addenda and errata\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767

Measurement of single-crystal elastic constants by neutron diffraction from polycrystals. Addendum and erratum

aDepartment of Inorganic Chemistry, The University of Sydney, NSW 2006, Australia, and bDepartment of Mechanical Engineering, University of Newcastle, NSW 2308, Australia
*Correspondence e-mail: meehk@cc.newcastle.edu.au

(Received 16 December 1999; accepted 16 December 1999)

Correction is made to an equation in a paper by Howard & Kisi[Howard, C. J. & Kisi, E. H. (1999). J. Appl. Cryst. 32, 624-633.] [J. Appl. Cryst. (1999), 32, 624–633 ] and additional references are cited.

The equation for [\langle s_{13}' \rangle], trigonal (classes 3, 3¯), in Table 1 of Howard & Kisi (1999[Howard, C. J. & Kisi, E. H. (1999). J. Appl. Cryst. 32, 624-633.]) has been affected by an error in transcription. The sign of the coefficient of s25 should be negative. That is, the equation should read

[\eqalign{\langle s_{13}' \rangle =\hskip.2em& [6(H^2 + HK + K^2)L^2(s_{11} + s_{33} - s_{44}) \cr&\! + 2(H^2 +HK +K^2)(4H^2 +4HK + 4K^2 +3L^2)s_{12} \cr&\! + (8H^4 +16H^3K +24H^2K^2 +16HK^3 \cr&\! + 8K^4 + 6H^2L^2 + 6HKL^2 + 6K^2L^2 + 9L^4)s_{13}\cr&\! - 4(3^{1/2}) (2H^3 + 3H^2K - 3HK^2 - 2K^3)Ls_{14} \cr&\! - 36HKL(H+K)s_{25}]/(4H^2 + 4HK + 4K^2 +3L^2)^2.}]

The authors have recently become aware of related work by Singh et al. (1998[Singh, A. K., Balasingh, C., Mao, H.-K., Hemley, J. & Shu, J. (1998). J. Appl. Phys. 83, 7567-7575.]), and by Uchida et al. (1996[Uchida, T., Funamori, N. & Yagi, T. (1996). J. Appl. Phys. 80, 739-746.]). Singh et al. record expressions for [2GRx (hkl)]-1, GRx being the `X-ray shear modulus', whereas Uchida et al. give the `linear compressibility', [\beta (l_1 \,l_2 \,l_3 )], and the `Young modulus', [E(l1 l2 l3)]. These are related to the compliances we give by

[\displaylines{ [2G_R^x (hkl)]^{-1} = \langle s_{11}'\rangle - \langle s_{13}'\rangle ,\cr \beta (l_1 \,l_2 \,l_3 ) = \langle s_{11}'\rangle + 2\langle s_{13}'\rangle ,\cr [E(l_{1}\,l_{2}\,l_3)]^{-1} = \langle s_{11}'\rangle .}]

We confirm that there is agreement between our results and those presented by the other groups.

References

First citationHoward, C. J. & Kisi, E. H. (1999). J. Appl. Cryst. 32, 624–633.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSingh, A. K., Balasingh, C., Mao, H.-K., Hemley, J. & Shu, J. (1998). J. Appl. Phys. 83, 7567–7575.  Web of Science CrossRef CAS Google Scholar
First citationUchida, T., Funamori, N. & Yagi, T. (1996). J. Appl. Phys. 80, 739–746.  CrossRef CAS Web of Science Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoJOURNAL OF
APPLIED
CRYSTALLOGRAPHY
ISSN: 1600-5767
Follow J. Appl. Cryst.
Sign up for e-alerts
Follow J. Appl. Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds