
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103002567/de1204sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270103002567/de1204Isup2.hkl |
CCDC reference: 208030
The synthesis of β-benzyl-L-aspartate (BLA) was carried out by the reaction of L-aspartic acid with benzyl alcohol in the manner described previously by Kanazawa (1992a). The title compound was obtained by the reaction of BLA with trichloromethyl chloroformate or triphosgen in tetrahydrofuran, similar to other NCAs (Kanazawa, 1992a). The reaction product, (I), was recrystallized in a mixture of ethyl acetate and hexane (Ratio?), avoiding contamination by moisture.
As the absolute structure, which was known from the chirality of the starting materials, could not be determined reliably from the Flack parameter (Flack, 1983), the Friedel pairs were merged. Systematically absent reflections indicated the space group to be P212121. H atoms were refined isotropically.
Data collection: PROCESS (Rigaku, 1996); cell refinement: PROCESS; data reduction: TEXSAN, Version 1.11 (Molecular Structure Corporation & Rigaku Corporation, 2000); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: TEXSAN, Version 1.10 (Molecular Structure Corporation & Rigaku Corporation, 1999); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: TEXSAN, Version 1.11.
C12H11NO5 | Dx = 1.432 Mg m−3 Dm = not measured Mg m−3 Dm measured by ? |
Mr = 249.22 | Melting point: not measured K |
Orthorhombic, P212121 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2ac 2ab | Cell parameters from 120 reflections |
a = 7.995 (3) Å | θ = 5.0–32.7° |
b = 26.611 (5) Å | µ = 0.11 mm−1 |
c = 5.4348 (7) Å | T = 288 K |
V = 1156.3 (5) Å3 | Plate, colourless |
Z = 4 | 0.20 × 0.15 × 0.10 mm |
F(000) = 520.0 |
Rigaku RAXIS-IV imaging plate area-detector diffractometer | Rint = 0.053 |
Detector resolution: 10.00 pixels mm-1 | θmax = 31.4° |
ω scans | h = 0→11 |
2319 measured reflections | k = 0→38 |
2115 independent reflections | l = 0→7 |
1128 reflections with F2 > 2σ(F2) |
Refinement on F2 | w = 1/[σ2(Fo) + 0.00065|Fo|2] |
R[F2 > 2σ(F2)] = 0.054 | (Δ/σ)max < 0.001 |
wR(F2) = 0.076 | Δρmax = 0.22 e Å−3 |
S = 1.08 | Δρmin = −0.21 e Å−3 |
2113 reflections | Extinction correction: Zachariasen (1967) type 2 Gaussian isotropic |
209 parameters | Extinction coefficient: 0.052 (5) |
All H-atom parameters refined |
C12H11NO5 | V = 1156.3 (5) Å3 |
Mr = 249.22 | Z = 4 |
Orthorhombic, P212121 | Mo Kα radiation |
a = 7.995 (3) Å | µ = 0.11 mm−1 |
b = 26.611 (5) Å | T = 288 K |
c = 5.4348 (7) Å | 0.20 × 0.15 × 0.10 mm |
Rigaku RAXIS-IV imaging plate area-detector diffractometer | 1128 reflections with F2 > 2σ(F2) |
2319 measured reflections | Rint = 0.053 |
2115 independent reflections |
R[F2 > 2σ(F2)] = 0.054 | 209 parameters |
wR(F2) = 0.076 | All H-atom parameters refined |
S = 1.08 | Δρmax = 0.22 e Å−3 |
2113 reflections | Δρmin = −0.21 e Å−3 |
Refinement. Refinement using reflections with F2 > 0.0 σ(F2). The Weighted R-factor (wR), goodness of fit (S) and R-factor (gt) are based on F, with F set to zero for negative F. The threshold expression of F2 > 2.0 σ (F2) is used only for calculating R-factor (gt). |
x | y | z | Uiso*/Ueq | ||
O1 | 0.6900 (3) | 0.53721 (8) | 0.1669 (5) | 0.0762 (8) | |
O2 | 0.4759 (3) | 0.50459 (7) | 0.3913 (4) | 0.0637 (6) | |
O3 | 0.2625 (3) | 0.45642 (9) | 0.5189 (4) | 0.0781 (8) | |
O4 | 0.5482 (4) | 0.37125 (8) | −0.2088 (4) | 0.0757 (8) | |
O5 | 0.5484 (3) | 0.30393 (7) | 0.0375 (4) | 0.0609 (6) | |
N1 | 0.5589 (4) | 0.46359 (9) | 0.0571 (5) | 0.0570 (7) | |
C1 | 0.5889 (4) | 0.5045 (1) | 0.1942 (6) | 0.0593 (8) | |
C2 | 0.3698 (5) | 0.4639 (1) | 0.3730 (6) | 0.0569 (8) | |
C3 | 0.4178 (4) | 0.4346 (1) | 0.1447 (5) | 0.0503 (7) | |
C4 | 0.4599 (5) | 0.3799 (1) | 0.2099 (6) | 0.0505 (7) | |
C5 | 0.5216 (4) | 0.3525 (1) | −0.0141 (6) | 0.0516 (7) | |
C6 | 0.6326 (5) | 0.2749 (1) | −0.1586 (8) | 0.0655 (10) | |
C7 | 0.5702 (4) | 0.2215 (1) | −0.1467 (6) | 0.0536 (7) | |
C8 | 0.6115 (5) | 0.1902 (1) | 0.0457 (7) | 0.0632 (9) | |
C9 | 0.5525 (6) | 0.1407 (1) | 0.0483 (8) | 0.076 (1) | |
C10 | 0.4573 (5) | 0.1230 (1) | −0.1432 (9) | 0.078 (1) | |
C11 | 0.4193 (6) | 0.1536 (1) | −0.3329 (8) | 0.076 (1) | |
C12 | 0.4741 (5) | 0.2031 (1) | −0.3368 (6) | 0.0631 (9) | |
H1 | 0.612 (4) | 0.457 (1) | −0.079 (6) | 0.058 (8)* | |
H2 | 0.324 (4) | 0.4363 (10) | 0.045 (5) | 0.050 (8)* | |
H3 | 0.535 (4) | 0.380 (1) | 0.350 (7) | 0.059 (8)* | |
H4 | 0.363 (4) | 0.365 (1) | 0.272 (7) | 0.066 (9)* | |
H5 | 0.758 (6) | 0.278 (1) | −0.124 (9) | 0.106 (9)* | |
H6 | 0.590 (4) | 0.292 (1) | −0.327 (6) | 0.059 (8)* | |
H7 | 0.672 (4) | 0.2032 (10) | 0.169 (6) | 0.052 (8)* | |
H8 | 0.582 (5) | 0.122 (1) | 0.196 (9) | 0.105 (9)* | |
H9 | 0.415 (5) | 0.086 (1) | −0.131 (7) | 0.097 (9)* | |
H10 | 0.359 (5) | 0.143 (1) | −0.470 (7) | 0.069 (9)* | |
H11 | 0.451 (4) | 0.222 (1) | −0.460 (6) | 0.057 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
O1 | 0.073 (2) | 0.057 (1) | 0.100 (2) | −0.010 (1) | −0.019 (2) | −0.007 (1) |
O2 | 0.068 (1) | 0.059 (1) | 0.063 (1) | 0.006 (1) | −0.006 (1) | −0.021 (1) |
O3 | 0.081 (2) | 0.084 (1) | 0.070 (1) | 0.015 (1) | 0.023 (1) | −0.006 (1) |
O4 | 0.120 (2) | 0.059 (1) | 0.0485 (10) | 0.006 (1) | 0.010 (2) | −0.0014 (10) |
O5 | 0.078 (2) | 0.0472 (9) | 0.058 (1) | 0.003 (1) | 0.011 (1) | −0.0055 (9) |
N1 | 0.061 (2) | 0.050 (1) | 0.059 (1) | −0.006 (1) | 0.008 (2) | −0.007 (1) |
C1 | 0.059 (2) | 0.051 (1) | 0.068 (2) | 0.010 (1) | −0.013 (1) | −0.007 (1) |
C2 | 0.063 (2) | 0.053 (1) | 0.056 (1) | 0.015 (1) | −0.006 (1) | −0.006 (1) |
C3 | 0.052 (1) | 0.051 (1) | 0.048 (1) | 0.000 (1) | −0.007 (1) | −0.002 (1) |
C4 | 0.060 (2) | 0.048 (1) | 0.044 (1) | 0.002 (1) | 0.001 (1) | −0.003 (1) |
C5 | 0.057 (2) | 0.047 (1) | 0.050 (1) | −0.002 (1) | 0.001 (1) | −0.007 (1) |
C6 | 0.073 (2) | 0.051 (1) | 0.072 (2) | −0.004 (2) | 0.028 (2) | −0.008 (1) |
C7 | 0.055 (2) | 0.048 (1) | 0.057 (1) | 0.007 (1) | 0.016 (1) | −0.008 (1) |
C8 | 0.059 (2) | 0.071 (2) | 0.060 (2) | 0.012 (2) | 0.001 (2) | −0.002 (2) |
C9 | 0.087 (3) | 0.065 (2) | 0.076 (2) | 0.016 (2) | 0.023 (2) | 0.020 (2) |
C10 | 0.083 (3) | 0.056 (2) | 0.096 (2) | −0.009 (2) | 0.029 (2) | −0.002 (2) |
C11 | 0.077 (3) | 0.073 (2) | 0.076 (2) | −0.017 (2) | 0.014 (2) | −0.018 (2) |
C12 | 0.071 (2) | 0.062 (2) | 0.056 (2) | 0.003 (2) | 0.000 (2) | 0.001 (1) |
O1—C1 | 1.197 (4) | C4—H4 | 0.94 (4) |
O2—C1 | 1.402 (4) | C6—C7 | 1.507 (5) |
O2—C2 | 1.379 (4) | C6—H5 | 1.02 (5) |
O3—C2 | 1.185 (4) | C6—H6 | 1.08 (3) |
O4—C5 | 1.189 (4) | C7—C8 | 1.378 (5) |
O5—C5 | 1.339 (4) | C7—C12 | 1.378 (5) |
O5—C6 | 1.478 (4) | C8—C9 | 1.399 (6) |
N1—C1 | 1.341 (4) | C8—H7 | 0.89 (3) |
N1—C3 | 1.447 (4) | C9—C10 | 1.373 (7) |
N1—H1 | 0.87 (3) | C9—H8 | 0.98 (5) |
C2—C3 | 1.515 (4) | C10—C11 | 1.349 (7) |
C3—C4 | 1.535 (4) | C10—H9 | 1.04 (4) |
C3—H2 | 0.93 (3) | C11—C12 | 1.387 (5) |
C4—C5 | 1.504 (4) | C11—H10 | 0.93 (4) |
C4—H3 | 0.97 (4) | C12—H11 | 0.86 (3) |
C1—O2—C2 | 109.9 (2) | O5—C5—C4 | 110.6 (3) |
C5—O5—C6 | 115.2 (3) | O5—C6—H5 | 105 (2) |
C1—N1—C3 | 112.9 (3) | O5—C6—H6 | 104 (1) |
C1—N1—H1 | 123 (2) | C7—C6—H5 | 112 (2) |
C3—N1—H1 | 123 (2) | C7—C6—H6 | 109 (1) |
O1—C1—O2 | 121.9 (3) | H5—C6—H6 | 115 (3) |
O1—C1—N1 | 130.0 (4) | C6—C7—C8 | 121.6 (4) |
O2—C1—N1 | 108.1 (3) | C6—C7—C12 | 119.2 (3) |
O2—C2—O3 | 121.9 (3) | C8—C7—C12 | 119.2 (3) |
O2—C2—C3 | 107.9 (3) | C7—C8—C9 | 119.8 (4) |
O3—C2—C3 | 130.2 (3) | C7—C8—H7 | 117 (1) |
N1—C3—C2 | 101.1 (3) | C9—C8—H7 | 122 (1) |
N1—C3—C4 | 114.2 (3) | C8—C9—C10 | 120.2 (4) |
N1—C3—H2 | 114 (1) | C8—C9—H8 | 114 (2) |
C2—C3—C4 | 110.7 (3) | C10—C9—H8 | 125 (2) |
C2—C3—H2 | 104 (1) | C9—C10—C11 | 119.8 (4) |
C4—C3—H2 | 110 (1) | C9—C10—H9 | 117 (2) |
C3—C4—C5 | 110.2 (3) | C11—C10—H9 | 122 (2) |
C3—C4—H3 | 108 (1) | C10—C11—C12 | 120.9 (4) |
C3—C4—H4 | 108 (1) | C10—C11—H10 | 123 (2) |
C5—C4—H3 | 115 (2) | C12—C11—H10 | 115 (2) |
C5—C4—H4 | 110 (2) | C7—C12—C11 | 120.2 (4) |
H3—C4—H4 | 103 (2) | C7—C12—H11 | 119 (2) |
O4—C5—O5 | 124.3 (3) | C11—C12—H11 | 120 (2) |
O4—C5—C4 | 125.1 (3) | ||
O1—C1—O2—C2 | 177.6 (3) | C1—O2—C2—C3 | 0.1 (3) |
O1—C1—N1—C3 | −176.3 (3) | C1—N1—C3—C2 | −2.9 (3) |
O2—C1—N1—C3 | 3.1 (4) | C1—N1—C3—C4 | −121.8 (3) |
O2—C2—C3—N1 | 1.6 (3) | C2—C3—C4—C5 | −175.1 (3) |
O2—C2—C3—C4 | 122.9 (3) | C4—C5—O5—C6 | −171.4 (3) |
O3—C2—O2—C1 | −179.4 (3) | C5—O5—C6—C7 | −148.5 (3) |
O3—C2—C3—N1 | −179.0 (3) | C6—C7—C8—C9 | −179.3 (3) |
O3—C2—C3—C4 | −57.6 (5) | C6—C7—C12—C11 | 178.1 (3) |
O4—C5—O5—C6 | 6.4 (6) | C7—C8—C9—C10 | 1.8 (6) |
O4—C5—C4—C3 | 6.2 (6) | C7—C12—C11—C10 | 0.7 (6) |
O5—C5—C4—C3 | −176.0 (3) | C8—C7—C12—C11 | 0.3 (5) |
O5—C6—C7—C8 | −69.4 (4) | C8—C9—C10—C11 | −0.8 (7) |
O5—C6—C7—C12 | 112.8 (4) | C9—C8—C7—C12 | −1.5 (5) |
N1—C1—O2—C2 | −1.9 (3) | C9—C10—C11—C12 | −0.5 (7) |
N1—C3—C4—C5 | −61.8 (4) |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O4 | 0.87 (3) | 2.44 (2) | 2.852 (3) | 109 (2) |
N1—H1···O1i | 0.86 (3) | 2.11 (4) | 2.920 (3) | 155 (3) |
Symmetry code: (i) −x+3/2, −y+1, z−1/2. |
Experimental details
Crystal data | |
Chemical formula | C12H11NO5 |
Mr | 249.22 |
Crystal system, space group | Orthorhombic, P212121 |
Temperature (K) | 288 |
a, b, c (Å) | 7.995 (3), 26.611 (5), 5.4348 (7) |
V (Å3) | 1156.3 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 0.11 |
Crystal size (mm) | 0.20 × 0.15 × 0.10 |
Data collection | |
Diffractometer | Rigaku RAXIS-IV imaging plate area-detector diffractometer |
Absorption correction | – |
No. of measured, independent and observed [F2 > 2σ(F2)] reflections | 2319, 2115, 1128 |
Rint | 0.053 |
(sin θ/λ)max (Å−1) | 0.732 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.054, 0.076, 1.08 |
No. of reflections | 2113 |
No. of parameters | 209 |
No. of restraints | ? |
H-atom treatment | All H-atom parameters refined |
Δρmax, Δρmin (e Å−3) | 0.22, −0.21 |
Computer programs: PROCESS (Rigaku, 1996), PROCESS, TEXSAN, Version 1.11 (Molecular Structure Corporation & Rigaku Corporation, 2000), SIR92 (Altomare et al., 1994), TEXSAN, Version 1.10 (Molecular Structure Corporation & Rigaku Corporation, 1999), ORTEPII (Johnson, 1976), TEXSAN, Version 1.11.
O1—C1 | 1.197 (4) | N1—C1 | 1.341 (4) |
O2—C1 | 1.402 (4) | N1—C3 | 1.447 (4) |
O2—C2 | 1.379 (4) | C2—C3 | 1.515 (4) |
O3—C2 | 1.185 (4) | C3—C4 | 1.535 (4) |
O4—C5 | 1.189 (4) | C4—C5 | 1.504 (4) |
O5—C5 | 1.339 (4) | C6—C7 | 1.507 (5) |
O5—C6 | 1.478 (4) | ||
C1—O2—C2 | 109.9 (2) | O2—C2—C3 | 107.9 (3) |
C1—N1—C3 | 112.9 (3) | N1—C3—C2 | 101.1 (3) |
O1—C1—N1 | 130.0 (4) | ||
O1—C1—O2—C2 | 177.6 (3) | O3—C2—O2—C1 | −179.4 (3) |
O1—C1—N1—C3 | −176.3 (3) | O3—C2—C3—N1 | −179.0 (3) |
O2—C1—N1—C3 | 3.1 (4) | N1—C1—O2—C2 | −1.9 (3) |
O2—C2—C3—N1 | 1.6 (3) | C1—O2—C2—C3 | 0.1 (3) |
O2—C2—C3—C4 | 122.9 (3) |
N-Carboxy anhydrides (NCAs) of amino acids are crystalline compounds and are usually polymerized in solution to prepare polypeptides (Bamford et al., 1956). Purified amino acid NCA crystals are sensitive to moisture and are polymerized or decomposed by water. When butylamine is added to amino acid NCA crystals immersed in a liquid such as hexane, decane, etc., which cannot dissolve the crystals, polymerization takes place in the solid state. Bamford et al. Is this the correct replacement for `The authors'? studied this solid-state polymerization and found that polymerizability is extremely dependent on the kind of amino acid NCA used.
The crystal structures of amino acid NCAs were not studied for a long time after the very early report by Leuchs (1906). One of the present authors has reported the crystal structures of glycine NCA (Kanazawa et al., 1976a) and L-alanine NCA (Kanazawa et al., 1976b) and discussed their polymerizability with reference to the crystal structure (Kanazawa & Kawai, 1980). In addition, the crystal structures of Ag-benzyl-L-glutamate NCA (Kanazawa et al., 1978a), L-leucine NCA (Kanazawa et al., 1978b), L-valine NCA (Kanazawa et al., 1984), DL-Valine NCA (Takenaka et al., 1994), DL-phenylalanine NCA (Kanazawa et al., 1997) and L-phenylalanine NCA (Kanazawa, 2000) have been determined.
The polymerization of L-leucine NCA, which was the most reactive in the solid state among the NCAs studied, has been studied in detail (Kanazawa et al., 1982; Kanazawa, 1992a,b). The reactivity of amino acid NCAs in the solid state is largely dependent on the purity of the crystals. The measurement of the molecular weight of the resulting polypeptides is very important in order to study the solid-state polymerization of amino acid NCAs in more detail. However, the usual polypeptides, such as poly(L-alanine), poly(L-valine) and poly(L-leucine), do not dissolve in the usual organic compounds, but do dissolve in strong acids, such as dichloroacetic acid and trifuluoroacetic acid. On the other hand, polypeptides prepared by the polymerization of NCAs of benzyl esters of amino acids, such as glutamic or aspartic acids, can be dissolved in common organic solvents, such as dioxane and N,N-dimethylformamide.
The polymerization of the title compound, (I), is much more reactive in the solid state than in solution; the polymer conversion in the solid-state polymerization of (I) initiated by butylamine was 18% in 2 h at 303 K, while the conversion of the polymerization in solution in acetonitrile was about 5% under similar conditions to the solid-state reaction. As the purified compound, (I) (BLA NCA) is very sensitive to moisture and crystallizes as very thin plates, so many crystallization and data-collection attempts were carried out to determine its crystal structure. Here, we present the crystal and molecular structure of (I). \sch
The molecular structure of (I) and the atom-numbering scheme are given in Fig. 1. In the structure of (I), intermolecular N1—H1···O1(3/2 − x, 1 − y, z − 1/2) hydrogen bonds are formed, with bond lengths and angles of N1···O1 2.922 (4) Å, H1···O1 2.11 (4) Å and N1—H1···O1 155 (3)°. In addition, intramolecular N1—H1···O4 hydrogen bonds are formed, with bond lengths and angles of N1···O4 2.852 (3) Å, H1···O4 2.44 (2) Å and N1—H1···O4 109 (2)°.
From Fig. 2, it can be seen that the five-membered NCA rings are packed in a layer and the benzyl ester groups are packed in another layer; these two layers are aligned alternately. The resulting sandwich structure is one of the important requirements for high reactivity in the solid state (Kanazawa, 1992a, 1998). In the crystal of DL-phenylalanine NCA, the sandwich structure was composed of D and L molecules (Kanazawa et al., 1997), and its crystal was also reactive in the solid state.