addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733

Normal-mode analysis of the structures of perovskites with tilted octahedra. Erratum

aSchool of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, England
*Correspondence e-mail: c.n.w.darlington@bham.ac.uk

(Received 12 March 2002; accepted 12 March 2002; online 18 April 2002)

There is an error in the mode assignment for hettotype 9, [ab+a], discussed in the paper by Darlington [Acta Cryst. (2002). A58, 66–71 ], which has been pointed out by Dr Kevin Knight, Rutherford Appleton Laboratory, Didcot, Oxon, England. In this paper, a mode involving displacements of the anions of hettotype 9 was labelled [(½, 0, ½), M1] rather than [(½, 0, ½), M2]. Both modes involve plus-like distortion of the octahedra. In the corrected Tables 1–4[link][link][link][link] shown below, this mode, which is only found in hettotype 9, has been labelled K2 rather than H2. Therefore, there are not seven but eight normal modes of the cubic phase required to describe the displacements found in the nine hettotypes considered. The weights of K2 in all the materials examined in the original paper with the structure of hettotype 9 [labelled W(H1) in the original Table 4] are correct, unaltered by the change in the labelling of the mode. It should be noted that [(½, 0, ½), M2] is a longitudinal mode – the seven other modes are all transverse. The weights of K2 are not significantly different from zero in the 15 structures examined.

Table 1
The nine hettotypes

Number +/- notation [MiRj] Multiplicity True unit cell Space group
1 a0a0c R3 2 × 2 × 2 21/2 × 21/2 × 2 I4/mcm (140)
2 ab0a R1 = R3 2 × 2 × 2 21/2 × 2 × 21/2 Imma (74)
3 aaa R1 = R2 = R3 2 × 2 × 2 21/2 × 21/2 × 21/2 [R\bar3c] (167)
4 a0a0c+ M3 2 × 2 × 1 21/2 × 21/2 × 1 P4/mbm (127)
5 a+a+c0 M1 = M2 2 × 2 × 2 2 × 2 × 2 I4/mmm (139)
6 a+a+a+ M1 = M2 = M3 2 × 2 × 2 2 × 2 × 2 Im[\bar 3] (204)
7 a0bc+ R2, M3 2 × 2 × 2 2 × 2 × 2 Cmcm (63)
8 a+a+c M1 = M2, R3 2 × 2 × 2 2 × 2 × 2 P42/nmc (137)
9 ab+a R1 = R3, M2 2 × 2 × 2 21/2 × 2 × 21/2 Pnma (62)

Table 2
Atomic displacements in the seven normal modes, the symbol used in the construction of the Landau potential, and character of each mode

Normal mode Displacement Symbol Character
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ25 OI(y) = −OII(z) R1 Octahedral minus tilt
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ25 OI(x) = −OIII(z) R2 Octahedral minus tilt
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ25 OII(x) = −OIII(y) R3 Octahedral minus tilt
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ15 OI(y) = OII(z) GO1 Octahedral minus distortion
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ15 OI(x) = OIII(z) GO2 Octahedral minus distortion
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ15 OII(x) = OIII(y) GO3 Octahedral minus distortion
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ15 A(x) GA1 A cation displacement
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ15 A(y) GA2 A cation displacement
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), Γ15 A(z) GA3 A cation displacement
(0, [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), M3 OI(y) = −OII(z) M1 Octahedral plus tilt
([\,{\textstyle{{1\over2}}}], 0, [{\textstyle{{1\over2}}}\,]), M3 OI(x) = −OIII(z) M2 Octahedral plus tilt
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], 0), M3 OII(x) = −OIII(y) M3 Octahedral plus tilt
(0, [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), M1 OI(y) = OII(z) H1 Octahedral plus distortion
([\,{\textstyle{{1\over2}}}], 0, [{\textstyle{{1\over2}}}\,]), M1 OI(x) = OIII(z) H2 Octahedral plus distortion
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], 0), M1 OII(x) = OIII(y) H3 Octahedral plus distortion
(0, [{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}\,]), M2 OII(y) = −OI(z) K1 Octahedral plus distortion
([\,{\textstyle{{1\over2}}}], 0, [{\textstyle{{1\over2}}}\,]), M2 OI(z) = −OIII(x) K2 Octahedral plus distortion
([\,{\textstyle{{1\over2}}}], [{\textstyle{{1\over2}}}], 0), M2 OIII(x) = −OII(y) K3 Octahedral plus distortion
([\,{\textstyle{{1\over2}}}], 0, 0), M5 OIII(y) XO12 Octahedral distortion
([\,{\textstyle{{1\over2}}}], 0, 0), M5 OIII(z) XO13 Octahedral distortion
(0, [{\textstyle{{1\over2}}}], 0), M5 OII(z) XO23 Octahedral distortion
(0, [{\textstyle{{1\over2}}}], 0), M5 OII(x) XO21 Octahedral distortion
(0, 0, [{\textstyle{{1\over2}}}\,]), M5 OI(x) XO31 Octahedral distortion
(0, 0, [{\textstyle{{1\over2}}}\,]), M5 OI(y) XO32 Octahedral distortion
([\,{\textstyle{{1\over2}}}], 0, 0), M5 A(y) XA12 Cation displacement
([\,{\textstyle{{1\over2}}}], 0, 0), M5 A(z) XA13 Cation displacement
(0, [{\textstyle{{1\over2}}}], 0), M5 A(z) XA23 Cation displacement
(0, [{\textstyle{{1\over2}}}], 0), M5 A(x) XA21 Cation displacement
(0, 0, [{\textstyle{{1\over2}}}\,]), M5 A(x) XA31 Cation displacement
(0, 0, [{\textstyle{{1\over2}}}\,]), M5 A(y) XA32 Cation displacement

Table 3
The space group, possible condensed modes and non-zero pseudocubic spon­taneous macrostrain in the nine hettotypes

Number Space group Allowed modes Macrostrain
1 I4/mcm (140) R3 11 = 22; 33
2 Imma (74) R1 = R3 11 = 33; 22; 31
    GO1 = GO3  
    GA1 = GA3  
3 [R\bar3c] (167) R1 = R2 = R3 11 = 22 = 33; 23 = 31 = 12
4 P4/mbm (127) M3 11 = 22; 33
5 I4/mmm (139) M1 = M2 11 = 22; 33
    H1 = H2H3  
6 [Im\bar3] (204) M1 = M2 = M3 11 = 22 = 33
    H1 = H2 = H3  
7 Cmcm (63) R2 11; 22; 33
    M3  
    GO2  
    GA2  
    H3  
    XO32  
    XA32  
8 P42/nmc (137) R3 11 = 22; 33
    M1 = M2  
    GO3  
    H1 = H2  
    XO13 = XO23  
    XA13 = XA23  
9 Pnma (62) R1 = R3 11 = 33; 22; 31
    M2  
    GO1 = GO3  
    GA1 = GA3  
    K2  
    XO21 = XO23  
    XA21 = XA23  

Table 4
Weights of condensed modes in units of u Å2

Hettotype Material W(Ri) W(Mi) W(XAij) W(XOij) W(GAi) W(GOi) W(Hi) W(Ki) Ref. Entry
1 R3 SrTiO3, 77 K 0.0726               1 1
  SrZrO3, 1223 K 1.6971               2 2
2 R1 = R3 BaCeO3, 573 K 6.7294       0.0586 0.1460     3 3
3 R1 = R2 = R3 BaCeO3, 773 K 5.2701               3 4
  LaGeO3, 673 K 4.3662               4 5
4 M3 NaNbO3, 888 K   0.9520             5 6
  NaTaO3, 878 K   0.8965             5 7
5 M1 = M2 No available data                    
6 M1 = M2 = M3 CaCu3Ti4O12   10.2753         0.2031   6 8
  Tb0.67Cu3Ti4O12   9.9740         0.1964   6 9
  CaCu3Mn4O12   9.2271         0.1323   7 10
  Li0.36WO3   5.0358         0.0060   8 11
  Na0.73WO3   0.3953         0.0000   8 12
  Na0.54WO3   0.3657         0.0000   8 13
7 R2, M3 NaNbO3, 813 K 0.8442 1.2912 0.0082 0.0012 0.0001 0.0002 0.0042   5 14
  NaTaO3, 803 K 0.9408 1.1623 0.0808 0.0048 0.0000 0.0067 0.0013   5 15
  SrZrO3, 973 K 3.1806 0.8497 0.4539 0.0063 0.0154 0.0118 0.0002   2 16
8 M1 = M2, R3 CaFeTi2O6 4.3399 7.3194 0.3690 0.1987   0.0508 0.0015   9 17
9 R1 = R3, M2 BaCeO3, 473 K 7.2126 0.5108 0.8058 0.0503 0.0775 0.1518   0.0002 3 18
  SrZrO3 5.8137 1.2545 1.7364 0.0958 0.0471 0.1209   0.0001 2 19
  LaGeO3 5.0130 0.4181 1.1826 0.0162 0.0713 0.1034   0.0002 4 20
  PrFeO3 7.4537 1.7425 8.3611 0.2237 0.3453 0.1390   0.0000 10 21
  NdFeO3 8.3981 1.9033 10.7150 0.2898 0.4901 0.1649   0.0000 10 22
  SmFeO3 9.6041 2.3606 15.1215 0.4215 0.7547 0.1970   0.0005 10 23
  EuFeO3 10.0301 2.5231 17.2613 0.5149 0.9157 0.2237   0.0000 10 24
  GdFeO3 10.2814 2.6910 19.5499 0.5419 1.0893 0.2683   0.0000 10 25
  TbFeO3 11.1054 2.7621 20.4797 0.6507 1.1498 0.2368   0.0000 8 26
  DyFeO3 11.5369 2.9724 22.5061 0.7089 1.3311 0.2471   0.0002 8 27
  HoFeO3 12.0370 3.0026 23.8465 0.7804 1.4574 0.2704   0.0002 10 28
  ErFeO3 12.8142 3.1006 24.9061 0.8218 1.5771 0.3205   0.0000 10 29
  TmFeO3 13.1795 3.0947 25.1013 0.9675 1.6745 0.2982   0.0000 10 30
  YbFeO3 13.6153 3.2967 26.7549 1.0592 1.7761 0.3007   0.0000 10 31
  LuFeO3 14.3837 3.2072 27.5146 1.0463 1.8962 0.2892   0.0000 10 32
†References: (1) Unoki & Sakudo (1967[Unoki, H. & Sakudo, T. (1967). J. Phys. Soc. Jpn, 23, 546-552.]); (2) Kennedy et al. (1999)[Kennedy, B. J., Howard, C. J. & Chakoumakos, B. C. (1999). Phys. Rev. B, 59, 4023-4027.]; (3) Knight (1995[Knight, K. S. (1995). Solid State Ionics, 75, 109-118.]); (4) Howard & Kennedy (1999)[Howard, C. J. & Kennedy, B. J. (1999). J. Phys. Condens. Matter, 11, 3229-3236. ]; (5) Darlington & Knight (1999[Darlington, C. N. W. & Knight, K. S. (1999). Acta Cryst. B55, 24-30.]); (6) Bochu et al. (1979[Bochu, B., Deschizeaux, N. N., Joubert, J. C., Collomb, A., Chenevas, J. & Marezio, M. (1979). J. Solid State Chem. 29, 291-298.]); (7) Chenevas et al. (1975[Chenevas, J., Joubert, J. C., Marezio, M. & Bochu, B. (1975). J. Solid State Chem. 14, 25-32.]); (8) Wiseman & Dickens (1976[Wiseman, P. J. & Dickens, P. (1976). J. Solid State Chem. 17, 91-100.]); (9) Leinenweber & Parise (1995[Leinenweber, K. & Parise, J. (1995). J. Solid State Chem. 114, 277-281.]); (10) Marezio et al. (1970[Marezio, M., Remeika, J. P. & Dernier, P. D. (1970). Acta Cryst. B26, 2008-2022.]).

References

First citationBochu, B., Deschizeaux, N. N., Joubert, J. C., Collomb, A., Chenevas, J. & Marezio, M. (1979). J. Solid State Chem. 29, 291–298.  CrossRef CAS Web of Science Google Scholar
First citationChenevas, J., Joubert, J. C., Marezio, M. & Bochu, B. (1975). J. Solid State Chem. 14, 25–32.  CAS Google Scholar
First citationDarlington, C. N. W. & Knight, K. S. (1999). Acta Cryst. B55, 24–30.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationHoward, C. J. & Kennedy, B. J. (1999). J. Phys. Condens. Matter, 11, 3229–3236.  Web of Science CrossRef CAS Google Scholar
First citationKennedy, B. J., Howard, C. J. & Chakoumakos, B. C. (1999). Phys. Rev. B, 59, 4023–4027.  Web of Science CrossRef CAS Google Scholar
First citationKnight, K. S. (1995). Solid State Ionics, 75, 109–118.  Google Scholar
First citationLeinenweber, K. & Parise, J. (1995). J. Solid State Chem. 114, 277–281.  CrossRef CAS Web of Science Google Scholar
First citationMarezio, M., Remeika, J. P. & Dernier, P. D. (1970). Acta Cryst. B26, 2008–2022.  CrossRef IUCr Journals Web of Science Google Scholar
First citationUnoki, H. & Sakudo, T. (1967). J. Phys. Soc. Jpn, 23, 546–552.  CrossRef CAS Web of Science Google Scholar
First citationWiseman, P. J. & Dickens, P. (1976). J. Solid State Chem. 17, 91–100.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoFOUNDATIONS
ADVANCES
ISSN: 2053-2733
Follow Acta Cryst. A
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds