008 (1) |
C11 | 0.075 (2) | 0.034 (1) | 0.051 (2) | 0.017 (1) | 0.023 (2) | 0.007 (1) |
C12 | 0.086 (3) | 0.034 (2) | 0.073 (2) | 0.022 (2) | 0.030 (2) | 0.010 (1) |
C13 | 0.081 (2) | 0.042 (2) | 0.092 (3) | 0.028 (2) | 0.033 (2) | 0.029 (2) |
C14 | 0.087 (3) | 0.061 (2) | 0.067 (2) | 0.036 (2) | 0.016 (2) | 0.026 (2) |
C15 | 0.080 (2) | 0.044 (2) | 0.050 (2) | 0.028 (2) | 0.011 (2) | 0.009 (1) |
C16 | 0.077 (3) | 0.074 (2) | 0.068 (2) | 0.040 (2) | 0.016 (2) | 0.019 (2) |
C17 | 0.088 (3) | 0.071 (3) | 0.072 (2) | 0.020 (2) | 0.010 (2) | 0.028 (2) |
C18 | 0.070 (2) | 0.101 (3) | 0.076 (2) | 0.039 (2) | 0.029 (2) | 0.044 (2) |
C19 | 0.078 (3) | 0.091 (3) | 0.073 (2) | 0.046 (2) | 0.032 (2) | 0.035 (2) |
C20 | 0.071 (2) | 0.078 (3) | 0.060 (2) | 0.033 (2) | 0.015 (2) | 0.013 (2) |
Cu1—O1 | 1.931 (2) | C7—C8 | 1.400 (4) |
Cu1—O1i | 1.931 (2) | C7—H7 | 0.93 |
Cu1—O2 | 2.039 (2) | C9—C10 | 1.457 (5) |
Cu1—O2i | 2.039 (2) | C10—C11 | 1.403 (4) |
Cu1—N1 | 2.495 (4) | C10—C15 | 1.384 (5) |
Cu1—N1i | 2.495 (4) | C11—C12 | 1.377 (6) |
O1—C1 | 1.312 (3) | C11—H11 | 0.93 |
O2—C2 | 1.255 (3) | C12—C13 | 1.363 (7) |
O3—C8 | 1.341 (5) | C12—H12 | 0.93 |
O3—C9 | 1.385 (3) | C13—C14 | 1.381 (5) |
N1—C16 | 1.320 (5) | C13—H13 | 0.93 |
N1—C20 | 1.314 (6) | C14—C15 | 1.390 (7) |
C1—C2 | 1.455 (5) | C14—H14 | 0.93 |
C1—C9 | 1.377 (3) | C15—H15 | 0.93 |
C2—C3 | 1.441 (4) | C16—C17 | 1.397 (7) |
C3—C4 | 1.395 (6) | C16—H16 | 0.93 |
C3—C8 | 1.393 (4) | C17—C18 | 1.386 (7) |
C4—C5 | 1.365 (5) | C17—H17 | 0.93 |
C4—H4 | 0.93 | C18—C19 | 1.353 (6) |
C5—C6 | 1.394 (5) | C18—H18 | 0.93 |
C5—H5 | 0.93 | C19—C20 | 1.357 (6) |
C6—C7 | 1.366 (7) | C19—H19 | 0.93 |
C6—H6 | 0.93 | C20—H20 | 0.93 |
O2···C18ii | 3.320 (6) | C6···C9v | 3.441 (5) |
O2···C19ii | 3.353 (6) | C7···C8v | 3.530 (5) |
O2···C13iii | 3.450 (6) | C8···C8v | 3.480 (6) |
O3···C11iv | 3.450 (4) | C8···C12iv | 3.484 (5) |
O3···C7v | 3.521 (4) | C8···C11iv | 3.559 (5) |
O3···C6v | 3.549 (5) | C18···C20ii | 3.542 (8) |
C3···C12iv | 3.579 (6) | C19···C20ii | 3.518 (7) |
C4···C12iii | 3.546 (5) | C19···C19ii | 3.57 (1) |
O1—Cu1—O1i | 180.0 | C8—C7—H7 | 120.7 |
O1—Cu1—O2 | 83.29 (9) | O3—C8—C3 | 122.7 (3) |
O1—Cu1—O2i | 96.71 (9) | O3—C8—C7 | 116.7 (3) |
O1—Cu1—N1 | 91.3 (1) | C3—C8—C7 | 120.7 (4) |
O1—Cu1—N1i | 88.7 (1) | O3—C9—C1 | 120.3 (3) |
O1i—Cu1—O2 | 96.71 (9) | O3—C9—C10 | 111.6 (2) |
O1i—Cu1—O2i | 83.29 (9) | C1—C9—C10 | 128.2 (3) |
O1i—Cu1—N1 | 88.7 (1) | C9—C10—C11 | 120.3 (3) |
O1i—Cu1—N1i | 91.3 (1) | C9—C10—C15 | 122.4 (3) |
O2—Cu1—O2i | 180.0 | C11—C10—C15 | 117.4 (3) |
O2—Cu1—N1 | 90.1 (1) | C10—C11—C12 | 120.5 (3) |
O2—Cu1—N1i | 89.9 (1) | C10—C11—H11 | 119.7 |
O2i—Cu1—N1 | 89.9 (1) | C12—C11—H11 | 119.7 |
O2i—Cu1—N1i | 90.1 (1) | C11—C12—C13 | 121.5 (3) |
N1—Cu1—N1i | 180.0 | C11—C12—H12 | 119.2 |
Cu1—O1—C1 | 112.0 (2) | C13—C12—H12 | 119.2 |
Cu1—O2—C2 | 109.4 (2) | C12—C13—C14 | 119.1 (4) |
C8—O3—C9 | 121.6 (2) | C12—C13—H13 | 120.4 |
Cu1—N1—C16 | 120.9 (3) | C14—C13—H13 | 120.5 |
Cu1—N1—C20 | 120.5 (3) | C13—C14—C15 | 120.0 (4) |
C16—N1—C20 | 116.6 (4) | C13—C14—H14 | 120.0 |
O1—C1—C2 | 116.3 (2) | C15—C14—H14 | 120.0 |
O1—C1—C9 | 124.5 (3) | C10—C15—C14 | 121.4 (3) |
C2—C1—C9 | 119.3 (3) | C10—C15—H15 | 119.3 |
O2—C2—C1 | 118.7 (3) | C14—C15—H15 | 119.3 |
O2—C2—C3 | 122.8 (3) | N1—C16—C17 | 124.0 (4) |
C1—C2—C3 | 118.6 (2) | N1—C16—H16 | 118.0 |
C2—C3—C4 | 123.5 (3) | C17—C16—H16 | 118.0 |
C2—C3—C8 | 117.6 (3) | C16—C17—C18 | 117.4 (4) |
C4—C3—C8 | 118.9 (3) | C16—C17—H17 | 121.3 |
C3—C4—C5 | 120.6 (3) | C18—C17—H17 | 121.3 |
C3—C4—H4 | 119.7 | C17—C18—C19 | 117.5 (4) |
C5—C4—H4 | 119.7 | C17—C18—H18 | 121.2 |
C4—C5—C6 | 119.7 (4) | C19—C18—H18 | 121.2 |
C4—C5—H5 | 120.1 | C18—C19—C20 | 120.8 (5) |
C6—C5—H5 | 120.1 | C18—C19—H19 | 119.6 |
C5—C6—C7 | 121.4 (3) | C20—C19—H19 | 119.6 |
C5—C6—H6 | 119.3 | N1—C20—C19 | 123.5 (4) |
C7—C6—H6 | 119.3 | N1—C20—H20 | 118.2 |
C6—C7—C8 | 118.7 (3) | C19—C20—H20 | 118.2 |
C6—C7—H7 | 120.7 | ||
Cu1—O1—C1—C2 | 5.5 (3) | N1—Cu1—O1—C1 | −95.4 (2) |
Cu1—O1—C1—C9 | −173.5 (2) | N1—Cu1—O1i—C1i | −84.6 (2) |
Cu1—O1i—C1i—C2i | −5.5 (3) | N1—Cu1—O2—C2 | 95.8 (2) |
Cu1—O1i—C1i—C9i | 173.5 (2) | N1—Cu1—O2i—C2i | 84.2 (2) |
Cu1—O2—C2—C1 | −2.8 (3) | N1—C16—C17—C18 | 1.3 (8) |
Cu1—O2—C2—C3 | 177.3 (2) | N1—C20—C19—C18 | −0.6 (8) |
Cu1—O2i—C2i—C1i | 2.8 (3) | C1—C2—C3—C4 | −178.2 (3) |
Cu1—O2i—C2i—C3i | −177.3 (2) | C1—C2—C3—C8 | 1.7 (4) |
Cu1—N1—C16—C17 | 160.7 (4) | C1—C9—O3—C8 | −0.4 (4) |
Cu1—N1—C20—C19 | −161.1 (4) | C1—C9—C10—C11 | 173.0 (3) |
Cu1—N1i—C16i—C17i | −160.7 (4) | C1—C9—C10—C15 | −8.0 (5) |
Cu1—N1i—C20i—C19i | 161.1 (4) | C2—C1—C9—C10 | −178.7 (3) |
O1—Cu1—O2—C2 | 4.5 (2) | C2—C3—C4—C5 | −179.9 (3) |
O1—Cu1—O2i—C2i | 175.5 (2) | C2—C3—C8—C7 | −179.6 (3) |
O1—Cu1—N1—C16 | 10.3 (4) | C3—C2—C1—C9 | −2.8 (4) |
O1—Cu1—N1—C20 | 173.5 (3) | C3—C4—C5—C6 | −0.4 (6) |
O1—Cu1—N1i—C16i | 169.7 (4) | C3—C8—O3—C9 | −0.8 (4) |
O1—Cu1—N1i—C20i | 6.5 (3) | C3—C8—C7—C6 | −0.6 (5) |
O1—C1—C2—O2 | −1.7 (4) | C4—C3—C8—C7 | 0.3 (5) |
O1—C1—C2—C3 | 178.2 (3) | C4—C5—C6—C7 | 0.1 (6) |
O1—C1—C9—O3 | −179.0 (3) | C5—C4—C3—C8 | 0.3 (5) |
O1—C1—C9—C10 | 0.3 (5) | C5—C6—C7—C8 | 0.5 (6) |
O2—Cu1—O1—C1 | −5.4 (2) | C7—C8—O3—C9 | 178.9 (3) |
O2—Cu1—O1i—C1i | −174.6 (2) | C8—O3—C9—C10 | −179.7 (3) |
O2—Cu1—N1—C16 | −73.0 (4) | C9—C10—C11—C12 | 179.1 (3) |
O2—Cu1—N1—C20 | 90.2 (3) | C9—C10—C15—C14 | −177.8 (3) |
O2—Cu1—N1i—C16i | −107.0 (4) | C10—C11—C12—C13 | −0.7 (6) |
O2—Cu1—N1i—C20i | 89.8 (3) | C10—C15—C14—C13 | −1.9 (6) |
O2—C2—C1—C9 | 177.4 (3) | C11—C10—C15—C14 | 1.2 (5) |
O2—C2—C3—C4 | 1.7 (5) | C11—C12—C13—C14 | 0.0 (6) |
O2—C2—C3—C8 | −178.4 (3) | C12—C11—C10—C15 | 0.0 (5) |
O3—C8—C3—C2 | 0.0 (5) | C12—C13—C14—C15 | 1.2 (6) |
O3—C8—C3—C4 | 179.9 (3) | C16—N1—C20—C19 | 2.8 (7) |
O3—C8—C7—C6 | 179.7 (3) | C16—C17—C18—C19 | 0.9 (8) |
O3—C9—C1—C2 | 2.1 (4) | C17—C16—N1—C20 | −3.1 (7) |
O3—C9—C10—C11 | −7.7 (4) | C17—C18—C19—C20 | −1.3 (8) |
O3—C9—C10—C15 | 171.2 (3) | C17—C18—C19—C20 | −1.3 (8) |
Symmetry codes: (i) −x, −y, −z+1; (ii) −x+1, −y, −z+1; (iii) x, y−1, z; (iv) −x, −y+1, −z+2; (v) −x+1, −y+1, −z+2. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C15H9O3)2(C5H5N)2] |
Mr | 696.19 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 296 |
a, b, c (Å) | 8.539 (2), 10.029 (2), 11.098 (2) |
α, β, γ (°) | 114.70 (1), 97.18 (2), 107.00 (1) |
V (Å3) | 791.6 (3) |
Z | 1 |
Radiation type | Mo Kα |
µ (mm−1) | 0.74 |
Crystal size (mm) | 0.30 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku AFC-5R diffractometer |
Absorption correction | Psi scan (North et al., 1968) |
Tmin, Tmax | 0.799, 0.859 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3834, 3632, 2303 |
Rint | 0.018 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.043, 0.152, 0.95 |
No. of reflections | 3632 |
No. of parameters | 223 |
No. of restraints | ? |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.56, −0.24 |
Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku, 2000), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation and Rigaku, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Scheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.
Cu1—O1 | 1.931 (2) | Cu1—N1 | 2.495 (4) |
Cu1—O1i | 1.931 (2) | Cu1—N1i | 2.495 (4) |
Cu1—O2 | 2.039 (2) | O1—C1 | 1.312 (3) |
Cu1—O2i | 2.039 (2) | O2—C2 | 1.255 (3) |
O1—Cu1—O1i | 180.0 | O2—Cu1—N1 | 90.1 (1) |
O1—Cu1—O2 | 83.29 (9) | O2—Cu1—N1i | 89.9 (1) |
O1—Cu1—O2i | 96.71 (9) | O2i—Cu1—N1 | 89.9 (1) |
O1—Cu1—N1 | 91.3 (1) | O2i—Cu1—N1i | 90.1 (1) |
O1—Cu1—N1i | 88.7 (1) | N1—Cu1—N1i | 180.0 |
O1i—Cu1—O2 | 96.71 (9) | Cu1—O1—C1 | 112.0 (2) |
O1i—Cu1—O2i | 83.29 (9) | Cu1—O2—C2 | 109.4 (2) |
O1i—Cu1—N1 | 88.7 (1) | Cu1—N1—C16 | 120.9 (3) |
O1i—Cu1—N1i | 91.3 (1) | Cu1—N1—C20 | 120.5 (3) |
O2—Cu1—O2i | 180.0 |
Symmetry code: (i) −x, −y, −z+1. |
Flavonol (3-hydroxyflavone) is the model compound of quercetin (3'-4',5,7-tetrahydroxyflavonol) which is the component of rutin and oxygenated to the corresponding phenolic carboxylic acid ester catalysed by the copper-containing quercetin 2,3-dioxygenase (Fusetti et al., 2002). The copper complex of flavonol is also degradated to the corresponding depside catalysed by CuI and CuII flavonolate complexes (Balogh-Hergovich et al., 1991). The molecular structures of CuI complex (Speier et al., 1990) and CuII complex (Balogh-Hergovich et al., 1991) of flavonol have been determined to understand the coordination modes. In the case of CuI complex, one flavonol ligand coordinates to the central CuI by its 3-hydroxy and 4-carbonyl groups together with two triphenylphosphines to form a distorted tetrahedron (Speier et al., 1990). While two flavonolate ligands are coordinated to CuII by their 3-hydroxy and 4-carbonyl groups to form a square-planar geometry (Balogh-Hergovich, 1991). In the modeling of the substrate into the active site of the copper containing quercetin 2,3-dioxygenase from Aspergillus japonicus, the Cu atom is surrounded by six coordinated atoms (Fusetti, 2002) in which the 3-hydroxy and 4-carbonyl groups of the quercetin molecule are ligated to the Cu atom. In this study, we report the structure of a copper complex of flavonol, (I).
The molecular structure of (I) is shown in Fig. 1. The CuII atom has a distorted octahedral coordination geometry in the trans form defined by two O atoms of 3-hydroxy and 4-carbonyl groups of two bidentate ligands in the equatorial plane, and two axial N atoms of two pyridyl ligands. The Cu atom lies on a center of symmetry. The geometric parameters are listed in Table 1. The 3-hydroxyl group is deprotonated, and the coordination bond distance, C1—O1, is shorter than the others. While the short bond distance of C2—O2 reflects the ketonic form of the 4-carbonyl group. The coordination bond distance in the axial direction, Cu1—N1, is longer than those in the equatorial plane. This is ordinally observed in the distorted octahedral coordination geometry of the copper complex and explained by a Jahn–Teller effect. Flavonol moiety is almost planar [C1—C9—C10—C15 = −8.0 (5)°], and atoms Cu1, O1, C1, C2 and O2 forms a five-membered ring.