
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100004777/da1111sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270100004777/da1111Isup2.hkl |
CCDC reference: 147612
5,6-Dimethyl-1,10-phenanthroline (0.5 mmol) was dissolved in methanol and added to a methanolic solution of Cu(NO3)2 (0.5 mmol). To this mixture an aqueous solution of glycolic acid (0.5 mmol) neutralized with NaHCO3 (0.5 mmol) was added. The resulting deep blue solution was left standing until crystals formed, which were then filtered and vacuum dried.
H atoms on water molecule O22 were located in a difference Fourier map and were then constrained to ride on the O atom. The remaining H atoms were placed in idealized positions and refined with a riding model.
Data collection: XSCANS (Fait, 1991); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXTL (Sheldrick, 1995); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXL97 (Sheldrick, 1997).
[Cu(C2H3O3)(C14H12N2)(H2O)]NO3 | Z = 2 |
Mr = 426.87 | F(000) = 438 |
Triclinic, P1 | Dx = 1.705 Mg m−3 |
a = 7.0373 (7) Å | Mo Kα radiation, λ = 0.71073 Å |
b = 10.0928 (11) Å | Cell parameters from 35 reflections |
c = 13.1649 (13) Å | θ = 4.6–12.5° |
α = 103.225 (8)° | µ = 1.36 mm−1 |
β = 105.450 (12)° | T = 293 K |
γ = 103.760 (9)° | Needle, blue |
V = 831.68 (15) Å3 | 0.7 × 0.3 × 0.2 mm |
Siemens P4 diffractometer | 3406 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.019 |
Graphite monochromator | θmax = 28.0°, θmin = 2.2° |
2θ/ω scans | h = −1→9 |
Absorption correction: ψ scan 24 psi scans with XSCANS (Fait, 1991) | k = −12→12 |
Tmin = 0.614, Tmax = 0.762 | l = −17→17 |
4927 measured reflections | 3 standard reflections every 97 reflections |
3969 independent reflections | intensity decay: 7.2% |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.034 | H-atom parameters constrained |
wR(F2) = 0.092 | w = 1/[σ2(Fo2) + (0.0419P)2 + 0.3303P] where P = (Fo2 + 2Fc2)/3 |
S = 1.05 | (Δ/σ)max < 0.001 |
3969 reflections | Δρmax = 0.38 e Å−3 |
245 parameters | Δρmin = −0.36 e Å−3 |
0 restraints | Extinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.0109 (14) |
[Cu(C2H3O3)(C14H12N2)(H2O)]NO3 | γ = 103.760 (9)° |
Mr = 426.87 | V = 831.68 (15) Å3 |
Triclinic, P1 | Z = 2 |
a = 7.0373 (7) Å | Mo Kα radiation |
b = 10.0928 (11) Å | µ = 1.36 mm−1 |
c = 13.1649 (13) Å | T = 293 K |
α = 103.225 (8)° | 0.7 × 0.3 × 0.2 mm |
β = 105.450 (12)° |
Siemens P4 diffractometer | 3406 reflections with I > 2σ(I) |
Absorption correction: ψ scan 24 psi scans with XSCANS (Fait, 1991) | Rint = 0.019 |
Tmin = 0.614, Tmax = 0.762 | 3 standard reflections every 97 reflections |
4927 measured reflections | intensity decay: 7.2% |
3969 independent reflections |
R[F2 > 2σ(F2)] = 0.034 | 0 restraints |
wR(F2) = 0.092 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.38 e Å−3 |
3969 reflections | Δρmin = −0.36 e Å−3 |
245 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. Hydrogen from the water molecule O(22) were found on difference Fourier map and refined as riding to O(22). |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.00049 (4) | 0.18606 (2) | 0.306460 (18) | 0.03179 (10) | |
N1 | −0.0404 (3) | 0.36015 (18) | 0.26942 (13) | 0.0298 (4) | |
C2 | 0.0097 (4) | 0.4922 (2) | 0.33640 (18) | 0.0376 (5) | |
H2A | 0.0703 | 0.5108 | 0.4123 | 0.045* | |
C3 | −0.0252 (4) | 0.6040 (2) | 0.2972 (2) | 0.0415 (5) | |
H3A | 0.0107 | 0.6955 | 0.3464 | 0.050* | |
C4 | −0.1127 (4) | 0.5786 (2) | 0.18570 (19) | 0.0385 (5) | |
H4A | −0.1353 | 0.6533 | 0.1591 | 0.046* | |
C5 | −0.1689 (3) | 0.4393 (2) | 0.11067 (17) | 0.0299 (4) | |
C6 | −0.2596 (3) | 0.4025 (2) | −0.00892 (17) | 0.0314 (4) | |
C7 | −0.3100 (3) | 0.2640 (2) | −0.07512 (17) | 0.0323 (4) | |
C8 | −0.2707 (3) | 0.1539 (2) | −0.02594 (15) | 0.0281 (4) | |
C9 | −0.3182 (3) | 0.0088 (2) | −0.08691 (16) | 0.0336 (4) | |
H9A | −0.3790 | −0.0217 | −0.1637 | 0.040* | |
C10 | −0.2748 (4) | −0.0875 (2) | −0.03289 (17) | 0.0349 (5) | |
H10A | −0.3073 | −0.1835 | −0.0728 | 0.042* | |
C11 | −0.1814 (3) | −0.0402 (2) | 0.08263 (16) | 0.0321 (4) | |
H11A | −0.1518 | −0.1058 | 0.1187 | 0.038* | |
N12 | −0.1340 (3) | 0.09543 (17) | 0.14184 (13) | 0.0278 (3) | |
C13 | −0.1780 (3) | 0.1902 (2) | 0.08941 (15) | 0.0258 (4) | |
C14 | −0.1281 (3) | 0.3345 (2) | 0.15818 (15) | 0.0263 (4) | |
C15 | −0.2911 (4) | 0.5220 (3) | −0.0550 (2) | 0.0423 (5) | |
H15A | −0.3516 | 0.4846 | −0.1344 | 0.063* | |
H15B | −0.1594 | 0.5945 | −0.0346 | 0.063* | |
H15C | −0.3823 | 0.5631 | −0.0255 | 0.063* | |
C16 | −0.4092 (4) | 0.2181 (3) | −0.19971 (18) | 0.0485 (6) | |
H16A | −0.4276 | 0.2996 | −0.2222 | 0.073* | |
H16B | −0.5421 | 0.1460 | −0.2222 | 0.073* | |
H16C | −0.3211 | 0.1796 | −0.2339 | 0.073* | |
O17 | 0.0560 (3) | 0.01614 (16) | 0.32853 (12) | 0.0427 (4) | |
C18 | 0.1748 (4) | 0.0287 (2) | 0.42474 (17) | 0.0359 (5) | |
O19 | 0.2113 (3) | −0.07235 (19) | 0.45395 (14) | 0.0538 (5) | |
C20 | 0.2771 (4) | 0.1779 (2) | 0.50724 (18) | 0.0406 (5) | |
H20A | 0.2529 | 0.1786 | 0.5765 | 0.049* | |
H20B | 0.4260 | 0.2065 | 0.5221 | 0.049* | |
O21 | 0.1923 (3) | 0.27627 (16) | 0.46286 (12) | 0.0438 (4) | |
H21 | 0.2678 | 0.3578 | 0.5119 | 0.066* | |
O22 | −0.2927 (3) | 0.13929 (19) | 0.35139 (14) | 0.0453 (4) | |
H22A | −0.2642 | 0.1166 | 0.4027 | 0.068* | |
H22B | −0.3535 | 0.2060 | 0.3584 | 0.068* | |
N23 | 0.4971 (3) | 0.4160 (2) | 0.34116 (14) | 0.0381 (4) | |
O24 | 0.6400 (3) | 0.4286 (2) | 0.42635 (16) | 0.0614 (5) | |
O25 | 0.4569 (4) | 0.5245 (2) | 0.32854 (18) | 0.0662 (6) | |
O26 | 0.3957 (4) | 0.2972 (2) | 0.27269 (17) | 0.0733 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.04435 (17) | 0.02269 (13) | 0.02083 (13) | 0.00956 (10) | 0.00114 (10) | 0.00574 (9) |
N1 | 0.0354 (9) | 0.0249 (8) | 0.0247 (7) | 0.0082 (7) | 0.0058 (7) | 0.0061 (6) |
C2 | 0.0467 (13) | 0.0284 (10) | 0.0286 (10) | 0.0099 (9) | 0.0056 (9) | 0.0025 (8) |
C3 | 0.0507 (14) | 0.0259 (10) | 0.0421 (12) | 0.0117 (10) | 0.0130 (10) | 0.0038 (9) |
C4 | 0.0460 (13) | 0.0271 (10) | 0.0451 (12) | 0.0136 (9) | 0.0154 (10) | 0.0144 (9) |
C5 | 0.0297 (10) | 0.0281 (9) | 0.0344 (10) | 0.0109 (8) | 0.0106 (8) | 0.0128 (8) |
C6 | 0.0295 (10) | 0.0353 (10) | 0.0347 (10) | 0.0129 (8) | 0.0098 (8) | 0.0194 (8) |
C7 | 0.0300 (10) | 0.0380 (11) | 0.0286 (9) | 0.0094 (8) | 0.0059 (8) | 0.0164 (8) |
C8 | 0.0266 (10) | 0.0307 (10) | 0.0243 (8) | 0.0071 (8) | 0.0055 (7) | 0.0094 (7) |
C9 | 0.0348 (11) | 0.0341 (10) | 0.0221 (8) | 0.0049 (9) | 0.0037 (8) | 0.0041 (8) |
C10 | 0.0407 (12) | 0.0256 (9) | 0.0302 (10) | 0.0068 (9) | 0.0075 (9) | 0.0025 (8) |
C11 | 0.0378 (11) | 0.0234 (9) | 0.0292 (9) | 0.0077 (8) | 0.0058 (8) | 0.0061 (7) |
N12 | 0.0321 (9) | 0.0243 (8) | 0.0235 (7) | 0.0078 (7) | 0.0049 (6) | 0.0078 (6) |
C13 | 0.0261 (9) | 0.0242 (9) | 0.0243 (8) | 0.0059 (7) | 0.0058 (7) | 0.0074 (7) |
C14 | 0.0264 (9) | 0.0250 (9) | 0.0266 (9) | 0.0077 (7) | 0.0072 (7) | 0.0092 (7) |
C15 | 0.0460 (13) | 0.0454 (13) | 0.0477 (13) | 0.0220 (11) | 0.0160 (11) | 0.0288 (11) |
C16 | 0.0588 (16) | 0.0474 (13) | 0.0294 (11) | 0.0083 (12) | 0.0018 (10) | 0.0182 (10) |
O17 | 0.0604 (11) | 0.0267 (7) | 0.0279 (7) | 0.0138 (7) | −0.0035 (7) | 0.0061 (6) |
C18 | 0.0447 (12) | 0.0304 (10) | 0.0269 (9) | 0.0107 (9) | 0.0041 (9) | 0.0092 (8) |
O19 | 0.0798 (14) | 0.0339 (8) | 0.0383 (9) | 0.0209 (9) | −0.0008 (9) | 0.0152 (7) |
C20 | 0.0473 (13) | 0.0321 (11) | 0.0296 (10) | 0.0096 (10) | −0.0020 (9) | 0.0068 (8) |
O21 | 0.0583 (11) | 0.0237 (7) | 0.0296 (7) | 0.0074 (7) | −0.0068 (7) | 0.0032 (6) |
O22 | 0.0521 (10) | 0.0479 (10) | 0.0424 (9) | 0.0199 (8) | 0.0148 (8) | 0.0235 (8) |
N23 | 0.0455 (11) | 0.0349 (9) | 0.0276 (8) | 0.0107 (8) | 0.0083 (8) | 0.0055 (7) |
O24 | 0.0562 (12) | 0.0710 (14) | 0.0447 (10) | 0.0197 (11) | −0.0032 (9) | 0.0198 (9) |
O25 | 0.0868 (16) | 0.0429 (10) | 0.0636 (13) | 0.0250 (11) | 0.0105 (11) | 0.0201 (9) |
O26 | 0.0939 (17) | 0.0449 (11) | 0.0488 (11) | 0.0124 (11) | 0.0064 (11) | −0.0144 (9) |
Cu1—O17 | 1.9144 (15) | C7—C16 | 1.510 (3) |
Cu1—N1 | 1.9913 (17) | C8—C13 | 1.403 (3) |
Cu1—O21 | 1.9918 (15) | C8—C9 | 1.410 (3) |
Cu1—N12 | 2.0044 (16) | C9—C10 | 1.373 (3) |
Cu1—O22 | 2.2681 (18) | C10—C11 | 1.400 (3) |
Cu1—O26 | 2.932 (3) | C11—N12 | 1.322 (2) |
N1—C2 | 1.323 (3) | N12—C13 | 1.348 (2) |
N1—C14 | 1.365 (2) | C13—C14 | 1.431 (3) |
C2—C3 | 1.390 (3) | O17—C18 | 1.277 (2) |
C3—C4 | 1.367 (3) | C18—O19 | 1.227 (3) |
C4—C5 | 1.414 (3) | C18—C20 | 1.512 (3) |
C5—C14 | 1.394 (3) | C20—O21 | 1.430 (3) |
C5—C6 | 1.452 (3) | N23—O25 | 1.230 (3) |
C6—C7 | 1.372 (3) | N23—O26 | 1.231 (3) |
C6—C15 | 1.504 (3) | N23—O24 | 1.248 (2) |
C7—C8 | 1.453 (3) | ||
O17—Cu1—N1 | 172.93 (7) | C8—C7—C16 | 117.2 (2) |
O17—Cu1—O21 | 83.09 (6) | C13—C8—C9 | 115.97 (18) |
N1—Cu1—O21 | 99.98 (6) | C13—C8—C7 | 119.77 (18) |
O17—Cu1—N12 | 93.32 (7) | C9—C8—C7 | 124.26 (18) |
N1—Cu1—N12 | 82.30 (7) | C10—C9—C8 | 120.01 (18) |
O21—Cu1—N12 | 167.20 (7) | C9—C10—C11 | 119.52 (19) |
O17—Cu1—O22 | 93.45 (7) | N12—C11—C10 | 121.75 (19) |
N1—Cu1—O22 | 92.64 (7) | C11—N12—C13 | 119.01 (17) |
O21—Cu1—O22 | 94.83 (7) | C11—N12—Cu1 | 128.38 (14) |
N12—Cu1—O22 | 97.65 (7) | C13—N12—Cu1 | 112.61 (13) |
O22—Cu1—O26 | 170.12 (16) | N12—C13—C8 | 123.73 (18) |
C2—N1—C14 | 118.26 (18) | N12—C13—C14 | 116.42 (16) |
C2—N1—Cu1 | 129.10 (15) | C8—C13—C14 | 119.84 (17) |
C14—N1—Cu1 | 112.62 (13) | N1—C14—C5 | 123.86 (18) |
N1—C2—C3 | 122.2 (2) | N1—C14—C13 | 116.00 (17) |
C4—C3—C2 | 119.6 (2) | C5—C14—C13 | 120.14 (17) |
C3—C4—C5 | 120.3 (2) | C18—O17—Cu1 | 116.71 (14) |
C14—C5—C4 | 115.71 (19) | O19—C18—O17 | 124.2 (2) |
C14—C5—C6 | 119.96 (18) | O19—C18—C20 | 118.24 (19) |
C4—C5—C6 | 124.31 (19) | O17—C18—C20 | 117.59 (19) |
C7—C6—C5 | 120.14 (18) | O21—C20—C18 | 109.29 (17) |
C7—C6—C15 | 122.63 (19) | C20—O21—Cu1 | 112.77 (12) |
C5—C6—C15 | 117.2 (2) | O25—N23—O26 | 120.8 (2) |
C6—C7—C8 | 120.12 (18) | O25—N23—O24 | 118.5 (2) |
C6—C7—C16 | 122.71 (19) | O26—N23—O24 | 120.7 (2) |
O17—Cu1—N1—C2 | −127.8 (5) | N1—Cu1—N12—C13 | 1.74 (14) |
O21—Cu1—N1—C2 | −12.6 (2) | O21—Cu1—N12—C13 | −99.5 (3) |
N12—Cu1—N1—C2 | −179.8 (2) | O22—Cu1—N12—C13 | 93.38 (14) |
O22—Cu1—N1—C2 | 82.8 (2) | C11—N12—C13—C8 | −0.6 (3) |
O17—Cu1—N1—C14 | 50.5 (6) | Cu1—N12—C13—C8 | 179.42 (16) |
O21—Cu1—N1—C14 | 165.70 (14) | C11—N12—C13—C14 | 178.38 (19) |
N12—Cu1—N1—C14 | −1.55 (14) | Cu1—N12—C13—C14 | −1.6 (2) |
O22—Cu1—N1—C14 | −98.92 (15) | C9—C8—C13—N12 | 0.2 (3) |
C14—N1—C2—C3 | 0.3 (4) | C7—C8—C13—N12 | −179.31 (19) |
Cu1—N1—C2—C3 | 178.52 (18) | C9—C8—C13—C14 | −178.74 (19) |
N1—C2—C3—C4 | −0.5 (4) | C7—C8—C13—C14 | 1.8 (3) |
C2—C3—C4—C5 | 0.5 (4) | C2—N1—C14—C5 | −0.2 (3) |
C3—C4—C5—C14 | −0.3 (3) | Cu1—N1—C14—C5 | −178.64 (16) |
C3—C4—C5—C6 | −179.1 (2) | C2—N1—C14—C13 | 179.60 (19) |
C14—C5—C6—C7 | 1.6 (3) | Cu1—N1—C14—C13 | 1.1 (2) |
C4—C5—C6—C7 | −179.7 (2) | C4—C5—C14—N1 | 0.2 (3) |
C14—C5—C6—C15 | −177.4 (2) | C6—C5—C14—N1 | 178.97 (19) |
C4—C5—C6—C15 | 1.3 (3) | C4—C5—C14—C13 | −179.61 (19) |
C5—C6—C7—C8 | −0.7 (3) | C6—C5—C14—C13 | −0.8 (3) |
C15—C6—C7—C8 | 178.3 (2) | N12—C13—C14—N1 | 0.3 (3) |
C5—C6—C7—C16 | 178.6 (2) | C8—C13—C14—N1 | 179.34 (18) |
C15—C6—C7—C16 | −2.5 (4) | N12—C13—C14—C5 | −179.87 (18) |
C6—C7—C8—C13 | −1.0 (3) | C8—C13—C14—C5 | −0.9 (3) |
C16—C7—C8—C13 | 179.7 (2) | N1—Cu1—O17—C18 | 118.1 (5) |
C6—C7—C8—C9 | 179.6 (2) | O21—Cu1—O17—C18 | 1.88 (18) |
C16—C7—C8—C9 | 0.3 (3) | N12—Cu1—O17—C18 | 169.55 (18) |
C13—C8—C9—C10 | 0.4 (3) | O22—Cu1—O17—C18 | −92.58 (19) |
C7—C8—C9—C10 | 179.9 (2) | Cu1—O17—C18—O19 | 174.0 (2) |
C8—C9—C10—C11 | −0.7 (3) | Cu1—O17—C18—C20 | −6.3 (3) |
C9—C10—C11—N12 | 0.3 (3) | O19—C18—C20—O21 | −171.9 (2) |
C10—C11—N12—C13 | 0.3 (3) | O17—C18—C20—O21 | 8.4 (3) |
C10—C11—N12—Cu1 | −179.65 (16) | C18—C20—O21—Cu1 | −6.4 (3) |
O17—Cu1—N12—C11 | 7.3 (2) | O17—Cu1—O21—C20 | 3.01 (17) |
N1—Cu1—N12—C11 | −178.3 (2) | N1—Cu1—O21—C20 | −170.56 (16) |
O21—Cu1—N12—C11 | 80.5 (3) | N12—Cu1—O21—C20 | −71.3 (3) |
O22—Cu1—N12—C11 | −86.63 (19) | O22—Cu1—O21—C20 | 95.90 (17) |
O17—Cu1—N12—C13 | −172.69 (15) |
D—H···A | D—H | H···A | D···A | D—H···A |
O21—H21···O24i | 0.86 | 2.00 | 2.795 (2) | 154 |
O21—H21···O25i | 0.86 | 2.27 | 3.030 (2) | 146 |
O21—H21···N23i | 0.86 | 2.48 | 3.344 (2) | 176 |
O22—H22A···O19ii | 0.88 | 2.00 | 2.747 (3) | 172 |
O22—H22B···O24iii | 0.88 | 2.24 | 3.052 (3) | 154 |
O22—H22B···O26iii | 0.88 | 2.33 | 3.103 (3) | 147 |
O22—H22B···N23iii | 0.88 | 2.61 | 3.469 (3) | 166 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu(C2H3O3)(C14H12N2)(H2O)]NO3 |
Mr | 426.87 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 7.0373 (7), 10.0928 (11), 13.1649 (13) |
α, β, γ (°) | 103.225 (8), 105.450 (12), 103.760 (9) |
V (Å3) | 831.68 (15) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.36 |
Crystal size (mm) | 0.7 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Siemens P4 diffractometer |
Absorption correction | ψ scan 24 psi scans with XSCANS (Fait, 1991) |
Tmin, Tmax | 0.614, 0.762 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4927, 3969, 3406 |
Rint | 0.019 |
(sin θ/λ)max (Å−1) | 0.661 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.034, 0.092, 1.05 |
No. of reflections | 3969 |
No. of parameters | 245 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.38, −0.36 |
Computer programs: XSCANS (Fait, 1991), XSCANS, SHELXTL (Sheldrick, 1995), SHELXL97 (Sheldrick, 1997), SHELXTL.
Cu1—O17 | 1.9144 (15) | Cu1—N12 | 2.0044 (16) |
Cu1—N1 | 1.9913 (17) | Cu1—O22 | 2.2681 (18) |
Cu1—O21 | 1.9918 (15) | Cu1—O26 | 2.932 (3) |
O17—Cu1—N1 | 172.93 (7) | O17—Cu1—O22 | 93.45 (7) |
O17—Cu1—O21 | 83.09 (6) | N1—Cu1—O22 | 92.64 (7) |
N1—Cu1—O21 | 99.98 (6) | O21—Cu1—O22 | 94.83 (7) |
O17—Cu1—N12 | 93.32 (7) | N12—Cu1—O22 | 97.65 (7) |
N1—Cu1—N12 | 82.30 (7) | O22—Cu1—O26 | 170.12 (16) |
O21—Cu1—N12 | 167.20 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
O21—H21···O24i | 0.862 | 1.995 | 2.795 (2) | 154.05 |
O21—H21···O25i | 0.862 | 2.274 | 3.030 (2) | 146.44 |
O21—H21···N23i | 0.862 | 2.484 | 3.344 (2) | 175.91 |
O22—H22A···O19ii | 0.880 | 1.997 | 2.747 (3) | 172.24 |
O22—H22B···O24iii | 0.880 | 2.237 | 3.052 (3) | 153.97 |
O22—H22B···O26iii | 0.880 | 2.329 | 3.103 (3) | 146.85 |
O22—H22B···N23iii | 0.880 | 2.608 | 3.469 (3) | 166.26 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x, −y, −z+1; (iii) x−1, y, z. |
Solution equilibrium studies performed on a wide variety of ternary copper chelates in which one ligand is a good π-acceptor like 2,2'-bipyridine or 1,10-phenanthroline and the other is an oxygen donor have always shown that, contrary to what is expected on a statistical basis, the stability constant for the reaction:
Cu(N—N)2+(aq) + O—On-(aq) ←→ Cu(N—N)(O—O)(2-n)+(aq)
is always larger than the one for the reaction:
Cu2+(aq) + O—On-(aq) ←→ Cu(O—O)(2-n)+(aq)
This behaviour has been explained by Sigel et al. (1973) based on the HSAB principle. Since a π-acceptor ligand will withdraw electron density from a bound copper ion, Cu(N—N)2+ will be a harder acid than simple aqueous Cu2+ and consequently hard bases such as oxygen donors will prefer the former over the latter.
To be able to evaluate the effect of the variations in π-accepting properties of differently substituted phenanthrolines, of which ternary complexes have low solubility, we have studied the variation in Cu—O stretching frequencies of a series of these complexes in the solid state (Gasque, Medina et al., 1999), finding a very good correlation between them and the pKa values of the substituted phenanthrolines. It has been previously accepted (Drago & Joerg, 1996), that the π-acceptor ability of a ligand increases as its σ basicity, or pKa, decreases.
Furthermore, for these spectroscopic studies to be valid, isostructurality of all the complexes must be proven. With this objective, we have crystallized and determined the structure of a series of Cu(x-phen)(O—O) complexes (Solans et al., 1987; Gasque, Moreno-Esparza, Mollins et al., 1999; Gasque, Moreno-Esparza, Ruiz-Ramirez & Medina-Dickinson, 1999a,b), where x-phen is a substituted phenanthroline and O—O is malonate or salicylaldehydate. In this paper, the O—O ligand is an α-hydroxyacid anion. Since we have also performed a systematic study of the IR spectra of metal glycolates (Medina et al., 2000a), comparison of the Cu—O frequencies for the title complex, (I), shows that they are indeed shifted to higher values, as expected. \sch
The glycolate anion is known to form both monomeric and polymeric complexes. The Mn and Zn complexes are six-coordinate pseudooctahedral discrete molecules having the formula cis-MG2(H2O)2 (G = glycolato, M = Mn, Zn), (Fischinger & Webb, 1969; Lis, 1980) while the Cu and Co complexes constitute a bidimensional sheet-coordination polymer in which each metal atom is octahedrally coordinated to glycolato ligands in a trans configuration and carbonyl oxygen atoms from adjacent units complete the coordination octahedra (Prout et al., 1968; Medina et al., 2000b).
In (I), each CuII atom is in the center of a distorted octehedron, defined by the α-OH and the carboxy O atoms from the glycolato ligand, both N atoms from the phenanthroline ligand and two trans oxygen atoms, one from a water molecule and the other from the nitrate moiety. The plane defined by the four donor atoms from the two chelating ligands has a r.m.s. deviation of 0.0573 Å [distances: N1 0.0549 (9), N12 − 0.0588 (10), O17 0.0597 (10) and O21 − 0.0558 (9) Å]. Atom Cu1 is 0.1593 Å above the least-squares plane. Indicative of a typical Jahn-Teller distortion, distances from the copper atom to the two axial oxygen atoms are elongated and very different from each other. While O22(W) is 2.2681 (18) Å from the metal center, O26(NO3) is 2.932 (3) Å fro Cu1, with a O—Cu—O angle of 170.12 (16)°.
The free rotation of the coordinated water molecule is hindered by a rather strong hydrogen bond to the free carbonyl group of a neighbouring cation, with a H22A···O19i separation of 1.997 Å and a O22—H22A···O19i angle of 172.24° (i = −x, −y, −z + 1). Additional hydrogen bonding stabilizes the overall packing, as shown in Figure 2, involving the three O atoms of the nitrate ions, the OH group of the glycolate, O21, and the water molecule O22. Separations range from 1.995 to 2.329 Å (Table 2).