Download citation
Download citation
link to html
It has been confirmed that mercapto­pyridines undergo spontaneous condensation in redox reaction with iodine-forming di­thio­pyridines. In the solid state, these com­pounds are protonated at the N atoms and cocrystallize with iodine forming salt structures, namely, 2-[(pyridin-2-yl)disulfan­yl]pyridinium triiodide sesquiiodine, C10H9N2S2+·I3·1.5I2, and 4,4′-(disulfanedi­yl)dipyridinium penta­iodide triiodide, C10H10N2S22+·I5·I3. Di­thio­pyridine cations are packed among three-dimensional frameworks built from iodide anions and neutral iodine mol­ecules, and are linked by hydrogen, halogen and chalcogen inter­actions. Quantum chemical com­putations indicated that di­thio­pyridines exhibit anomalously high nitro­gen basicity which qualify them as potential proton sponges.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229621006306/dg3017sup1.cif
Contains datablocks structure_I, structure_II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621006306/dg3017structure_Isup2.hkl
Contains datablock structure_I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229621006306/dg3017structure_IIsup3.hkl
Contains datablock structure_II

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621006306/dg3017structure_Isup4.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229621006306/dg3017structure_IIsup5.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229621006306/dg3017sup6.pdf
Additional figures and tables

CCDC references: 2090706; 2090705

Computing details top

For both structures, data collection: CrysAlis PRO (Rigaku OD, 2020); cell refinement: CrysAlis PRO (Rigaku OD, 2020); data reduction: CrysAlis PRO (Rigaku OD, 2020); program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b).

2-[(Pyridin-2-yl)disulfanyl]pyridinium triiodide sesquiiodine (structure_I) top
Crystal data top
C10H9N2S2+·I3·1.5I2F(000) = 1732
Mr = 982.71Dx = 3.028 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.3273 (1) ÅCell parameters from 22640 reflections
b = 18.2114 (3) Åθ = 3.5–30.8°
c = 12.6897 (2) ŵ = 8.83 mm1
β = 90.607 (2)°T = 150 K
V = 2155.39 (5) Å3Plate, brown
Z = 40.28 × 0.12 × 0.09 mm
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
5952 independent reflections
Radiation source: micro-focus sealed X-ray tube5295 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.041
CrysAlisPro 1.171.39.15e (Rigaku Oxford Diffraction, 2015 scansθmax = 30.9°, θmin = 3.4°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2020), based on expressions derived by Clark & Reid (1995)]
h = 1312
Tmin = 0.992, Tmax = 0.997k = 2525
38980 measured reflectionsl = 1717
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025 w = 1/[σ2(Fo2) + 6.2162P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.047(Δ/σ)max = 0.002
S = 1.13Δρmax = 0.81 e Å3
5952 reflectionsΔρmin = 0.70 e Å3
186 parametersExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00040 (2)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.25666 (3)0.78880 (2)0.75539 (2)0.02501 (6)
I50.61028 (3)0.44782 (2)0.87305 (2)0.02634 (6)
I40.90683 (2)0.44386 (2)0.87004 (2)0.02521 (6)
I30.26456 (3)0.64265 (2)0.82050 (2)0.02916 (7)
I60.41625 (3)0.48540 (2)0.58567 (2)0.03083 (7)
I10.25331 (2)0.45269 (2)0.82763 (2)0.02387 (6)
S20.08143 (11)0.60000 (5)0.41905 (7)0.0270 (2)
S10.04639 (11)0.58596 (6)0.57703 (7)0.0286 (2)
N10.1387 (4)0.69899 (19)0.5576 (3)0.0270 (7)
N20.0986 (3)0.74440 (19)0.4558 (3)0.0264 (7)
C240.2983 (5)0.8217 (3)0.4179 (3)0.0361 (10)
H240.3415690.8689230.4198320.043*
C220.3065 (4)0.6932 (3)0.3771 (3)0.0355 (10)
H220.3554280.6515620.3501830.043*
C250.1615 (4)0.8106 (2)0.4568 (3)0.0312 (9)
H250.1108500.8511810.4850580.037*
C110.1193 (4)0.6312 (2)0.5973 (3)0.0244 (8)
C210.1716 (4)0.6869 (2)0.4178 (3)0.0254 (8)
C140.3658 (5)0.7077 (3)0.6363 (3)0.0355 (10)
H140.4507920.7347680.6494050.043*
C150.2597 (5)0.7369 (2)0.5742 (3)0.0333 (9)
H150.2722890.7839500.5431360.040*
C230.3694 (5)0.7623 (3)0.3764 (4)0.0402 (11)
H230.4619630.7686690.3471240.048*
C120.2244 (5)0.5995 (2)0.6590 (3)0.0328 (9)
H120.2120350.5514640.6869640.039*
C130.3474 (5)0.6392 (3)0.6789 (3)0.0376 (10)
H130.4195720.6189110.7223230.045*
H10.077 (7)0.715 (4)0.526 (5)0.07 (2)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.02425 (12)0.02310 (12)0.02773 (12)0.00142 (9)0.00332 (9)0.00102 (9)
I50.01976 (11)0.03428 (15)0.02503 (12)0.00099 (10)0.00339 (9)0.00204 (10)
I40.02021 (11)0.03030 (14)0.02509 (12)0.00128 (9)0.00085 (9)0.00121 (9)
I30.03537 (14)0.02270 (13)0.02945 (13)0.00368 (10)0.00247 (10)0.00287 (10)
I60.02870 (13)0.03772 (16)0.02609 (13)0.00470 (11)0.00121 (10)0.00151 (11)
I10.01683 (11)0.01955 (12)0.03532 (13)0.00014 (9)0.00346 (9)0.00073 (9)
S20.0333 (5)0.0233 (5)0.0243 (4)0.0036 (4)0.0031 (4)0.0039 (4)
S10.0338 (5)0.0280 (5)0.0241 (4)0.0077 (4)0.0007 (4)0.0013 (4)
N10.0259 (17)0.0274 (18)0.0277 (17)0.0019 (14)0.0071 (14)0.0020 (13)
N20.0260 (16)0.0247 (17)0.0284 (16)0.0019 (13)0.0047 (13)0.0020 (13)
C240.033 (2)0.034 (2)0.041 (2)0.0113 (19)0.0041 (19)0.0008 (19)
C220.028 (2)0.037 (3)0.041 (2)0.0075 (18)0.0082 (18)0.0027 (19)
C250.030 (2)0.027 (2)0.036 (2)0.0003 (17)0.0075 (17)0.0056 (17)
C110.0293 (19)0.025 (2)0.0189 (17)0.0012 (15)0.0020 (14)0.0028 (14)
C210.0257 (18)0.028 (2)0.0223 (18)0.0047 (16)0.0013 (15)0.0003 (15)
C140.026 (2)0.045 (3)0.035 (2)0.0032 (18)0.0074 (17)0.0035 (19)
C150.033 (2)0.030 (2)0.038 (2)0.0049 (17)0.0079 (18)0.0038 (17)
C230.025 (2)0.045 (3)0.051 (3)0.0014 (19)0.0134 (19)0.002 (2)
C120.042 (2)0.027 (2)0.029 (2)0.0053 (18)0.0081 (18)0.0001 (16)
C130.038 (2)0.040 (3)0.035 (2)0.010 (2)0.0126 (19)0.0055 (19)
Geometric parameters (Å, º) top
I2—I32.7877 (4)C22—C211.370 (5)
I5—I42.7676 (3)C22—C231.390 (7)
I6—I6i2.7428 (5)C22—H220.9500
S2—C211.793 (4)C25—H250.9500
S2—S12.0506 (13)C11—C121.387 (5)
S1—C111.773 (4)C14—C131.369 (7)
N1—C151.341 (5)C14—C151.378 (6)
N1—C111.344 (5)C14—H140.9500
N1—H10.76 (6)C15—H150.9500
N2—C251.340 (5)C23—H230.9500
N2—C211.341 (5)C12—C131.382 (6)
C24—C231.376 (7)C12—H120.9500
C24—C251.388 (6)C13—H130.9500
C24—H240.9500
C21—S2—S1101.46 (13)N2—C21—C22122.9 (4)
C11—S1—S2103.42 (13)N2—C21—S2116.5 (3)
C15—N1—C11121.6 (4)C22—C21—S2120.6 (3)
C15—N1—H1122 (5)C13—C14—C15119.3 (4)
C11—N1—H1116 (5)C13—C14—H14120.3
C25—N2—C21118.8 (3)C15—C14—H14120.3
C23—C24—C25118.0 (4)N1—C15—C14120.1 (4)
C23—C24—H24121.0N1—C15—H15120.0
C25—C24—H24121.0C14—C15—H15120.0
C21—C22—C23117.9 (4)C24—C23—C22120.3 (4)
C21—C22—H22121.1C24—C23—H23119.9
C23—C22—H22121.1C22—C23—H23119.9
N2—C25—C24122.1 (4)C13—C12—C11118.5 (4)
N2—C25—H25118.9C13—C12—H12120.8
C24—C25—H25118.9C11—C12—H12120.8
N1—C11—C12120.1 (4)C14—C13—C12120.4 (4)
N1—C11—S1119.1 (3)C14—C13—H13119.8
C12—C11—S1120.7 (3)C12—C13—H13119.8
C21—N2—C25—C241.3 (6)S1—S2—C21—N260.6 (3)
C23—C24—C25—N20.6 (7)S1—S2—C21—C22121.0 (3)
C15—N1—C11—C121.4 (6)C11—N1—C15—C142.3 (6)
C15—N1—C11—S1177.3 (3)C13—C14—C15—N11.3 (7)
S2—S1—C11—N147.8 (3)C25—C24—C23—C222.0 (7)
S2—S1—C11—C12136.4 (3)C21—C22—C23—C241.5 (7)
C25—N2—C21—C221.8 (6)N1—C11—C12—C130.5 (6)
C25—N2—C21—S2179.8 (3)S1—C11—C12—C13175.3 (3)
C23—C22—C21—N20.4 (7)C15—C14—C13—C120.6 (7)
C23—C22—C21—S2178.7 (3)C11—C12—C13—C141.5 (7)
Symmetry code: (i) x+1, y+1, z+1.
4,4'-(Disulfanediyl)dipyridinium pentaiodide triiodide (structure_II) top
Crystal data top
C10H10N2S22+·I5·I3Dx = 3.341 Mg m3
Mr = 618.76Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PccnCell parameters from 26294 reflections
a = 10.1352 (2) Åθ = 3.4–31.0°
b = 11.8427 (2) ŵ = 10.25 mm1
c = 20.4986 (4) ÅT = 150 K
V = 2460.41 (8) Å3Plate, brown
Z = 80.22 × 0.09 × 0.05 mm
F(000) = 2160
Data collection top
XtaLAB Synergy Dualflex HyPix
diffractometer
3057 reflections with I > 2σ(I)
Detector resolution: 10.0000 pixels mm-1Rint = 0.042
ω scansθmax = 31.1°, θmin = 3.3°
Absorption correction: analytical
[CrysAlis PRO (Rigaku OD, 2020), based on expressions derived by Clark & Reid (1995)]
h = 1414
Tmin = 0.995, Tmax = 0.999k = 1615
42621 measured reflectionsl = 2926
3592 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.021H-atom parameters constrained
wR(F2) = 0.042 w = 1/[σ2(Fo2) + (0.0136P)2 + 4.2557P]
where P = (Fo2 + 2Fc2)/3
S = 1.08(Δ/σ)max = 0.001
3592 reflectionsΔρmax = 0.76 e Å3
101 parametersΔρmin = 0.93 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I20.34946 (2)0.42061 (2)0.44882 (2)0.02310 (5)
I30.40040 (2)0.57975 (2)0.35192 (2)0.02661 (5)
I50.7500000.7500000.22742 (2)0.02781 (7)
I10.2500000.2500000.55790 (2)0.02797 (7)
I40.46262 (2)0.77992 (2)0.22919 (2)0.03019 (6)
S10.84660 (7)0.27400 (6)0.50607 (4)0.02160 (14)
N10.9030 (3)0.5190 (2)0.34185 (13)0.0268 (6)
H10.9174970.5658500.3093350.032*
C120.7537 (3)0.4092 (2)0.40243 (14)0.0222 (6)
H120.6662020.3838590.4103590.027*
C130.8573 (3)0.3717 (2)0.44135 (14)0.0193 (5)
C110.7793 (3)0.4829 (3)0.35264 (15)0.0261 (6)
H110.7093270.5085970.3256000.031*
C151.0053 (3)0.4861 (3)0.37888 (16)0.0288 (7)
H151.0913630.5141250.3701270.035*
C140.9854 (3)0.4122 (3)0.42922 (16)0.0260 (6)
H141.0572400.3885920.4556700.031*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I20.01728 (9)0.02644 (10)0.02558 (10)0.00023 (7)0.00158 (7)0.00429 (7)
I30.02531 (10)0.02598 (10)0.02855 (11)0.00112 (7)0.00412 (8)0.00195 (8)
I50.04360 (17)0.02162 (14)0.01820 (13)0.00083 (11)0.0000.000
I10.03826 (16)0.02346 (14)0.02218 (14)0.00322 (11)0.0000.000
I40.03840 (12)0.02561 (11)0.02654 (11)0.00444 (8)0.00446 (8)0.00171 (8)
S10.0190 (3)0.0238 (4)0.0220 (3)0.0013 (3)0.0032 (3)0.0019 (3)
N10.0288 (13)0.0272 (14)0.0243 (14)0.0017 (10)0.0035 (11)0.0045 (11)
C120.0192 (13)0.0244 (15)0.0231 (14)0.0007 (11)0.0001 (11)0.0004 (12)
C130.0214 (13)0.0183 (13)0.0183 (14)0.0005 (10)0.0002 (11)0.0039 (11)
C110.0243 (15)0.0289 (16)0.0251 (16)0.0032 (12)0.0002 (12)0.0004 (13)
C150.0236 (15)0.0304 (17)0.0326 (17)0.0040 (12)0.0015 (13)0.0000 (13)
C140.0195 (14)0.0290 (16)0.0296 (16)0.0019 (11)0.0032 (12)0.0031 (13)
Geometric parameters (Å, º) top
I2—I32.7863 (3)C12—C111.368 (4)
I5—I42.9344 (2)C12—C131.392 (4)
I5—I4i2.9344 (2)C12—H120.9500
S1—C131.764 (3)C13—C141.406 (4)
S1—S1ii2.0389 (14)C11—H110.9500
N1—C151.343 (4)C15—C141.368 (5)
N1—C111.343 (4)C15—H150.9500
N1—H10.8800C14—H140.9500
I4—I5—I4i178.576 (13)C14—C13—S1114.5 (2)
C13—S1—S1ii104.02 (10)N1—C11—C12120.2 (3)
C15—N1—C11122.4 (3)N1—C11—H11119.9
C15—N1—H1118.8C12—C11—H11119.9
C11—N1—H1118.8N1—C15—C14119.8 (3)
C11—C12—C13119.2 (3)N1—C15—H15120.1
C11—C12—H12120.4C14—C15—H15120.1
C13—C12—H12120.4C15—C14—C13119.2 (3)
C12—C13—C14119.1 (3)C15—C14—H14120.4
C12—C13—S1126.4 (2)C13—C14—H14120.4
C11—C12—C13—C141.2 (4)C13—C12—C11—N10.4 (5)
C11—C12—C13—S1177.9 (2)C11—N1—C15—C140.8 (5)
S1ii—S1—C13—C122.7 (3)N1—C15—C14—C130.0 (5)
S1ii—S1—C13—C14176.4 (2)C12—C13—C14—C151.0 (5)
C15—N1—C11—C120.6 (5)S1—C13—C14—C15178.2 (3)
Symmetry codes: (i) x+3/2, y+3/2, z; (ii) x+3/2, y+1/2, z.
Selected geometric parameters (Å, °) defining the structure of disulfide bridge in the dithiopyridine moiety top
ChargeS—SS—C—(N)S—C—(NH)C—N(S)—C—N(H)C—S—S—C
2,2'-Dithiopyridines
Ication2.0506 (13)1.793 (4)1.773 (4)1.341 (5)1.344 (5)87.3 (2)
HAJWULcation (disorder)2.0521.7811.7541.3481.35187.3
DPYSULneutral2.0161.7861.7851.3291.35887.1
FARWIF: A B C Dcation2.009 2.051 2.002 2.0601.779 1.644 1.853 1.7071.746 1.775 1.766 1.6871.342 1.349 1.337 1.3451.343 1.339 1.333 1.34090.0 83.4 90. 0 86.7
FARWIF01cation (disorder, 2z symmetry)2.0371.7651.34684.4
4,4'-Dithiopyridines
IIdouble cation (2z symmetry)2.0389 (14)1.764 (3)1.343 (4) 1.343 (4)78.4 (2)
XIWNASneutral (2y symmetry)2.0321.7801.329 1.335-84.0
Total molecular energies estimated for all possible tautomers (Etot in Hartrees) and the relative energies estimated as a difference between a given tautomer and the one of lowest energy (ΔE in kcal mol-1) top
Etot Tautomer A-1292.3270839
Etot Tautomer B-1292.3270839
Etot Transition state-1292.3236721
ΔE (PT barrier)2.14
Geometric parameters (Å, °) of hydrogen bonds top
Hydrogen bonds (HB)D—HH···AD···AD—H···ASymmetry code
I
part1*N1—H1···N20.76 (7)1.95 (7)2.704 (5)171 (7)x, y, z
C12—H12···I40.953.234.079 (5)150x-1, y, z
C13—H13···I10.953.353.748 (5)108x-1, y, z
C13—H13···I30.953.244.058 (5)146x-1, y, z
C14—H14···I20.953.214.120 (5)161x-1, y, z
C15—H15···I30.953.153.904 (5)138x-1/2, y+3/2, z-1/2
C15—H15···I40.953.364.076 (5)134-x+1/2, y+1/2, -z+3/2
part2*C22—H22···I10.953.374.179 (5)144-x+1, -y+1, -z+1
C23—H23···I20.953.174.048 (5)154x+1/2, -y+3/2, z-1/2
C23—H23···I30.953.274.140 (5)153x+1/2, -y+3/2, z-1/2
C25—H25···I50.953.274.177 (5)161-x+1/2, y+1/2, -z+3/2
C25—H25···I60.953.263.842 (4)122-x+1/2, y+1/2, -z+3/2
II
N1—H1···I40.86 (4)2.76 (4)3.587 (3)160 (3)-x+3/2, -y+3/2, z
N1—H1···I50.86 (4)3.25 (4)3.924 (3)137 (2)-x+3/2, -y+3/2, z
C12—H12···I20.953.343.802 (3)154-x, y+1/2, -z+1/2
C14—H14···I20.952.993.850 (3)134-x+1, y+1/2, -z+1/2
C14—H14···I30.953.304.225 (3)164-x+1, y+1/2, -z+1/2
C15—H15···I20.953.273.850 (3)122-x+1, y+1/2, -z+1/2
C15—H15···I10.953.254.192 (3)172-x+1, y+1/2, -z+1/2
Note: (*) each part of the molecule consist of one pyridine ring and one neighbouring S atom.
Geometric parameters (Å, °) for halogen and chalcogen interactions top
I/S···YR—I/S···XSymmetry
Halogen bonds (XB)
II3—I2···I63.166 (2)178 (1)I3- anion
I2—I3···I63.462 (5)164 (1)x, y, z
I5—–I4···I63.286 (3)170 (1)x+1, y, z
I4-I5···I63.374 (3)169 (1)x, y, z
I1i—I1···I63.492 (4)171 (1)x, y, z
III3—I2···I13.178 (4)172 (1)I5- anion
I2—I4···I33.514 (5)180 (1)x, y, z
Chalcogen bonds (ChB)
Ipart1*C11—S1···I13.91 (2)170 (1)x, y, z
IIpart2*C12—S2···S13.59 (2)171 (1)x, -y+1, -z+1
C11—S1···I33.75 (9)168 (1)x+1/2, y-1/2, -z+1
I···I contacts
III2···I24.153 (4)-x+1, -y+1, -z+1
I3···I44.159 (4)x, y, z
I5···I24.260 (4)x, y, z
I4···I44.368 (4)x, y, z
Note: (*) each part of the molecule consists of one pyridine ring and one neighbouring S atom.
Percentage (%) of various atomic contacts to disulfide molecule surface top
H···NH···IH···allS···IS···SS···allall···I
N/C—H···NN/C—H···IC—S···IC—S···S
Hydrogen bondsChalcogen bonds
I1.134.854.79.44.316.651.1
II049.259.19.8015.274.3
FARWIF0.622.357.15.14.916.836.3
FARWIF010.621.956.95.80.618.833.8
HAJWUL0.620.257.69.34.416.835.0
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds