Download citation
Download citation
link to html
The title complex, [Cu(C15H9O3)2(C5H5N)2], has a distorted octahedral coordination in which the CuII atom lies on a center of symmetry. The bidentate ligands lie in trans positions with respect to one another, forming the equatorial plane, with two pyridyl ligands occupying the axial positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803017392/ci6250sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803017392/ci6250Isup2.hkl
Contains datablock I

CCDC reference: 222794

Key indicators

  • Single-crystal X-ray study
  • T = 296 K
  • Mean [sigma](C-C) = 0.005 Å
  • R factor = 0.043
  • wR factor = 0.152
  • Data-to-parameter ratio = 16.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu1 - O2 = 11.62 su
Alert level C PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density .. 2.33
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion

Comment top

Flavonol (3-hydroxyflavone) is the model compound of quercetin (3'-4',5,7-tetrahydroxyflavonol) which is the component of rutin and oxygenated to the corresponding phenolic carboxylic acid ester catalysed by the copper-containing quercetin 2,3-dioxygenase (Fusetti et al., 2002). The copper complex of flavonol is also degradated to the corresponding depside catalysed by CuI and CuII flavonolate complexes (Balogh-Hergovich et al., 1991). The molecular structures of CuI complex (Speier et al., 1990) and CuII complex (Balogh-Hergovich et al., 1991) of flavonol have been determined to understand the coordination modes. In the case of CuI complex, one flavonol ligand coordinates to the central CuI by its 3-hydroxy and 4-carbonyl groups together with two triphenylphosphines to form a distorted tetrahedron (Speier et al., 1990). While two flavonolate ligands are coordinated to CuII by their 3-hydroxy and 4-carbonyl groups to form a square-planar geometry (Balogh-Hergovich, 1991). In the modeling of the substrate into the active site of the copper containing quercetin 2,3-dioxygenase from Aspergillus japonicus, the Cu atom is surrounded by six coordinated atoms (Fusetti, 2002) in which the 3-hydroxy and 4-carbonyl groups of the quercetin molecule are ligated to the Cu atom. In this study, we report the structure of a copper complex of flavonol, (I).

The molecular structure of (I) is shown in Fig. 1. The CuII atom has a distorted octahedral coordination geometry in the trans form defined by two O atoms of 3-hydroxy and 4-carbonyl groups of two bidentate ligands in the equatorial plane, and two axial N atoms of two pyridyl ligands. The Cu atom lies on a center of symmetry. The geometric parameters are listed in Table 1. The 3-hydroxyl group is deprotonated, and the coordination bond distance, C1—O1, is shorter than the others. While the short bond distance of C2—O2 reflects the ketonic form of the 4-carbonyl group. The coordination bond distance in the axial direction, Cu1—N1, is longer than those in the equatorial plane. This is ordinally observed in the distorted octahedral coordination geometry of the copper complex and explained by a Jahn–Teller effect. Flavonol moiety is almost planar [C1—C9—C10—C15 = −8.0 (5)°], and atoms Cu1, O1, C1, C2 and O2 forms a five-membered ring.

Experimental top

The yellow prismatic crystals of (I) were obtained by slow evaporation of the mixture of flavonol and Cu(OH)2 in pyridine solution (molar ratio 2: 1).

Refinement top

After checking the presence in a difference map, all H atoms were placed at calculated positions [C—H = 0.93 Å and Uiso(H) = 1.5Ueq(C)].

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku, 2000); cell refinement: MSC/AFC Diffractometer Control Software; data reduction: TEXSAN (Molecular Structure Corporation and Rigaku, 2000); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Scheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN.

Figures top
[Figure 1] Fig. 1. ORTEPII (Johnson, 1976) drawing of (I) with the atomic numbering scheme. Ellipsoids for non-H atoms are drawn at the 50% probability level. Atoms marked with an asterisk are at the symmetry position (-x, −y, 1 − z).
(I) top
Crystal data top
[Cu(C15H9O3)2(C5H5N)2]Z = 1
Mr = 696.19F(000) = 359.0
Triclinic, P1Dx = 1.460 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.7107 Å
a = 8.539 (2) ÅCell parameters from 25 reflections
b = 10.029 (2) Åθ = 13.9–14.9°
c = 11.098 (2) ŵ = 0.74 mm1
α = 114.70 (1)°T = 296 K
β = 97.18 (2)°Prismatic, yellow
γ = 107.00 (1)°0.30 × 0.30 × 0.20 mm
V = 791.6 (3) Å3
Data collection top
Rigaku AFC-5R
diffractometer
Rint = 0.018
ω–2θ scansθmax = 27.5°
Absorption correction: psi scan
(North et al., 1968)
h = 1110
Tmin = 0.799, Tmax = 0.859k = 013
3834 measured reflectionsl = 1413
3632 independent reflections3 standard reflections every 150 reflections
2303 reflections with I > 2σ(I) intensity decay: 0.5%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.1P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.152(Δ/σ)max = 0.001
S = 0.95Δρmax = 0.56 e Å3
3632 reflectionsΔρmin = 0.24 e Å3
223 parameters
Crystal data top
[Cu(C15H9O3)2(C5H5N)2]γ = 107.00 (1)°
Mr = 696.19V = 791.6 (3) Å3
Triclinic, P1Z = 1
a = 8.539 (2) ÅMo Kα radiation
b = 10.029 (2) ŵ = 0.74 mm1
c = 11.098 (2) ÅT = 296 K
α = 114.70 (1)°0.30 × 0.30 × 0.20 mm
β = 97.18 (2)°
Data collection top
Rigaku AFC-5R
diffractometer
2303 reflections with I > 2σ(I)
Absorption correction: psi scan
(North et al., 1968)
Rint = 0.018
Tmin = 0.799, Tmax = 0.8593 standard reflections every 150 reflections
3834 measured reflections intensity decay: 0.5%
3632 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043223 parameters
wR(F2) = 0.152H-atom parameters constrained
S = 0.95Δρmax = 0.56 e Å3
3632 reflectionsΔρmin = 0.24 e Å3
Special details top

Refinement. Refinement using reflections with F2 > −10.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.00000.00000.50000.0542 (2)
O10.0333 (3)0.2204 (2)0.6062 (2)0.0506 (5)
O20.1504 (3)0.0412 (2)0.6797 (2)0.0521 (5)
O30.2376 (3)0.4857 (2)0.9725 (2)0.0513 (5)
N10.2583 (4)0.0735 (4)0.4218 (3)0.0766 (9)
C10.1173 (3)0.2812 (3)0.7364 (3)0.0425 (6)
C20.1818 (3)0.1795 (3)0.7724 (3)0.0436 (6)
C30.2793 (3)0.2421 (3)0.9131 (3)0.0462 (6)
C40.3512 (4)0.1570 (4)0.9585 (3)0.0551 (7)
C50.4420 (5)0.2231 (5)1.0934 (4)0.0666 (9)
C60.4641 (5)0.3774 (4)1.1866 (3)0.0689 (9)
C70.3965 (4)0.4648 (4)1.1459 (3)0.0617 (8)
C80.3023 (4)0.3960 (3)1.0077 (3)0.0477 (6)
C90.1448 (3)0.4309 (3)0.8382 (3)0.0430 (6)
C100.0889 (4)0.5495 (3)0.8252 (3)0.0464 (6)
C110.1125 (4)0.6898 (3)0.9434 (3)0.0587 (8)
C120.0621 (5)0.8034 (4)0.9317 (4)0.0694 (10)
C130.0101 (5)0.7845 (4)0.8060 (4)0.0709 (10)
C140.0333 (5)0.6481 (4)0.6879 (4)0.0723 (10)
C150.0139 (5)0.5311 (4)0.6983 (3)0.0631 (9)
C160.3649 (5)0.2228 (5)0.4778 (4)0.076 (1)
C170.5329 (6)0.2696 (5)0.4706 (4)0.083 (1)
C180.5886 (5)0.1509 (6)0.3976 (4)0.079 (1)
C190.4754 (5)0.0011 (6)0.3372 (4)0.078 (1)
C200.3146 (5)0.0351 (5)0.3504 (4)0.077 (1)
H40.33710.05430.89620.0661*
H50.48890.16541.12300.0800*
H60.52620.42181.27840.0827*
H70.41270.56791.20890.0740*
H110.16250.70621.03050.0705*
H120.07780.89511.01140.0833*
H130.04340.86240.79990.0850*
H140.08040.63450.60140.0868*
H150.00540.43830.61830.0757*
H160.32570.30180.52490.0917*
H170.60460.37620.51310.1002*
H180.69960.17490.39040.0950*
H190.50830.08340.28600.0938*
H200.24020.14110.30660.0920*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0637 (4)0.0376 (3)0.0367 (3)0.0255 (2)0.0054 (2)0.0024 (2)
O10.059 (1)0.0375 (10)0.0371 (9)0.0207 (9)0.0028 (8)0.0030 (8)
O20.054 (1)0.038 (1)0.046 (1)0.0207 (9)0.0063 (9)0.0045 (8)
O30.060 (1)0.0355 (10)0.0348 (9)0.0110 (9)0.0065 (8)0.0031 (8)
N10.064 (2)0.075 (2)0.064 (2)0.033 (2)0.003 (1)0.010 (2)
C10.041 (1)0.033 (1)0.038 (1)0.010 (1)0.012 (1)0.007 (1)
C20.037 (1)0.036 (1)0.039 (1)0.009 (1)0.009 (1)0.006 (1)
C30.039 (1)0.044 (1)0.041 (1)0.008 (1)0.009 (1)0.014 (1)
C40.053 (2)0.052 (2)0.055 (2)0.018 (1)0.013 (1)0.023 (1)
C50.068 (2)0.070 (2)0.061 (2)0.023 (2)0.009 (2)0.036 (2)
C60.068 (2)0.070 (2)0.044 (2)0.009 (2)0.000 (1)0.022 (2)
C70.066 (2)0.050 (2)0.038 (1)0.004 (1)0.003 (1)0.009 (1)
C80.048 (2)0.041 (1)0.039 (1)0.007 (1)0.010 (1)0.013 (1)
C90.044 (1)0.034 (1)0.035 (1)0.010 (1)0.009 (1)0.0069 (10)
C100.047 (2)0.031 (1)0.048 (1)0.010 (1)0.017 (1)0.008 (1)
C110.075 (2)0.034 (1)0.051 (2)0.017 (1)0.023 (2)0.007 (1)
C120.086 (3)0.034 (2)0.073 (2)0.022 (2)0.030 (2)0.010 (1)
C130.081 (2)0.042 (2)0.092 (3)0.028 (2)0.033 (2)0.029 (2)
C140.087 (3)0.061 (2)0.067 (2)0.036 (2)0.016 (2)0.026 (2)
C150.080 (2)0.044 (2)0.050 (2)0.028 (2)0.011 (2)0.009 (1)
C160.077 (3)0.074 (2)0.068 (2)0.040 (2)0.016 (2)0.019 (2)
C170.088 (3)0.071 (3)0.072 (2)0.020 (2)0.010 (2)0.028 (2)
C180.070 (2)0.101 (3)0.076 (2)0.039 (2)0.029 (2)0.044 (2)
C190.078 (3)0.091 (3)0.073 (2)0.046 (2)0.032 (2)0.035 (2)
C200.071 (2)0.078 (3)0.060 (2)0.033 (2)0.015 (2)0.013 (2)
Geometric parameters (Å, º) top
Cu1—O11.931 (2)C7—C81.400 (4)
Cu1—O1i1.931 (2)C7—H70.93
Cu1—O22.039 (2)C9—C101.457 (5)
Cu1—O2i2.039 (2)C10—C111.403 (4)
Cu1—N12.495 (4)C10—C151.384 (5)
Cu1—N1i2.495 (4)C11—C121.377 (6)
O1—C11.312 (3)C11—H110.93
O2—C21.255 (3)C12—C131.363 (7)
O3—C81.341 (5)C12—H120.93
O3—C91.385 (3)C13—C141.381 (5)
N1—C161.320 (5)C13—H130.93
N1—C201.314 (6)C14—C151.390 (7)
C1—C21.455 (5)C14—H140.93
C1—C91.377 (3)C15—H150.93
C2—C31.441 (4)C16—C171.397 (7)
C3—C41.395 (6)C16—H160.93
C3—C81.393 (4)C17—C181.386 (7)
C4—C51.365 (5)C17—H170.93
C4—H40.93C18—C191.353 (6)
C5—C61.394 (5)C18—H180.93
C5—H50.93C19—C201.357 (6)
C6—C71.366 (7)C19—H190.93
C6—H60.93C20—H200.93
O2···C18ii3.320 (6)C6···C9v3.441 (5)
O2···C19ii3.353 (6)C7···C8v3.530 (5)
O2···C13iii3.450 (6)C8···C8v3.480 (6)
O3···C11iv3.450 (4)C8···C12iv3.484 (5)
O3···C7v3.521 (4)C8···C11iv3.559 (5)
O3···C6v3.549 (5)C18···C20ii3.542 (8)
C3···C12iv3.579 (6)C19···C20ii3.518 (7)
C4···C12iii3.546 (5)C19···C19ii3.57 (1)
O1—Cu1—O1i180.0C8—C7—H7120.7
O1—Cu1—O283.29 (9)O3—C8—C3122.7 (3)
O1—Cu1—O2i96.71 (9)O3—C8—C7116.7 (3)
O1—Cu1—N191.3 (1)C3—C8—C7120.7 (4)
O1—Cu1—N1i88.7 (1)O3—C9—C1120.3 (3)
O1i—Cu1—O296.71 (9)O3—C9—C10111.6 (2)
O1i—Cu1—O2i83.29 (9)C1—C9—C10128.2 (3)
O1i—Cu1—N188.7 (1)C9—C10—C11120.3 (3)
O1i—Cu1—N1i91.3 (1)C9—C10—C15122.4 (3)
O2—Cu1—O2i180.0C11—C10—C15117.4 (3)
O2—Cu1—N190.1 (1)C10—C11—C12120.5 (3)
O2—Cu1—N1i89.9 (1)C10—C11—H11119.7
O2i—Cu1—N189.9 (1)C12—C11—H11119.7
O2i—Cu1—N1i90.1 (1)C11—C12—C13121.5 (3)
N1—Cu1—N1i180.0C11—C12—H12119.2
Cu1—O1—C1112.0 (2)C13—C12—H12119.2
Cu1—O2—C2109.4 (2)C12—C13—C14119.1 (4)
C8—O3—C9121.6 (2)C12—C13—H13120.4
Cu1—N1—C16120.9 (3)C14—C13—H13120.5
Cu1—N1—C20120.5 (3)C13—C14—C15120.0 (4)
C16—N1—C20116.6 (4)C13—C14—H14120.0
O1—C1—C2116.3 (2)C15—C14—H14120.0
O1—C1—C9124.5 (3)C10—C15—C14121.4 (3)
C2—C1—C9119.3 (3)C10—C15—H15119.3
O2—C2—C1118.7 (3)C14—C15—H15119.3
O2—C2—C3122.8 (3)N1—C16—C17124.0 (4)
C1—C2—C3118.6 (2)N1—C16—H16118.0
C2—C3—C4123.5 (3)C17—C16—H16118.0
C2—C3—C8117.6 (3)C16—C17—C18117.4 (4)
C4—C3—C8118.9 (3)C16—C17—H17121.3
C3—C4—C5120.6 (3)C18—C17—H17121.3
C3—C4—H4119.7C17—C18—C19117.5 (4)
C5—C4—H4119.7C17—C18—H18121.2
C4—C5—C6119.7 (4)C19—C18—H18121.2
C4—C5—H5120.1C18—C19—C20120.8 (5)
C6—C5—H5120.1C18—C19—H19119.6
C5—C6—C7121.4 (3)C20—C19—H19119.6
C5—C6—H6119.3N1—C20—C19123.5 (4)
C7—C6—H6119.3N1—C20—H20118.2
C6—C7—C8118.7 (3)C19—C20—H20118.2
C6—C7—H7120.7
Cu1—O1—C1—C25.5 (3)N1—Cu1—O1—C195.4 (2)
Cu1—O1—C1—C9173.5 (2)N1—Cu1—O1i—C1i84.6 (2)
Cu1—O1i—C1i—C2i5.5 (3)N1—Cu1—O2—C295.8 (2)
Cu1—O1i—C1i—C9i173.5 (2)N1—Cu1—O2i—C2i84.2 (2)
Cu1—O2—C2—C12.8 (3)N1—C16—C17—C181.3 (8)
Cu1—O2—C2—C3177.3 (2)N1—C20—C19—C180.6 (8)
Cu1—O2i—C2i—C1i2.8 (3)C1—C2—C3—C4178.2 (3)
Cu1—O2i—C2i—C3i177.3 (2)C1—C2—C3—C81.7 (4)
Cu1—N1—C16—C17160.7 (4)C1—C9—O3—C80.4 (4)
Cu1—N1—C20—C19161.1 (4)C1—C9—C10—C11173.0 (3)
Cu1—N1i—C16i—C17i160.7 (4)C1—C9—C10—C158.0 (5)
Cu1—N1i—C20i—C19i161.1 (4)C2—C1—C9—C10178.7 (3)
O1—Cu1—O2—C24.5 (2)C2—C3—C4—C5179.9 (3)
O1—Cu1—O2i—C2i175.5 (2)C2—C3—C8—C7179.6 (3)
O1—Cu1—N1—C1610.3 (4)C3—C2—C1—C92.8 (4)
O1—Cu1—N1—C20173.5 (3)C3—C4—C5—C60.4 (6)
O1—Cu1—N1i—C16i169.7 (4)C3—C8—O3—C90.8 (4)
O1—Cu1—N1i—C20i6.5 (3)C3—C8—C7—C60.6 (5)
O1—C1—C2—O21.7 (4)C4—C3—C8—C70.3 (5)
O1—C1—C2—C3178.2 (3)C4—C5—C6—C70.1 (6)
O1—C1—C9—O3179.0 (3)C5—C4—C3—C80.3 (5)
O1—C1—C9—C100.3 (5)C5—C6—C7—C80.5 (6)
O2—Cu1—O1—C15.4 (2)C7—C8—O3—C9178.9 (3)
O2—Cu1—O1i—C1i174.6 (2)C8—O3—C9—C10179.7 (3)
O2—Cu1—N1—C1673.0 (4)C9—C10—C11—C12179.1 (3)
O2—Cu1—N1—C2090.2 (3)C9—C10—C15—C14177.8 (3)
O2—Cu1—N1i—C16i107.0 (4)C10—C11—C12—C130.7 (6)
O2—Cu1—N1i—C20i89.8 (3)C10—C15—C14—C131.9 (6)
O2—C2—C1—C9177.4 (3)C11—C10—C15—C141.2 (5)
O2—C2—C3—C41.7 (5)C11—C12—C13—C140.0 (6)
O2—C2—C3—C8178.4 (3)C12—C11—C10—C150.0 (5)
O3—C8—C3—C20.0 (5)C12—C13—C14—C151.2 (6)
O3—C8—C3—C4179.9 (3)C16—N1—C20—C192.8 (7)
O3—C8—C7—C6179.7 (3)C16—C17—C18—C190.9 (8)
O3—C9—C1—C22.1 (4)C17—C16—N1—C203.1 (7)
O3—C9—C10—C117.7 (4)C17—C18—C19—C201.3 (8)
O3—C9—C10—C15171.2 (3)C17—C18—C19—C201.3 (8)
Symmetry codes: (i) x, y, z+1; (ii) x+1, y, z+1; (iii) x, y1, z; (iv) x, y+1, z+2; (v) x+1, y+1, z+2.

Experimental details

Crystal data
Chemical formula[Cu(C15H9O3)2(C5H5N)2]
Mr696.19
Crystal system, space groupTriclinic, P1
Temperature (K)296
a, b, c (Å)8.539 (2), 10.029 (2), 11.098 (2)
α, β, γ (°)114.70 (1), 97.18 (2), 107.00 (1)
V3)791.6 (3)
Z1
Radiation typeMo Kα
µ (mm1)0.74
Crystal size (mm)0.30 × 0.30 × 0.20
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionPsi scan
(North et al., 1968)
Tmin, Tmax0.799, 0.859
No. of measured, independent and
observed [I > 2σ(I)] reflections
3834, 3632, 2303
Rint0.018
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.152, 0.95
No. of reflections3632
No. of parameters223
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.56, 0.24

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation and Rigaku, 2000), MSC/AFC Diffractometer Control Software, TEXSAN (Molecular Structure Corporation and Rigaku, 2000), SIR97 (Altomare et al., 1999), SHELXL97 (Scheldrick, 1997), ORTEPII (Johnson, 1976), TEXSAN.

Selected geometric parameters (Å, º) top
Cu1—O11.931 (2)Cu1—N12.495 (4)
Cu1—O1i1.931 (2)Cu1—N1i2.495 (4)
Cu1—O22.039 (2)O1—C11.312 (3)
Cu1—O2i2.039 (2)O2—C21.255 (3)
O1—Cu1—O1i180.0O2—Cu1—N190.1 (1)
O1—Cu1—O283.29 (9)O2—Cu1—N1i89.9 (1)
O1—Cu1—O2i96.71 (9)O2i—Cu1—N189.9 (1)
O1—Cu1—N191.3 (1)O2i—Cu1—N1i90.1 (1)
O1—Cu1—N1i88.7 (1)N1—Cu1—N1i180.0
O1i—Cu1—O296.71 (9)Cu1—O1—C1112.0 (2)
O1i—Cu1—O2i83.29 (9)Cu1—O2—C2109.4 (2)
O1i—Cu1—N188.7 (1)Cu1—N1—C16120.9 (3)
O1i—Cu1—N1i91.3 (1)Cu1—N1—C20120.5 (3)
O2—Cu1—O2i180.0
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds