Download citation
Download citation
link to html
The title compounds contain very short intramolecular hydrogen bonds of the type C—O—H...O—N. The O...O distances are 2.425 (2) Å in picolinic acid N-oxide (2-carboxy­pyridine N-oxide), C6H5NO3, (I), and 2.435 (2) Å in quinaldic acid N-oxide (2-carboxy­quinoline N-oxide), C10H7NO3, (II). In (II), this is associated with slight molecular distortion from planarity, while in (I), such an effect cannot be observed because the mol­ecule crystallizes on a mirror plane.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100001475/de1129sup1.cif
Contains datablocks a102_4, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001475/de1129Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100001475/de1129IIsup3.hkl
Contains datablock II

Comment top

There is a current revival of interest in the so-called very strong hydrogen bonds (Jeffrey, 1997). For the best studied of these hydrogen bonds, O—H···O, the majority of examples belong to a small number of chemical situations, i.e. the combination of acid and complementary base (O—H···O-), the combination of base and complementary acid (O···H—O+), and `resonance assisted hydrogen bonding' (Hibbert & Emsley, 1990; Gilli et al., 1994). It is characteristic for all these cases that proton transfer leads to a chemically identical situation (O—H···O- -O···H—O, etc.). Not all very strong hydrogen bonds, however, belong to one of these categories. An example are intramolecular hydrogen bonds in 2-carboxypyridine-N-oxide (picolinic acid N-oxide), (I), and many of its derivatives. Although donor and acceptor groups of (I) are chemically very different, intramolecular hydrogen bonds are very short. In 6-methyl-2-carboxypyridine-N-oxide, the intramolecular O···O distance was reported as 2.41 Å, and the H atom was found bonded to the acid group (Dideberg & Dupont, 1975). In the 6-carboxy derivative of (I), 2,6-dicarboxypyridine-N-oxide, which crystallizes with two symmetry-independent molecules, the four independent intramolecular hydrogen bonds have O···O separations in the range 2.45–2.48 Å, and H atoms are bonded at the acid groups (Rychlewska & Gdaniec, 1977). For (I), the crystal structure was reported only with relatively low accuracy, and an intramolecular O···O distance of about 2.39 Å (Laing & Nicholson, 1971). The H atom position in the hydrogen bond could not be located. Because the short C—O—H···O—N hydrogen bonds in (I) and derivatives of (I) are chemically unusual, and to investigate the hydrogen-bond geometry with high reliability, we have determined the low-temperature crystal structure of quinaldic acid N-oxide (II), and repeated the crystal structure determination of (I), also at low temperature. In parallel, Hadzi and coworkers have performed extensive IR-spectroscopic and computational investigations of (I), (II), and related molecules (Stare et al., 2000). In particular, hydrogen-bond energies are calculated around -15 kcal/mol (in vacuo). \sch

The molecular structures of (I) and (II) are shown in Figure 1. In both molecules, very short intramolecular hydrogen bonds are formed, with O···O distances of 2.425 (2) in (I) and 2.435 (2) Å in (II). The relevant H atoms are much closer to the acid than to the N-oxide O atoms, so that the hydrogen bonds are of the type C—O—H···O—N (geometries in Tables 1 and 2). In the carboxyl group, the C=O and C—O bonds are clearly distinct [C=O = 1.208 (2) in (I) and 1.214 (2) Å in (II); C—O = 1.309 (2) in (I) and 1.305 (2) Å in (II)]. Because of stereochemical restriction of the C—O—H angle, the hydrogen bonds are relatively non-linear with O—H···O angles around 160°. The N—O distances are 1.342 (2) and 1.333 (2) Å in (I) and (II), respectively, which is slightly but significantly elongated compared to the average value of 1.304 Å in pyridine N-oxides (Allen et al., 1992; σ of sample = 0.012 Å). Because (I) crystallizes on a mirror plane, the observed geometry is restricted to be perfectly planar. Compound (II) crystallizes on a general position, so that deviations from planarity can be observed. Actually, O1 and O2 are displaced from the pyridine least-squares plane in opposite directions by +0.092 (2) and -0.049 (3) Å, respectively, and the resulting torsion angle O1—N1···C11—O2 is 3.3 (1)°. This is only a small distortion from planarity.

The edges of molecules (I) and (II) are constituted exclusively with O atoms and C—H groups. Therefore, it must be expected that weak C—H···O hydrogen bonds are formed in the crystal structures (Steiner, 1997; Desiraju & Steiner, 1999). Actually, there are many such interactions (Tables 1 and 2), but the geometries are all unfavourable with strongly bent angles. C—H···O hydrogen bonding does not seem to be particularly important in these compounds.

Experimental top

Picolinic acid N-oxide, (I), was obtained from Sigma, and quinaldic acid N-oxide was synthesized as described by Stare et al. (2000). Both compounds were recrystallized from MeOH.

Refinement top

The area detector data are 98.3% and 98.9% complete to 2 θ = 55° for (I) and (II), respectively. The H-atoms were located in difference Fourier calculations and refined isotropically. All H-atom displacement parameters refined to realistic values [H-atoms bonded to C: 0.031–0.038 Å2 in (I) and 0.019–0.033 in (II); carboxylic acid H-atom: 0.072 (9) Å2 in (I) and 0.059 (8) in (II)].

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: COLLECT; data reduction: COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976) for (I); ORTEPII (Johnson, 1996) for (II). For both compounds, software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular structure of (I), top, and (II), bottom. Displacement ellipsoids are drawn at the 50% probability level.
(I) 2-carboxypyridine-N-oxide' top
Crystal data top
C6H5NO3F(000) = 144
Mr = 139.11Dx = 1.554 Mg m3
Monoclinic, P21/mMo Kα radiation, λ = 0.71073 Å
a = 6.8020 (11) ÅCell parameters from 28 reflections
b = 6.066 (2) Åθ = 4.7–18.7°
c = 7.8040 (13) ŵ = 0.13 mm1
β = 112.610 (11)°T = 125 K
V = 297.25 (12) Å3Block, colourless
Z = 20.40 × 0.25 × 0.25 mm
Data collection top
Nonius Kappa CCD
diffractometer
654 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 27.4°, θmin = 2.8°
ω scansh = 58
2264 measured reflectionsk = 77
741 independent reflectionsl = 910
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.096 w = 1/[σ2(Fo2) + (0.0453P)2 + 0.0912P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
741 reflectionsΔρmax = 0.36 e Å3
77 parametersΔρmin = 0.24 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.07 (3)
Crystal data top
C6H5NO3V = 297.25 (12) Å3
Mr = 139.11Z = 2
Monoclinic, P21/mMo Kα radiation
a = 6.8020 (11) ŵ = 0.13 mm1
b = 6.066 (2) ÅT = 125 K
c = 7.8040 (13) Å0.40 × 0.25 × 0.25 mm
β = 112.610 (11)°
Data collection top
Nonius Kappa CCD
diffractometer
654 reflections with I > 2σ(I)
2264 measured reflectionsRint = 0.023
741 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.12Δρmax = 0.36 e Å3
741 reflectionsΔρmin = 0.24 e Å3
77 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.57949 (17)0.25000.43581 (16)0.0254 (3)
O20.5744 (2)0.25000.74478 (16)0.0305 (4)
O30.2628 (2)0.25000.77797 (17)0.0388 (4)
N10.36573 (19)0.25000.36202 (16)0.0153 (3)
C20.2519 (2)0.25000.4725 (2)0.0168 (3)
C30.0326 (3)0.25000.3903 (2)0.0225 (4)
C40.0703 (3)0.25000.1985 (2)0.0251 (4)
C50.0506 (3)0.25000.0916 (2)0.0233 (4)
C60.2686 (3)0.25000.1748 (2)0.0205 (4)
C70.3661 (3)0.25000.6819 (2)0.0235 (4)
H20.611 (5)0.25000.627 (4)0.072 (9)*
H30.040 (3)0.25000.466 (3)0.031 (5)*
H40.220 (4)0.25000.142 (3)0.038 (6)*
H50.012 (4)0.25000.045 (3)0.037 (6)*
H60.365 (3)0.25000.110 (3)0.032 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0105 (6)0.0359 (7)0.0281 (6)0.0000.0054 (4)0.000
O20.0326 (7)0.0288 (7)0.0175 (6)0.0000.0044 (5)0.000
O30.0598 (10)0.0421 (8)0.0224 (6)0.0000.0246 (6)0.000
N10.0128 (6)0.0171 (6)0.0157 (6)0.0000.0051 (5)0.000
C20.0199 (7)0.0156 (7)0.0156 (7)0.0000.0076 (6)0.000
C30.0208 (8)0.0221 (8)0.0288 (8)0.0000.0140 (7)0.000
C40.0142 (7)0.0228 (8)0.0319 (9)0.0000.0016 (6)0.000
C50.0279 (9)0.0181 (7)0.0159 (7)0.0000.0002 (6)0.000
C60.0269 (8)0.0208 (8)0.0152 (7)0.0000.0096 (6)0.000
C70.0354 (9)0.0191 (7)0.0146 (7)0.0000.0080 (7)0.000
Geometric parameters (Å, º) top
O1—N11.3424 (16)C2—C71.516 (2)
O1—H21.42 (3)C3—C41.387 (2)
O2—C71.309 (2)C3—H30.91 (2)
O2—H21.04 (3)C4—C51.378 (2)
O3—C71.208 (2)C4—H40.94 (2)
N1—C61.3527 (19)C5—C61.371 (2)
N1—C21.3625 (19)C5—H50.99 (2)
C2—C31.379 (2)C6—H60.97 (2)
N1—O1—H298.6 (12)C5—C4—H4120.6 (13)
C7—O2—H2105.0 (16)C3—C4—H4120.6 (13)
O1—N1—C6117.53 (12)C6—C5—C4120.14 (14)
O1—N1—C2120.93 (12)C6—C5—H5116.8 (13)
C6—N1—C2121.54 (13)C4—C5—H5123.1 (13)
N1—C2—C3118.82 (14)N1—C6—C5120.09 (14)
N1—C2—C7120.12 (14)N1—C6—H6114.4 (13)
C3—C2—C7121.06 (14)C5—C6—H6125.5 (13)
C2—C3—C4120.59 (15)O3—C7—O2124.81 (15)
C2—C3—H3117.4 (13)O3—C7—C2119.33 (16)
C4—C3—H3122.0 (13)O2—C7—C2115.86 (14)
C5—C4—C3118.81 (15)
O1—N1—C2—C3180.0O1—N1—C6—C5180.0
C6—N1—C2—C30.0C2—N1—C6—C50.0
O1—N1—C2—C70.0C4—C5—C6—N10.0
C6—N1—C2—C7180.0N1—C2—C7—O3180.0
N1—C2—C3—C40.0C3—C2—C7—O30.0
C7—C2—C3—C4180.0N1—C2—C7—O20.0
C2—C3—C4—C50.0C3—C2—C7—O2180.0
C3—C4—C5—C60.0
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11.04 (3)1.42 (3)2.425 (2)159 (3)
C3—H3···O1i0.91 (2)2.51 (2)3.235 (2)138 (2)
C4—H4···O2ii0.94 (2)2.87 (2)3.435 (2)120 (2)
C5—H5···O2ii0.99 (2)2.66 (2)3.328 (2)126 (2)
C5—H5···O3iii0.99 (2)2.72 (2)3.285 (2)117 (2)
C6—H6···O3iii0.97 (2)2.41 (2)3.082 (2)126 (2)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1; (iii) x, y, z1.
(II) 2-carboxyquinoline-N-oxide top
Crystal data top
C10H7NO3F(000) = 392
Mr = 189.17Dx = 1.550 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 3.821 (3) ÅCell parameters from 26 reflections
b = 16.2406 (10) Åθ = 3.3–18.4°
c = 13.062 (3) ŵ = 0.12 mm1
β = 91.01 (1)°T = 125 K
V = 810.5 (7) Å3Needle, yellow
Z = 40.5 × 0.1 × 0.1 mm
Data collection top
Nonius kappa CCD
diffractometer
1449 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 27.5°, θmin = 2.0°
ω–scansh = 44
8148 measured reflectionsk = 2119
1829 independent reflectionsl = 1516
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115 w = 1/[σ2(Fo2) + (0.0351P)2 + 0.5447P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
1829 reflectionsΔρmax = 0.30 e Å3
156 parametersΔρmin = 0.21 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.008 (4)
Crystal data top
C10H7NO3V = 810.5 (7) Å3
Mr = 189.17Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.821 (3) ŵ = 0.12 mm1
b = 16.2406 (10) ÅT = 125 K
c = 13.062 (3) Å0.5 × 0.1 × 0.1 mm
β = 91.01 (1)°
Data collection top
Nonius kappa CCD
diffractometer
1449 reflections with I > 2σ(I)
8148 measured reflectionsRint = 0.083
1829 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.30 e Å3
1829 reflectionsΔρmin = 0.21 e Å3
156 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.1911 (3)0.59674 (8)0.01160 (9)0.0233 (3)
O20.1087 (3)0.71560 (8)0.06214 (9)0.0262 (3)
H20.030 (7)0.6661 (18)0.0461 (19)0.059 (8)*
O30.3819 (4)0.80210 (8)0.04224 (10)0.0322 (4)
N10.0758 (3)0.61709 (8)0.10397 (10)0.0160 (3)
C20.1093 (4)0.68663 (10)0.11830 (12)0.0168 (4)
C30.2132 (4)0.70880 (10)0.21682 (13)0.0182 (4)
H30.348 (5)0.7586 (13)0.2224 (15)0.027 (5)*
C40.1263 (4)0.66081 (10)0.29952 (13)0.0187 (4)
H40.193 (5)0.6760 (12)0.3695 (15)0.025 (5)*
C50.0599 (4)0.58659 (10)0.28427 (12)0.0173 (4)
C60.1561 (4)0.56377 (10)0.18441 (12)0.0160 (3)
C70.3294 (4)0.48881 (10)0.16478 (14)0.0206 (4)
H70.385 (5)0.4746 (13)0.0945 (16)0.027 (5)*
C80.4025 (4)0.43789 (11)0.24559 (15)0.0256 (4)
H80.513 (5)0.3856 (15)0.2322 (16)0.038 (6)*
C90.3184 (4)0.45986 (11)0.34693 (14)0.0254 (4)
H90.375 (5)0.4235 (13)0.4030 (16)0.033 (5)*
C100.1524 (4)0.53244 (11)0.36586 (14)0.0225 (4)
H100.100 (5)0.5497 (12)0.4338 (14)0.019 (5)*
C110.2104 (4)0.74042 (11)0.02758 (13)0.0214 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0278 (6)0.0267 (7)0.0158 (6)0.0025 (5)0.0062 (5)0.0024 (5)
O20.0306 (7)0.0271 (7)0.0208 (7)0.0010 (5)0.0000 (5)0.0066 (5)
O30.0406 (8)0.0225 (7)0.0333 (8)0.0096 (6)0.0058 (6)0.0039 (6)
N10.0157 (6)0.0160 (7)0.0164 (7)0.0024 (5)0.0024 (5)0.0020 (5)
C20.0142 (7)0.0149 (8)0.0212 (8)0.0029 (6)0.0008 (6)0.0010 (6)
C30.0157 (8)0.0155 (8)0.0235 (9)0.0022 (6)0.0006 (6)0.0042 (6)
C40.0164 (8)0.0204 (8)0.0193 (8)0.0034 (6)0.0017 (6)0.0047 (7)
C50.0130 (7)0.0181 (8)0.0206 (8)0.0046 (6)0.0000 (6)0.0008 (6)
C60.0127 (7)0.0155 (8)0.0196 (8)0.0031 (6)0.0000 (6)0.0013 (6)
C70.0164 (8)0.0184 (8)0.0271 (9)0.0011 (6)0.0009 (7)0.0029 (7)
C80.0193 (8)0.0165 (8)0.0409 (11)0.0011 (7)0.0009 (7)0.0037 (8)
C90.0210 (9)0.0249 (9)0.0304 (10)0.0031 (7)0.0036 (7)0.0113 (8)
C100.0207 (8)0.0250 (9)0.0217 (9)0.0050 (7)0.0002 (7)0.0046 (7)
C110.0204 (8)0.0195 (8)0.0242 (9)0.0043 (7)0.0035 (7)0.0038 (7)
Geometric parameters (Å, º) top
O1—N11.3332 (17)C4—C51.416 (2)
O2—C111.305 (2)C5—C61.411 (2)
O3—C111.214 (2)C5—C101.421 (2)
N1—C21.348 (2)C6—C71.411 (2)
N1—C61.392 (2)C7—C81.366 (3)
C2—C31.400 (2)C8—C91.413 (3)
C2—C111.517 (2)C9—C101.363 (3)
C3—C41.368 (2)
O1—N1—C2121.07 (13)N1—C6—C5118.49 (14)
O1—N1—C6117.20 (13)N1—C6—C7119.84 (14)
C2—N1—C6121.73 (13)C5—C6—C7121.68 (15)
N1—C2—C3120.07 (15)C8—C7—C6118.17 (16)
N1—C2—C11120.09 (14)C7—C8—C9121.60 (17)
C3—C2—C11119.83 (15)C10—C9—C8120.16 (16)
C4—C3—C2120.69 (15)C9—C10—C5120.60 (17)
C3—C4—C5119.31 (15)O3—C11—O2124.51 (16)
C6—C5—C4119.57 (15)O3—C11—C2118.87 (16)
C6—C5—C10117.73 (15)O2—C11—C2116.61 (15)
C4—C5—C10122.69 (15)
O1—N1—C2—C3176.90 (13)C10—C5—C6—N1178.33 (14)
C6—N1—C2—C32.8 (2)C4—C5—C6—C7177.39 (14)
O1—N1—C2—C114.0 (2)C10—C5—C6—C71.8 (2)
C6—N1—C2—C11176.26 (13)N1—C6—C7—C8179.73 (15)
N1—C2—C3—C40.5 (2)C5—C6—C7—C80.2 (2)
C11—C2—C3—C4179.61 (14)C6—C7—C8—C91.9 (2)
C2—C3—C4—C52.2 (2)C7—C8—C9—C101.7 (3)
C3—C4—C5—C60.7 (2)C8—C9—C10—C50.4 (3)
C3—C4—C5—C10178.46 (15)C6—C5—C10—C92.0 (2)
O1—N1—C6—C5175.45 (13)C4—C5—C10—C9177.10 (15)
C2—N1—C6—C54.3 (2)N1—C2—C11—O3178.86 (15)
O1—N1—C6—C74.7 (2)C3—C2—C11—O30.2 (2)
C2—N1—C6—C7175.58 (14)N1—C2—C11—O20.1 (2)
C4—C5—C6—N12.5 (2)C3—C2—C11—O2179.20 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.98 (3)1.48 (3)2.435 (2)161 (2)
C4—H4···O2i0.98 (2)2.54 (2)3.288 (2)132 (1)
C4—H4···O3ii0.98 (2)2.56 (2)3.344 (2)137 (1)
C7—H7···O1iii0.97 (2)2.44 (2)3.278 (2)144 (1)
C7—H7···O1iv0.97 (2)2.83 (2)3.322 (2)112 (1)
C9—H9···O3v0.96 (2)2.83 (2)3.395 (2)119 (1)
C10—H10···O3ii0.96 (2)2.79 (2)3.544 (2)136 (1)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC6H5NO3C10H7NO3
Mr139.11189.17
Crystal system, space groupMonoclinic, P21/mMonoclinic, P21/n
Temperature (K)125125
a, b, c (Å)6.8020 (11), 6.066 (2), 7.8040 (13)3.821 (3), 16.2406 (10), 13.062 (3)
β (°) 112.610 (11) 91.01 (1)
V3)297.25 (12)810.5 (7)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.130.12
Crystal size (mm)0.40 × 0.25 × 0.250.5 × 0.1 × 0.1
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Nonius kappa CCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
2264, 741, 654 8148, 1829, 1449
Rint0.0230.083
(sin θ/λ)max1)0.6480.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.096, 1.12 0.044, 0.115, 1.09
No. of reflections7411829
No. of parameters77156
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.240.30, 0.21

Computer programs: COLLECT (Nonius, 1998), COLLECT, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), ORTEPII (Johnson, 1996), SHELXL97.

Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O11.04 (3)1.42 (3)2.425 (2)159 (3)
C3—H3···O1i0.91 (2)2.51 (2)3.235 (2)138 (2)
C4—H4···O2ii0.94 (2)2.87 (2)3.435 (2)120 (2)
C5—H5···O2ii0.99 (2)2.66 (2)3.328 (2)126 (2)
C5—H5···O3iii0.99 (2)2.72 (2)3.285 (2)117 (2)
C6—H6···O3iii0.97 (2)2.41 (2)3.082 (2)126 (2)
Symmetry codes: (i) x1, y, z; (ii) x1, y, z1; (iii) x, y, z1.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O2—H2···O10.98 (3)1.48 (3)2.435 (2)161 (2)
C4—H4···O2i0.98 (2)2.54 (2)3.288 (2)132 (1)
C4—H4···O3ii0.98 (2)2.56 (2)3.344 (2)137 (1)
C7—H7···O1iii0.97 (2)2.44 (2)3.278 (2)144 (1)
C7—H7···O1iv0.97 (2)2.83 (2)3.322 (2)112 (1)
C9—H9···O3v0.96 (2)2.83 (2)3.395 (2)119 (1)
C10—H10···O3ii0.96 (2)2.79 (2)3.544 (2)136 (1)
Symmetry codes: (i) x1/2, y+3/2, z+1/2; (ii) x+1/2, y+3/2, z+1/2; (iii) x+1, y+1, z; (iv) x, y+1, z; (v) x1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds