The X-ray structure of 1,2,4,5-tetrahydroxybenzene (benzene-1,2,4,5-tetrol) monohydrate, C6H6O4·H2O, (I), reveals columns of 1,2,4,5-tetrahydroxybenzene parallel to the b axis that are separated by 3.364 (12) and 3.453 (11) Å. Molecules in adjacent columns are tilted relative to each other by 27.78 (8)°. Water molecules fill the channels between the columns and are involved in hydrogen-bonding interactions with the 1,2,4,5-tetrahydroxybenzene molecules. The crystal structure of the adduct 1,2,4,5-tetrahydroxybenzene-2,5-dihydroxy-1,4-benzoquinone (1/1), C6H6O4·C6H4O4, (II), reveals alternating molecules of 1,2,4,5-tetrahydroxybenzene and 2,5-dihydroxy-1,4-benzoquinone (both lying on inversion centers), and a zigzag hydrogen-bonded network connecting molecules in three dimensions. For compound (II), the conventional X-ray determination, (IIa), is in very good agreement with the synchrotron X-ray determination, (IIb). When differences in data collection temperatures are taken into account, even the displacement parameters are in very good agreement.
Supporting information
CCDC references: 166984; 166985; 166986
Crystals of compound (I) were prepared by the literature method of Anslow &
Raistrick (1939) (m.p. 490–491 K). Compound (II) was prepared by allowing a
small quantity of (I) to stand in D2O. After 1 month, shiny dark crystals of
(II) formed (m.p. >673 K). Melting points were measured on a Mel-Temp melting
point apparatus (Laboratory Instruments, Holliston, Massachusetts).
For compound (IIb), an R-axis IV image plate detector was used in the
BMB-5 beamline hutch of the DuPont-Northwestern-Dow Collaborative Access Team
(DND-CAT) at the APS. The crystal-to-detector distance was 165.0 (1) mm, and
the beam size was 2 mm by 2 mm. Each frame covered 6° in ϕ for 2 min. Data
were collected in one group of 20 frames starting at a ϕ setting of 0°. Raw
data were corrected for angular variation of the phosphor response of the
image plate with a local program, following the method of Zaleski et
al. (1998). For all compounds, H atoms were treated as riding, with O—H
0.83–0.84 Å and C—H 0.94–0.95 Å Query. The crystals were attached to
glass fibers with a minimum of silicone cement.
Data collection: SMART (Bruker, 1998) for (I); CAD-4 Software (Enraf-Nonius, 1993) for (IIa); HKL (Otwinowski & Minor, 1997) for (IIb). Cell refinement: SMART (Bruker, 1998) for (I); DIRAX (Duisenberg, 1992) for (IIa); HKL for (IIb). Data reduction: SAINT-Plus (Bruker, 1998) for (I); local programs for (IIa); HKL for (IIb). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a); molecular graphics: SHELXTL/PC (Sheldrick, 1997b); software used to prepare material for publication: SHELXTL/PC.
(I) 1,2,4,5-Tetrahydroxybenzene monohydrate
top
Crystal data top
C6H6O4·H2O | Dx = 1.639 Mg m−3 |
Mr = 160.12 | Melting point = 490–491 K |
Monoclinic, P2/n | Mo Kα radiation, λ = 0.71073 Å |
a = 13.487 (3) Å | Cell parameters from 623 reflections |
b = 3.647 (1) Å | θ = 1.9–28.3° |
c = 13.506 (3) Å | µ = 0.15 mm−1 |
β = 102.33 (3)° | T = 203 K |
V = 649.1 (2) Å3 | Rectangular prism, pale pink |
Z = 4 | 0.5 × 0.2 × 0.2 mm |
F(000) = 336 | |
Data collection top
Bruker Smart1000 CCD diffractometer | 1270 reflections with I > 2σ(I) |
Radiation source: standard-focus sealed tube | Rint = 0.022 |
Graphite monochromator | θmax = 28.3°, θmin = 1.9° |
ω scans | h = −17→13 |
3708 measured reflections | k = −4→4 |
1578 independent reflections | l = −11→18 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.045 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 1.22 | w = 1/[σ2(Fo2) + (0.036P)2 + 1.0778P] where P = (Fo2 + 2Fc2)/3 |
1578 reflections | (Δ/σ)max < 0.001 |
116 parameters | Δρmax = 0.39 e Å−3 |
0 restraints | Δρmin = −0.26 e Å−3 |
Crystal data top
C6H6O4·H2O | V = 649.1 (2) Å3 |
Mr = 160.12 | Z = 4 |
Monoclinic, P2/n | Mo Kα radiation |
a = 13.487 (3) Å | µ = 0.15 mm−1 |
b = 3.647 (1) Å | T = 203 K |
c = 13.506 (3) Å | 0.5 × 0.2 × 0.2 mm |
β = 102.33 (3)° | |
Data collection top
Bruker Smart1000 CCD diffractometer | 1270 reflections with I > 2σ(I) |
3708 measured reflections | Rint = 0.022 |
1578 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.045 | 0 restraints |
wR(F2) = 0.149 | H-atom parameters constrained |
S = 1.22 | Δρmax = 0.39 e Å−3 |
1578 reflections | Δρmin = −0.26 e Å−3 |
116 parameters | |
Special details top
Experimental. For compound (I) the crystal-to-detector distance was 5.023 cm. Each frame
covered -0.3° in ω for 20 s. Data were collected in groups of 606, 435, and
230 frames at ϕ settings of 0°, 90°, and 180°, respectively. For compound
(IIa) data were collected at a scan rate of 4° to 8°/minute. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.20737 (11) | 0.4354 (5) | 0.57575 (12) | 0.0246 (4) | |
H1 | 0.2390 | 0.4655 | 0.5300 | 0.033 (8)* | |
O2 | 0.07215 (12) | 0.2709 (5) | 0.69800 (12) | 0.0258 (4) | |
H2 | 0.1271 | 0.1621 | 0.7036 | 0.069 (13)* | |
O3 | −0.07741 (11) | 1.1076 (5) | 0.79534 (11) | 0.0230 (4) | |
H3A | −0.0308 | 1.1273 | 0.7643 | 0.042 (9)* | |
O4 | 0.19309 (11) | 0.7111 (5) | 1.06635 (12) | 0.0225 (4) | |
H4 | 0.1986 | 0.6191 | 1.1235 | 0.044 (10)* | |
O5 | 1/4 | 0.3507 (7) | 1/4 | 0.0243 (5) | |
H5A | 0.298 (2) | 0.221 (11) | 0.250 (3) | 0.051 (11)* | |
O6 | 1/4 | 0.8880 (8) | 3/4 | 0.0261 (5) | |
H6A | 0.251 (4) | 0.738 (16) | 0.692 (3) | 0.102 (18)* | |
C1 | 0.10420 (16) | 0.4680 (6) | 0.53592 (16) | 0.0190 (5) | |
C2 | 0.03826 (16) | 0.3815 (6) | 0.59895 (16) | 0.0188 (5) | |
C3 | −0.06586 (16) | 0.4139 (6) | 0.56214 (16) | 0.0199 (5) | |
H3B | −0.1107 | 0.3549 | 0.6043 | 0.019 (6)* | |
C4 | −0.03683 (16) | 1.0535 (6) | 0.89710 (16) | 0.0176 (4) | |
C5 | 0.05936 (16) | 0.9069 (6) | 0.93179 (16) | 0.0186 (5) | |
H5B | 0.0993 | 0.8431 | 0.8853 | 0.019 (6)* | |
C6 | 0.09686 (15) | 0.8541 (6) | 1.03462 (16) | 0.0180 (5) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0151 (7) | 0.0399 (10) | 0.0192 (8) | −0.0018 (7) | 0.0047 (6) | 0.0044 (7) |
O2 | 0.0193 (8) | 0.0400 (10) | 0.0187 (8) | 0.0036 (7) | 0.0055 (6) | 0.0094 (7) |
O3 | 0.0171 (7) | 0.0380 (10) | 0.0144 (8) | 0.0021 (7) | 0.0048 (6) | 0.0043 (7) |
O4 | 0.0162 (7) | 0.0336 (9) | 0.0185 (8) | 0.0060 (7) | 0.0056 (6) | 0.0038 (7) |
O5 | 0.0187 (11) | 0.0305 (13) | 0.0232 (12) | 0 | 0.0031 (9) | 0 |
O6 | 0.0215 (11) | 0.0355 (14) | 0.0210 (12) | 0 | 0.0037 (9) | 0 |
C1 | 0.0150 (9) | 0.0230 (11) | 0.0194 (10) | −0.0008 (8) | 0.0045 (8) | 0.0008 (9) |
C2 | 0.0189 (10) | 0.0216 (11) | 0.0158 (10) | −0.0011 (8) | 0.0036 (8) | 0.0016 (8) |
C3 | 0.0179 (10) | 0.0255 (12) | 0.0178 (11) | −0.0017 (9) | 0.0074 (8) | 0.0030 (9) |
C4 | 0.0170 (10) | 0.0218 (11) | 0.0144 (9) | −0.0012 (8) | 0.0045 (8) | 0.0012 (8) |
C5 | 0.0166 (10) | 0.0229 (11) | 0.0182 (10) | 0.0007 (8) | 0.0082 (8) | −0.0004 (8) |
C6 | 0.0144 (9) | 0.0195 (10) | 0.0202 (11) | 0.0002 (8) | 0.0042 (8) | 0.0012 (8) |
Geometric parameters (Å, º) top
O1—C1 | 1.386 (2) | O6—H6Aii | 0.95 (5) |
O1—H1 | 0.8300 | C1—C3iii | 1.384 (3) |
O2—C2 | 1.378 (3) | C1—C2 | 1.392 (3) |
O2—H2 | 0.8300 | C2—C3 | 1.391 (3) |
O3—C4 | 1.381 (3) | C3—C1iii | 1.384 (3) |
O3—H3A | 0.8300 | C3—H3B | 0.9400 |
O4—C6 | 1.379 (3) | C4—C5 | 1.389 (3) |
O4—H4 | 0.8300 | C4—C6iv | 1.392 (3) |
O5—H5Ai | 0.80 (4) | C5—C6 | 1.386 (3) |
O5—H5A | 0.80 (4) | C5—H5B | 0.9400 |
O6—H6A | 0.95 (5) | C6—C4iv | 1.392 (3) |
| | | |
C1—O1—H1 | 109.5 | C1iii—C3—C2 | 120.7 (2) |
C2—O2—H2 | 109.5 | C1iii—C3—H3B | 119.6 |
C4—O3—H3A | 109.5 | C2—C3—H3B | 119.6 |
C6—O4—H4 | 109.5 | O3—C4—C5 | 122.27 (19) |
H5Ai—O5—H5A | 107 (6) | O3—C4—C6iv | 117.50 (19) |
H6A—O6—H6Aii | 110 (7) | C5—C4—C6iv | 120.2 (2) |
C3iii—C1—O1 | 122.50 (19) | C6—C5—C4 | 120.41 (19) |
C3iii—C1—C2 | 119.9 (2) | C6—C5—H5B | 119.8 |
O1—C1—C2 | 117.57 (19) | C4—C5—H5B | 119.8 |
O2—C2—C3 | 118.15 (19) | O4—C6—C5 | 118.79 (19) |
O2—C2—C1 | 122.5 (2) | O4—C6—C4iv | 121.84 (19) |
C3—C2—C1 | 119.4 (2) | C5—C6—C4iv | 119.4 (2) |
Symmetry codes: (i) −x+1/2, y, −z+1/2; (ii) −x+1/2, y, −z+3/2; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+2. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4ii | 0.83 | 1.96 | 2.756 (2) | 160 |
O2—H2···O6v | 0.83 | 1.92 | 2.735 (2) | 166 |
O3—H3A···O2vi | 0.83 | 1.88 | 2.699 (2) | 169 |
O4—H4···O5vii | 0.83 | 1.96 | 2.767 (2) | 163 |
O5—H5A···O3viii | 0.77 (3) | 2.07 (3) | 2.826 (2) | 165 (3) |
O6—H6A···O1 | 0.95 (5) | 1.91 (5) | 2.832 (2) | 162 (3) |
Symmetry codes: (ii) −x+1/2, y, −z+3/2; (v) x, y−1, z; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x+1/2, −y+1, z−1/2. |
(IIa) 1,2,4,5-Tetrahydroxybenzene-2,5-Dihydroxy-1,4-benzoquinone (1/1)
top
Crystal data top
C6H6O4·C6H4O4 | Dx = 1.784 Mg m−3 |
Mr = 282.20 | Melting point > 673 K |
Monoclinic, P21/n | Cu Kα radiation, λ = 1.54178 Å |
a = 7.387 (3) Å | Cell parameters from 25 reflections |
b = 6.060 (1) Å | θ = 30.8–38.9° |
c = 12.198 (2) Å | µ = 1.34 mm−1 |
β = 105.78 (2)° | T = 163 K |
V = 525.4 (3) Å3 | Rectangular prism, black |
Z = 2 | 0.43 × 0.15 × 0.05 mm |
F(000) = 292 | |
Data collection top
Enraf-Nonius CAD-4 diffractometer | 753 reflections with I > 2σ(I) |
Radiation source: standard-focus sealed tube | Rint = 0.021 |
Graphite monochromator | θmax = 63.0°, θmin = 6.3° |
ω/2θ scans | h = −8→8 |
Absorption correction: analytical face-indexed (de Meulenaer & Tompa, 1965) | k = −6→6 |
Tmin = 0.877, Tmax = 0.938 | l = −14→14 |
3379 measured reflections | 6 standard reflections every 100 reflections |
842 independent reflections | intensity decay: <2% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.035 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.14 | w = 1/[σ2(Fo2) + (0.0694P)2 + 0.1389P] where P = (Fo2 + 2Fc2)/3 |
842 reflections | (Δ/σ)max < 0.001 |
94 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.25 e Å−3 |
Crystal data top
C6H6O4·C6H4O4 | V = 525.4 (3) Å3 |
Mr = 282.20 | Z = 2 |
Monoclinic, P21/n | Cu Kα radiation |
a = 7.387 (3) Å | µ = 1.34 mm−1 |
b = 6.060 (1) Å | T = 163 K |
c = 12.198 (2) Å | 0.43 × 0.15 × 0.05 mm |
β = 105.78 (2)° | |
Data collection top
Enraf-Nonius CAD-4 diffractometer | 753 reflections with I > 2σ(I) |
Absorption correction: analytical face-indexed (de Meulenaer & Tompa, 1965) | Rint = 0.021 |
Tmin = 0.877, Tmax = 0.938 | 6 standard reflections every 100 reflections |
3379 measured reflections | intensity decay: <2% |
842 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.035 | 0 restraints |
wR(F2) = 0.114 | H-atom parameters constrained |
S = 1.14 | Δρmax = 0.19 e Å−3 |
842 reflections | Δρmin = −0.25 e Å−3 |
94 parameters | |
Special details top
Experimental. For compound (I) the crystal-to-detector distance was 5.023 cm. Each frame
covered -0.3° in ω for 20 s. Data were collected in groups of 606, 435, and
230 frames at ϕ settings of 0°, 90°, and 180°, respectively. For compound
(IIa) data were collected at a scan rate of 4° to 8°/minute. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.98007 (14) | 0.55646 (16) | −0.22730 (7) | 0.0146 (4) | |
H1 | 0.9384 | 0.4434 | −0.2657 | 0.017* | |
O2 | 0.82695 (13) | 0.15885 (16) | 0.08177 (7) | 0.0131 (4) | |
H3 | 0.7812 | 0.0663 | 0.0305 | 0.016* | |
O3 | 0.99530 (13) | −0.06305 (16) | 0.27657 (7) | 0.0140 (4) | |
H5 | 0.9471 | 0.0412 | 0.2329 | 0.017* | |
O4 | 1.16048 (13) | −0.34700 (15) | 0.43160 (7) | 0.0133 (4) | |
C1 | 0.98734 (18) | 0.5200 (2) | −0.11557 (11) | 0.0106 (4) | |
C2 | 0.90043 (19) | 0.3446 (2) | −0.07742 (11) | 0.0114 (4) | |
H2 | 0.8324 | 0.2384 | −0.1299 | 0.014* | |
C3 | 0.91311 (18) | 0.3248 (2) | 0.03786 (11) | 0.0112 (4) | |
C4 | 0.90720 (19) | 0.1594 (2) | 0.41533 (11) | 0.0116 (4) | |
H4 | 0.8454 | 0.2656 | 0.3606 | 0.014* | |
C5 | 0.98966 (18) | −0.0161 (2) | 0.38227 (11) | 0.0111 (4) | |
C6 | 1.08814 (18) | −0.1877 (2) | 0.46676 (11) | 0.0114 (4) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0228 (6) | 0.0131 (6) | 0.0076 (6) | −0.0044 (4) | 0.0037 (4) | −0.0018 (4) |
O2 | 0.0179 (6) | 0.0105 (6) | 0.0107 (5) | −0.0049 (4) | 0.0038 (4) | −0.0010 (4) |
O3 | 0.0209 (6) | 0.0131 (6) | 0.0078 (6) | 0.0041 (4) | 0.0036 (4) | 0.0013 (4) |
O4 | 0.0161 (6) | 0.0111 (6) | 0.0127 (6) | 0.0029 (4) | 0.0040 (4) | −0.0010 (4) |
C1 | 0.0116 (7) | 0.0107 (7) | 0.0095 (7) | 0.0026 (5) | 0.0030 (5) | 0.0004 (5) |
C2 | 0.0105 (7) | 0.0116 (8) | 0.0112 (7) | 0.0002 (5) | 0.0013 (5) | −0.0026 (5) |
C3 | 0.0099 (7) | 0.0093 (8) | 0.0146 (7) | 0.0013 (5) | 0.0035 (6) | 0.0013 (5) |
C4 | 0.0109 (7) | 0.0114 (8) | 0.0115 (7) | 0.0001 (5) | 0.0011 (5) | 0.0027 (5) |
C5 | 0.0113 (7) | 0.0116 (7) | 0.0100 (7) | −0.0028 (5) | 0.0024 (5) | −0.0001 (5) |
C6 | 0.0088 (7) | 0.0104 (8) | 0.0148 (8) | −0.0027 (5) | 0.0029 (6) | −0.0008 (5) |
Geometric parameters (Å, º) top
O1—C1 | 1.3671 (16) | C2—C3 | 1.3887 (19) |
O1—H1 | 0.8400 | C2—H2 | 0.9500 |
O2—C3 | 1.3742 (17) | C3—C1i | 1.394 (2) |
O2—H3 | 0.8400 | C4—C5 | 1.341 (2) |
O3—C5 | 1.3320 (16) | C4—C6ii | 1.4395 (19) |
O3—H5 | 0.8400 | C4—H4 | 0.9500 |
O4—C6 | 1.2355 (17) | C5—C6 | 1.505 (2) |
C1—C2 | 1.386 (2) | C6—C4ii | 1.4395 (19) |
C1—C3i | 1.394 (2) | | |
| | | |
C1—O1—H1 | 109.5 | C2—C3—C1i | 120.52 (12) |
C3—O2—H3 | 109.5 | C5—C4—C6ii | 120.36 (12) |
C5—O3—H5 | 109.5 | C5—C4—H4 | 119.8 |
O1—C1—C2 | 124.22 (12) | C6ii—C4—H4 | 119.8 |
O1—C1—C3i | 116.06 (12) | O3—C5—C4 | 126.65 (13) |
C2—C1—C3i | 119.71 (13) | O3—C5—C6 | 112.26 (12) |
C1—C2—C3 | 119.77 (12) | C4—C5—C6 | 121.10 (13) |
C1—C2—H2 | 120.1 | O4—C6—C4ii | 123.02 (12) |
C3—C2—H2 | 120.1 | O4—C6—C5 | 118.44 (12) |
O2—C3—C2 | 123.18 (12) | C4ii—C6—C5 | 118.54 (12) |
O2—C3—C1i | 116.29 (12) | | |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4iii | 0.84 | 2.04 | 2.737 (1) | 140 |
O2—H3···O4iv | 0.84 | 1.85 | 2.686 (2) | 172 |
O3—H5···O2 | 0.84 | 1.95 | 2.719 (1) | 152 |
Symmetry codes: (iii) −x+2, −y, −z; (iv) x−1/2, −y−1/2, z−1/2. |
(IIb) 1,2,4,5-Tetrahydroxybenzene-2,5-Dihydroxy-1,4-benzoquinone (1/1)
top
Crystal data top
C6H6O4·C6H4O4 | Dx = 1.783 Mg m−3 |
Mr = 282.20 | Melting point > 673 K |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.35400 Å |
a = 7.382 (1) Å | Cell parameters from 4909 reflections |
b = 6.065 (1) Å | θ = 2.6–25.9° |
c = 12.197 (1) Å | µ = 0.09 mm−1 |
β = 105.778 (1)° | T = 110 K |
V = 525.51 (12) Å3 | Rectangular prism, black |
Z = 2 | 1.12 × 0.33 × 0.20 mm |
F(000) = 292 | |
Data collection top
R-axis IV image plate diffractometer | 4908 reflections with I > 2σ(I) |
Radiation source: white-beam | Rint = 0.032 |
Silicon crystal monochromator | θmax = 25.9°, θmin = 2.6° |
ϕ scans | h = −14→16 |
13465 measured reflections | k = −12→12 |
5678 independent reflections | l = −25→23 |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.0738P)2 + 0.021P] where P = (Fo2 + 2Fc2)/3 |
5678 reflections | (Δ/σ)max = 0.001 |
94 parameters | Δρmax = 0.58 e Å−3 |
0 restraints | Δρmin = −0.48 e Å−3 |
Crystal data top
C6H6O4·C6H4O4 | V = 525.51 (12) Å3 |
Mr = 282.20 | Z = 2 |
Monoclinic, P21/n | Synchrotron radiation, λ = 0.35400 Å |
a = 7.382 (1) Å | µ = 0.09 mm−1 |
b = 6.065 (1) Å | T = 110 K |
c = 12.197 (1) Å | 1.12 × 0.33 × 0.20 mm |
β = 105.778 (1)° | |
Data collection top
R-axis IV image plate diffractometer | 4908 reflections with I > 2σ(I) |
13465 measured reflections | Rint = 0.032 |
5678 independent reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.031 | 0 restraints |
wR(F2) = 0.113 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.58 e Å−3 |
5678 reflections | Δρmin = −0.48 e Å−3 |
94 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.98001 (3) | 0.55561 (4) | −0.227606 (18) | 0.01002 (4) | |
H1 | 0.9364 | 0.4433 | −0.2660 | 0.012* | |
O2 | 0.82605 (3) | 0.15883 (3) | 0.081429 (18) | 0.00871 (4) | |
H3 | 0.7803 | 0.0668 | 0.0299 | 0.010* | |
O3 | 0.99517 (3) | −0.06236 (4) | 0.276231 (17) | 0.00943 (4) | |
H5 | 0.9432 | 0.0400 | 0.2325 | 0.011* | |
O4 | 1.16100 (3) | −0.34706 (3) | 0.431529 (19) | 0.00904 (4) | |
C1 | 0.98744 (3) | 0.51993 (4) | −0.11610 (2) | 0.00659 (4) | |
C2 | 0.89983 (3) | 0.34416 (4) | −0.07772 (2) | 0.00687 (4) | |
H2 | 0.8317 | 0.2380 | −0.1302 | 0.008* | |
C3 | 0.91252 (3) | 0.32451 (4) | 0.03811 (2) | 0.00647 (4) | |
C4 | 0.90645 (3) | 0.16006 (4) | 0.41520 (2) | 0.00727 (4) | |
H4 | 0.8443 | 0.2663 | 0.3606 | 0.009* | |
C5 | 0.98999 (3) | −0.01676 (4) | 0.38190 (2) | 0.00670 (4) | |
C6 | 1.08821 (3) | −0.18730 (4) | 0.46649 (2) | 0.00667 (4) | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.01595 (8) | 0.00875 (7) | 0.00538 (7) | −0.00306 (5) | 0.00295 (5) | −0.00055 (5) |
O2 | 0.01211 (7) | 0.00630 (7) | 0.00769 (7) | −0.00365 (4) | 0.00263 (5) | 0.00007 (5) |
O3 | 0.01430 (8) | 0.00847 (7) | 0.00566 (7) | 0.00250 (5) | 0.00292 (5) | 0.00026 (5) |
O4 | 0.01214 (7) | 0.00651 (7) | 0.00835 (7) | 0.00341 (4) | 0.00257 (5) | −0.00059 (5) |
C1 | 0.00846 (8) | 0.00568 (7) | 0.00551 (7) | −0.00122 (5) | 0.00172 (5) | −0.00042 (5) |
C2 | 0.00855 (8) | 0.00569 (8) | 0.00614 (8) | −0.00173 (5) | 0.00160 (5) | −0.00084 (5) |
C3 | 0.00780 (8) | 0.00514 (7) | 0.00639 (7) | −0.00132 (4) | 0.00179 (5) | −0.00024 (5) |
C4 | 0.00935 (8) | 0.00606 (8) | 0.00627 (7) | 0.00220 (5) | 0.00192 (5) | 0.00090 (5) |
C5 | 0.00854 (8) | 0.00576 (7) | 0.00570 (7) | 0.00117 (5) | 0.00176 (5) | 0.00032 (5) |
C6 | 0.00803 (8) | 0.00531 (7) | 0.00655 (8) | 0.00132 (5) | 0.00178 (5) | 0.00012 (5) |
Geometric parameters (Å, º) top
O1—C1 | 1.3635 (3) | C2—C3 | 1.3953 (4) |
O1—H1 | 0.8400 | C2—H2 | 0.9500 |
O2—C3 | 1.3710 (3) | C3—C1i | 1.3994 (4) |
O2—H3 | 0.8400 | C4—C5 | 1.3533 (4) |
O3—C5 | 1.3289 (3) | C4—C6ii | 1.4423 (4) |
O3—H5 | 0.8400 | C4—H4 | 0.9500 |
O4—C6 | 1.2386 (3) | C5—C6 | 1.5011 (4) |
C1—C2 | 1.3923 (4) | C6—C4ii | 1.4423 (4) |
C1—C3i | 1.3994 (4) | | |
| | | |
C1—O1—H1 | 109.5 | C2—C3—C1i | 120.55 (2) |
C3—O2—H3 | 109.5 | C5—C4—C6ii | 120.02 (2) |
C5—O3—H5 | 109.5 | C5—C4—H4 | 120.0 |
O1—C1—C2 | 124.09 (2) | C6ii—C4—H4 | 120.0 |
O1—C1—C3i | 116.21 (2) | O3—C5—C4 | 126.27 (2) |
C2—C1—C3i | 119.69 (2) | O3—C5—C6 | 112.78 (2) |
C1—C2—C3 | 119.76 (2) | C4—C5—C6 | 120.94 (2) |
C1—C2—H2 | 120.1 | O4—C6—C4ii | 122.52 (2) |
C3—C2—H2 | 120.1 | O4—C6—C5 | 118.44 (2) |
O2—C3—C2 | 122.87 (2) | C4ii—C6—C5 | 119.04 (2) |
O2—C3—C1i | 116.56 (2) | | |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y, −z+1. |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4iii | 0.84 | 2.04 | 2.7316 (4) | 140 |
O2—H3···O4iv | 0.84 | 1.85 | 2.6816 (4) | 171 |
O3—H5···O2 | 0.84 | 1.95 | 2.7186 (3) | 152 |
Symmetry codes: (iii) −x+2, −y, −z; (iv) x−1/2, −y−1/2, z−1/2. |
Experimental details
| (I) | (IIa) | (IIb) |
Crystal data |
Chemical formula | C6H6O4·H2O | C6H6O4·C6H4O4 | C6H6O4·C6H4O4 |
Mr | 160.12 | 282.20 | 282.20 |
Crystal system, space group | Monoclinic, P2/n | Monoclinic, P21/n | Monoclinic, P21/n |
Temperature (K) | 203 | 163 | 110 |
a, b, c (Å) | 13.487 (3), 3.647 (1), 13.506 (3) | 7.387 (3), 6.060 (1), 12.198 (2) | 7.382 (1), 6.065 (1), 12.197 (1) |
β (°) | 102.33 (3) | 105.78 (2) | 105.778 (1) |
V (Å3) | 649.1 (2) | 525.4 (3) | 525.51 (12) |
Z | 4 | 2 | 2 |
Radiation type | Mo Kα | Cu Kα | Synchrotron, λ = 0.35400 Å |
µ (mm−1) | 0.15 | 1.34 | 0.09 |
Crystal size (mm) | 0.5 × 0.2 × 0.2 | 0.43 × 0.15 × 0.05 | 1.12 × 0.33 × 0.20 |
|
Data collection |
Diffractometer | Bruker Smart1000 CCD diffractometer | Enraf-Nonius CAD-4 diffractometer | R-axis IV image plate diffractometer |
Absorption correction | – | Analytical face-indexed (de Meulenaer & Tompa, 1965) | – |
Tmin, Tmax | – | 0.877, 0.938 | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3708, 1578, 1270 | 3379, 842, 753 | 13465, 5678, 4908 |
Rint | 0.022 | 0.021 | 0.032 |
(sin θ/λ)max (Å−1) | 0.667 | 0.578 | 1.233 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.045, 0.149, 1.22 | 0.035, 0.114, 1.14 | 0.031, 0.113, 1.04 |
No. of reflections | 1578 | 842 | 5678 |
No. of parameters | 116 | 94 | 94 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.39, −0.26 | 0.19, −0.25 | 0.58, −0.48 |
Selected geometric parameters (Å, º) for (I) topO1—C1 | 1.386 (2) | C1—C3iii | 1.384 (3) |
O2—C2 | 1.378 (3) | C1—C2 | 1.392 (3) |
O3—C4 | 1.381 (3) | C2—C3 | 1.391 (3) |
O4—C6 | 1.379 (3) | C3—C1iii | 1.384 (3) |
O5—H5Ai | 0.80 (4) | C4—C5 | 1.389 (3) |
O5—H5A | 0.80 (4) | C4—C6iv | 1.392 (3) |
O6—H6A | 0.95 (5) | C5—C6 | 1.386 (3) |
O6—H6Aii | 0.95 (5) | C6—C4iv | 1.392 (3) |
| | | |
C3iii—C1—O1 | 122.50 (19) | O3—C4—C5 | 122.27 (19) |
C3iii—C1—C2 | 119.9 (2) | O3—C4—C6iv | 117.50 (19) |
O1—C1—C2 | 117.57 (19) | C5—C4—C6iv | 120.2 (2) |
O2—C2—C3 | 118.15 (19) | C6—C5—C4 | 120.41 (19) |
O2—C2—C1 | 122.5 (2) | O4—C6—C5 | 118.79 (19) |
C3—C2—C1 | 119.4 (2) | O4—C6—C4iv | 121.84 (19) |
C1iii—C3—C2 | 120.7 (2) | C5—C6—C4iv | 119.4 (2) |
Symmetry codes: (i) −x+1/2, y, −z+1/2; (ii) −x+1/2, y, −z+3/2; (iii) −x, −y+1, −z+1; (iv) −x, −y+2, −z+2. |
Hydrogen-bond geometry (Å, º) for (I) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4ii | 0.83 | 1.96 | 2.756 (2) | 160.4 |
O2—H2···O6v | 0.83 | 1.92 | 2.735 (2) | 165.8 |
O3—H3A···O2vi | 0.83 | 1.88 | 2.699 (2) | 168.8 |
O4—H4···O5vii | 0.83 | 1.96 | 2.767 (2) | 162.9 |
O5—H5A···O3viii | 0.77 (3) | 2.07 (3) | 2.826 (2) | 165 (3) |
O6—H6A···O1 | 0.95 (5) | 1.91 (5) | 2.832 (2) | 162 (3) |
Symmetry codes: (ii) −x+1/2, y, −z+3/2; (v) x, y−1, z; (vi) x, y+1, z; (vii) x, y, z+1; (viii) x+1/2, −y+1, z−1/2. |
Selected geometric parameters (Å, º) for (IIa) topO1—C1 | 1.3671 (16) | C2—C3 | 1.3887 (19) |
O2—C3 | 1.3742 (17) | C3—C1i | 1.394 (2) |
O3—C5 | 1.3320 (16) | C4—C5 | 1.341 (2) |
O4—C6 | 1.2355 (17) | C4—C6ii | 1.4395 (19) |
C1—C2 | 1.386 (2) | C5—C6 | 1.505 (2) |
C1—C3i | 1.394 (2) | C6—C4ii | 1.4395 (19) |
| | | |
O1—C1—C2 | 124.22 (12) | C5—C4—C6ii | 120.36 (12) |
O1—C1—C3i | 116.06 (12) | O3—C5—C4 | 126.65 (13) |
C2—C1—C3i | 119.71 (13) | O3—C5—C6 | 112.26 (12) |
C1—C2—C3 | 119.77 (12) | C4—C5—C6 | 121.10 (13) |
O2—C3—C2 | 123.18 (12) | O4—C6—C4ii | 123.02 (12) |
O2—C3—C1i | 116.29 (12) | O4—C6—C5 | 118.44 (12) |
C2—C3—C1i | 120.52 (12) | C4ii—C6—C5 | 118.54 (12) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y, −z+1. |
Hydrogen-bond geometry (Å, º) for (IIa) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4iii | 0.84 | 2.04 | 2.737 (1) | 139.9 |
O2—H3···O4iv | 0.84 | 1.85 | 2.686 (2) | 171.6 |
O3—H5···O2 | 0.84 | 1.95 | 2.719 (1) | 151.5 |
Symmetry codes: (iii) −x+2, −y, −z; (iv) x−1/2, −y−1/2, z−1/2. |
Selected geometric parameters (Å, º) for (IIb) topO1—C1 | 1.3635 (3) | C2—C3 | 1.3953 (4) |
O2—C3 | 1.3710 (3) | C3—C1i | 1.3994 (4) |
O3—C5 | 1.3289 (3) | C4—C5 | 1.3533 (4) |
O4—C6 | 1.2386 (3) | C4—C6ii | 1.4423 (4) |
C1—C2 | 1.3923 (4) | C5—C6 | 1.5011 (4) |
C1—C3i | 1.3994 (4) | C6—C4ii | 1.4423 (4) |
| | | |
O1—C1—C2 | 124.09 (2) | C5—C4—C6ii | 120.02 (2) |
O1—C1—C3i | 116.21 (2) | O3—C5—C4 | 126.27 (2) |
C2—C1—C3i | 119.69 (2) | O3—C5—C6 | 112.78 (2) |
C1—C2—C3 | 119.76 (2) | C4—C5—C6 | 120.94 (2) |
O2—C3—C2 | 122.87 (2) | O4—C6—C4ii | 122.52 (2) |
O2—C3—C1i | 116.56 (2) | O4—C6—C5 | 118.44 (2) |
C2—C3—C1i | 120.55 (2) | C4ii—C6—C5 | 119.04 (2) |
Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x+2, −y, −z+1. |
Hydrogen-bond geometry (Å, º) for (IIb) top
D—H···A | D—H | H···A | D···A | D—H···A |
O1—H1···O4iii | 0.84 | 2.04 | 2.7316 (4) | 139.9 |
O2—H3···O4iv | 0.84 | 1.85 | 2.6816 (4) | 171.4 |
O3—H5···O2 | 0.84 | 1.95 | 2.7186 (3) | 151.9 |
Symmetry codes: (iii) −x+2, −y, −z; (iv) x−1/2, −y−1/2, z−1/2. |
Derivatized porphyrins have found extensive use as models for the heme active sites of myoglobin and hemoglobin (Momenteau & Reed, 1994). Compound (I), 1,2,4,5-tetrahydroxybenzene monohydrate, was prepared as a precursor in the synthesis of elaborated porphyrins containing a benzene `cap' linked to the porphyrin by ethoxy linkages (Ma et al., 1993; Johnson et al., 1996; Slebodnick et al., 1996; Jene et al., 1999; Jene & Ibers, 2000). Compound (I) forms pale-pink crystals. The synthesis of (I) is sensitive to the initial reaction conditions and yields products that vary from these crystals to a gray-black amorphous material. All products work in the capped porphyrin synthesis. To understand these products better, we determined the structures of (I) and of the adduct 1,2,4,5-tetrahydroxybenzene-2,5-dihydroxy-1,4-benzoquinone (1/1), (II). Crystals of (II) are stable and of excellent quality. Consequently, a short wavelength (0.354 Å) data set was collected from a crystal of (II) on the Rigaku R-axis image-plate diffractometer at the Advanced Photon Source (APS). Refinement of this data set provides a check on the APS system and an interesting comparison with the results from a conventional structure determination. \sch
The asymmetric unit of compound (I) contains two half-molecules of 1,2,4,5-tetrahydroxybenzene that sit on inversion centers and two half-water molecules that sit on twofold axes (Fig. 1). Selected bond lengths and angles are listed in Table 1. The benzene rings are planar by symmetry. C≐C bond lengths in (I) reflect the fully delocalized nature of the benzene ring. The crystal structure is composed of columnar stacking and two-dimensional networks of hydrogen bonding (Fig. 2). Both unique molecules form separate columns parallel to the b axis. The first column is formed from atoms C1, C2, C3, O1, and O2 and their symmetry-generated counterparts; these are separated by 3.453 (11) Å. The second column is formed from atoms C4, C5, C6, O3, and O4 and their symmetry-generated counterparts; these are separated by 3.364 (12) Å. Molecules in different columns are tilted relative to each other by 27.78 (8)°. A ruffled two-dimensional network of hydrogen bonding exists perpendicular to the columns. Intermolecular and intramolecular hydrogen-bonding interactions are listed in Table 2. The two unique half-water molecules, containing atoms O5 and O6, fill neighboring channels of the column structure but are oriented in opposite directions. The O atoms O5 and O6 of the half-water molecules are involved in four hydrogen bonds to four molecules of 1,2,4,5-tetrahydroxybenzene in neighboring columns.
The synthesis (Jones & Shonle, 1945) and crystal structure (Semmingsen, 1977) of 2,5-dihydroxy-1,4-benzoquinone have been known for some time. In addition, dihydroxyquinones substituted at the 3,6-positions have been prepared with fluoro (Krogh Andersen & Krogh Andersen, 1975), chloro (Krogh Andersen, 1967a,b), bromo (Robl, 1987), iodo (Robl & Sheldrick, 1988), and additional hydroxy (Klug, 1965) substituents.
Molecules of 1,2,4,5-tetrahydroxybenzene and 2,5-dihydroxy-1,4-benzoquinone in compound (II) (Fig. 3) are both located on inversion centers, and the benzene and quinone portions of these molecules are planar by symmetry. These two molecules are related by pseudo symmetry if the positions of the H atoms are ignored. However, the positions of these H atoms refine well when constraints are released. The molecules are tilted relative to each other by 64.00 (5)°, as measured by their mean planes. The two kinds of molecules alternate to form two unique stacks parallel to the a axis and two unique stacks parallel to the b axis (Fig. 4). Metrical details are listed in Tables 3–6, and values for discussion are taken from Tables 5 and 6. The interplanar distances between molecules in the stacks are 2.895 (1) and 3.301 (1) Å along the a axis and 3.115 (1) and 3.304 (1) Å along the b axis. There is a three-dimensional zigzag hydrogen-bonded network in the structure.
The 2,5-dihydroxy-1,4-benzoquinone component of (II) shows pronounced quinoid character, with both short and long C—O bonds and three varied C≐C bond lengths (Tables 3 and 5). These values are similar to those reported earlier by Semmingsen (1977). The difference is an ~180° rotation of a hydroxyl group between the structures. The geometry of the 1,2,4,5-tetrahydroxybenzene component of (II) is very similar to that in (I). The exception is one hydroxyl group that is flipped by ~180° (Tables 3 and 5). This orientation precludes the possibility of intramolecular hydrogen-bonding interactions and underscores the importance of crystal-packing forces on the orientation of hydroxyl groups in compounds of this type.
For compound (II), the conventional X-ray determination, (IIa) (Tables 3 and 4), is in very good agreement with the synchrotron X-ray determination, (IIb) (Table 5 and 6). There are a few possibly significant differences, e.g. C2—C3 [1.389 (2) Å in (IIa) and 1.3953 (4) Å in (IIb)], but since (IIa) is a determination at 163 K and (IIb) at 110 K it is possible that these arise from differences in vibrational foreshortening of the bonds. In this regard, if a linear correction is applied for the differences in temperature (Debye, 1913; Dunitz et al., 1988), then generally the Uij values from the two determinations agree within about 10%. Since, in X-ray structure determinations, it is the Uij values that are most sensitive to a variety of systematic errors, we find this agreement very encouraging. The estimated standard deviations associated with derived quantities for (IIb) are roughly 20% of those for (IIa), in part because there are 5678 independent reflections in (IIb) and 842 in (IIa).
Crystals of (II) are dark and shiny, in sharp contrast to crystals of compound (I). The dark color probably arises from a charge-transfer interaction between molecules of 1,2,4,5-tetrahydroxybenzene acting as donors and molecules of 2,5-dihydroxy-1,4-benzoquinone acting as acceptors. Chowdhury (1961) has shown that charge-transfer interactions occur between quinones and aromatic hydrocarbons. Sakurai (1965) has proposed that the color of quinhydrone results from hydroquinone acting as the donor and quinone as the acceptor molecule. One feature of this interaction is abnormally short C···O interactions. Compound (IIb) has short C···O interactions that range from 3.097 (1)–3.241 (1) Å. The shortest of these is shorter than the 3.2 Å value reported by Sakurai (1965). It is also likely that the gray-black material often present in the synthesis of (I) is a mixture of (I) and (II), with (II) forming by partial air oxidation in solution.