


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807045254/dn2228sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S1600536807045254/dn2228Isup2.hkl |
CCDC reference: 663611
A mixture of zinc chloride (0.136 g, 1 mmol), melamine (0.252 g, 2 mmol), and distilled water(8 ml) was heated at 180°C for 4 days in hydrothermal tube. After being cooled to room temperature, colourless block crystals were obtained. Elemental analysis calcd for compound(I): C 19.58%, H 4.40%, N 45.60%; Found: C 19.51%, H 4.35%, N 45.53%.
H atoms attached to NH2 and hydroxyl groups were positioned geometrically (O—H = 0.84 and N—H = 0.86 Å) and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(N,O). H atoms from water were located in a difference map and refined with distance restraints of O—H = 0.84 \%A and Uĩso~(H) = 1.5U~eq~(O).
The transition metal complexes are potential photo-luminescent, paramagnetic and radioactive materials due to their attractive photochemical and photophysical properties(Ford et al., 1999). Low dimensional metal organic complexes have received great attention in recent years for their potential applications in optics, electronics, magnetics, biology, catalyst and medicine (Tandon et al., 1994). The ligand, melamine, has both acceptor and donnor atoms suitable for hydrogen bonding and is analogous to nucleobases that may lead to some interesting new chemotherapeutic possibilities (Zhu et al., 1999).
In the complex I, the zinc cation is coordinated by two melamine and two hydroxyl ligands, forming a distorted tetrahedral geometry, while intramolecular N—H···O and N—H···H hydrogen bonds help to stabilize the molecular conformation (Fig. 1). The two melamine rings make a dihedral angle of 86.3 (9) °. All of the bond lengths and angles are within normal ranges (Allen et al., 1987). The Zn—N bond lengths (2.021 Å and 2.024 Å) in the title compound are slightly shorter than that (2.039 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004). The Zn—O bond lengths (2.018 Å and 2.041 Å) are slightly longer than that (1.984 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004).
As can be seen from the packing diagram (Fig. 2), intermolecular N—H···O, N—H···N, O—H..O and O—H···N hydrogen bonds(Table 1) link the molecules into a three-dimensional network, which may be effective in the stabilization of the crystal structure.
For general background, see: Ford et al. (1999); Tandon et al. (1994); Zhu et al. (1999). For a related structure, see: Yu et al. (2004). For bond-length data, see: Allen et al. (1987).
Data collection: CAD-4 Software (Enraf–Nonius, 1989); cell refinement: CAD-4 Software (Enraf–Nonius, 1989); data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL (Bruker, 2000).
[Zn(OH)2(C3N6H6)2]·H2O | F(000) = 760 |
Mr = 369.70 | Dx = 1.865 Mg m−3 |
Orthorhombic, Pna21 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: P 2c -2n | Cell parameters from 25 reflections |
a = 17.531 (4) Å | θ = 9–13° |
b = 6.6251 (13) Å | µ = 1.91 mm−1 |
c = 11.335 (2) Å | T = 293 K |
V = 1316.5 (5) Å3 | Block, colourless |
Z = 4 | 0.40 × 0.40 × 0.22 mm |
Enraf–Nonius CAD-4 diffractometer | 1682 reflections with I > 2σ(I) |
Radiation source: fine-focus sealed tube | Rint = 0.037 |
Graphite monochromator | θmax = 25.1°, θmin = 2.3° |
ω/2θ scans | h = −11→20 |
Absorption correction: ψ scan (North et al., 1968) | k = −7→7 |
Tmin = 0.508, Tmax = 0.657 | l = −13→11 |
3467 measured reflections | 3 standard reflections every 200 reflections |
1843 independent reflections | intensity decay: none |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.143 | w = 1/[σ2(Fo2) + (0.0759P)2 + 5.1018P] where P = (Fo2 + 2Fc2)/3 |
S = 1.09 | (Δ/σ)max < 0.001 |
1843 reflections | Δρmax = 0.23 e Å−3 |
199 parameters | Δρmin = −0.38 e Å−3 |
1 restraint | Absolute structure: Flack (1983), 636 Friedel pairs |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.06 (3) |
[Zn(OH)2(C3N6H6)2]·H2O | V = 1316.5 (5) Å3 |
Mr = 369.70 | Z = 4 |
Orthorhombic, Pna21 | Mo Kα radiation |
a = 17.531 (4) Å | µ = 1.91 mm−1 |
b = 6.6251 (13) Å | T = 293 K |
c = 11.335 (2) Å | 0.40 × 0.40 × 0.22 mm |
Enraf–Nonius CAD-4 diffractometer | 1682 reflections with I > 2σ(I) |
Absorption correction: ψ scan (North et al., 1968) | Rint = 0.037 |
Tmin = 0.508, Tmax = 0.657 | 3 standard reflections every 200 reflections |
3467 measured reflections | intensity decay: none |
1843 independent reflections |
R[F2 > 2σ(F2)] = 0.053 | H-atom parameters constrained |
wR(F2) = 0.143 | Δρmax = 0.23 e Å−3 |
S = 1.09 | Δρmin = −0.38 e Å−3 |
1843 reflections | Absolute structure: Flack (1983), 636 Friedel pairs |
199 parameters | Absolute structure parameter: 0.06 (3) |
1 restraint |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 1.0926 (4) | 0.8133 (12) | 0.2026 (8) | 0.0288 (18) | |
C2 | 1.2208 (4) | 0.9046 (10) | 0.1426 (11) | 0.0301 (16) | |
C3 | 1.1128 (4) | 1.1158 (13) | 0.0982 (8) | 0.032 (2) | |
C4 | 0.9359 (4) | 0.7899 (13) | −0.0664 (9) | 0.0327 (19) | |
C5 | 0.8131 (5) | 0.6933 (14) | −0.1435 (9) | 0.035 (2) | |
C6 | 0.8286 (4) | 0.9887 (13) | −0.0226 (9) | 0.0306 (18) | |
N1 | 1.0653 (3) | 0.9865 (9) | 0.1520 (9) | 0.0303 (18) | |
N2 | 1.0510 (3) | 0.6883 (9) | 0.2514 (6) | 0.0264 (16) | |
H2A | 1.0026 | 0.7081 | 0.2547 | 0.032* | |
H2B | 1.0705 | 0.5814 | 0.2821 | 0.032* | |
N3 | 1.1697 (3) | 0.7769 (10) | 0.1947 (7) | 0.0313 (16) | |
N4 | 1.2893 (2) | 0.8706 (8) | 0.1433 (8) | 0.0246 (13) | |
H4A | 1.3205 | 0.9558 | 0.1124 | 0.030* | |
H4B | 1.3064 | 0.7614 | 0.1747 | 0.030* | |
N5 | 1.1901 (4) | 1.0702 (10) | 0.0957 (7) | 0.0319 (17) | |
N6 | 1.0884 (4) | 1.2648 (11) | 0.0488 (7) | 0.039 (2) | |
H6A | 1.0402 | 1.2885 | 0.0479 | 0.046* | |
H6B | 1.1193 | 1.3467 | 0.0145 | 0.046* | |
N7 | 0.9038 (4) | 0.9458 (10) | −0.0072 (7) | 0.0242 (17) | |
N8 | 1.0043 (3) | 0.7584 (11) | −0.0641 (8) | 0.041 (2) | |
H8A | 1.0338 | 0.8362 | −0.0240 | 0.050* | |
H8B | 1.0232 | 0.6582 | −0.1025 | 0.050* | |
N9 | 0.8892 (4) | 0.6602 (11) | −0.1310 (7) | 0.0329 (17) | |
N10 | 0.7718 (4) | 0.5743 (10) | −0.1966 (7) | 0.0318 (17) | |
H10A | 0.7239 | 0.5988 | −0.2035 | 0.038* | |
H10B | 0.7909 | 0.4665 | −0.2269 | 0.038* | |
N11 | 0.7853 (4) | 0.8644 (11) | −0.0947 (7) | 0.0338 (16) | |
N12 | 0.7985 (3) | 1.1327 (10) | 0.0259 (7) | 0.0333 (18) | |
H12A | 0.8250 | 1.2100 | 0.0711 | 0.040* | |
H12B | 0.7509 | 1.1568 | 0.0149 | 0.040* | |
O1 | 0.9360 (3) | 1.3630 (9) | 0.1356 (11) | 0.0580 (17) | |
H1 | 0.9357 | 1.4061 | 0.2053 | 0.087* | |
O2 | 0.8931 (5) | 0.9344 (13) | 0.2726 (9) | 0.051 (3) | |
H2 | 0.9153 | 0.9581 | 0.3368 | 0.077* | |
O3 | 0.8689 (4) | 0.4538 (10) | 0.3936 (8) | 0.053 (2) | |
H3A | 0.8521 | 0.3534 | 0.4307 | 0.080* | |
H3B | 0.8286 | 0.4959 | 0.3620 | 0.080* | |
Zn1 | 0.95397 (4) | 1.06209 (11) | 0.13850 (11) | 0.0287 (3) |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.026 (4) | 0.027 (4) | 0.033 (5) | 0.005 (3) | −0.001 (3) | −0.006 (4) |
C2 | 0.029 (3) | 0.030 (4) | 0.031 (4) | −0.006 (3) | −0.012 (5) | 0.002 (5) |
C3 | 0.026 (4) | 0.037 (4) | 0.032 (5) | −0.001 (3) | 0.005 (3) | −0.003 (4) |
C4 | 0.028 (4) | 0.033 (4) | 0.037 (5) | 0.003 (3) | 0.001 (4) | −0.005 (4) |
C5 | 0.036 (4) | 0.032 (5) | 0.038 (5) | 0.004 (4) | 0.001 (4) | −0.0041 (4) |
C6 | 0.025 (4) | 0.035 (4) | 0.033 (5) | 0.005 (3) | −0.008 (3) | 0.000 (4) |
N1 | 0.020 (2) | 0.029 (3) | 0.042 (5) | −0.004 (2) | −0.002 (4) | 0.009 (4) |
N2 | 0.015 (3) | 0.021 (3) | 0.043 (4) | 0.002 (3) | 0.007 (3) | 0.018 (3) |
N3 | 0.022 (3) | 0.027 (3) | 0.045 (4) | −0.002 (3) | 0.003 (3) | 0.009 (3) |
N4 | 0.009 (2) | 0.019 (3) | 0.047 (4) | 0.0011 (18) | 0.008 (4) | 0.004 (4) |
N5 | 0.026 (3) | 0.034 (4) | 0.036 (4) | −0.001 (3) | 0.002 (3) | 0.010 (3) |
N6 | 0.018 (3) | 0.025 (4) | 0.043 (5) | 0.004 (3) | 0.011 (3) | 0.018 (4) |
N7 | 0.020 (3) | 0.028 (4) | 0.025 (5) | 0.002 (3) | −0.003 (3) | −0.008 (3) |
N8 | 0.020 (3) | 0.040 (4) | 0.064 (6) | 0.008 (3) | −0.004 (3) | −0.036 (4) |
N9 | 0.028 (3) | 0.035 (4) | 0.035 (4) | 0.003 (3) | −0.001 (3) | −0.012 (4) |
N10 | 0.021 (3) | 0.029 (3) | 0.045 (5) | 0.000 (3) | −0.008 (3) | −0.022 (3) |
N11 | 0.028 (3) | 0.033 (4) | 0.040 (4) | 0.004 (3) | 0.002 (3) | −0.010 (4) |
N12 | 0.021 (3) | 0.034 (4) | 0.054 (5) | 0.010 (3) | −0.009 (3) | −0.031 (4) |
O1 | 0.057 (3) | 0.046 (3) | 0.071 (5) | 0.007 (3) | 0.000 (6) | 0.009 (6) |
O2 | 0.055 (5) | 0.047 (6) | 0.062 (7) | −0.011 (4) | 0.005 (4) | 0.002 (5) |
O3 | 0.032 (3) | 0.058 (4) | 0.069 (5) | 0.005 (3) | −0.008 (3) | −0.021 (4) |
Zn1 | 0.0224 (4) | 0.0304 (5) | 0.0334 (5) | 0.0006 (3) | −0.0005 (5) | −0.0012 (6) |
C1—N2 | 1.234 (10) | N2—H2A | 0.8600 |
C1—N1 | 1.369 (11) | N2—H2B | 0.8600 |
C1—N3 | 1.377 (10) | N4—H4A | 0.8600 |
C2—N4 | 1.222 (8) | N4—H4B | 0.8600 |
C2—N5 | 1.334 (10) | N6—H6A | 0.8600 |
C2—N3 | 1.366 (10) | N6—H6B | 0.8600 |
C3—N6 | 1.213 (11) | N7—Zn1 | 2.024 (8) |
C3—N1 | 1.341 (11) | N8—H8A | 0.8600 |
C3—N5 | 1.389 (10) | N8—H8B | 0.8600 |
C4—N8 | 1.217 (10) | N10—H10A | 0.8600 |
C4—N7 | 1.354 (11) | N10—H10B | 0.8600 |
C4—N9 | 1.395 (11) | N12—H12A | 0.8600 |
C5—N10 | 1.227 (11) | N12—H12B | 0.8600 |
C5—N11 | 1.353 (12) | O1—Zn1 | 2.018 (6) |
C5—N9 | 1.359 (11) | O1—H1 | 0.8396 |
C6—N12 | 1.221 (11) | O2—Zn1 | 2.041 (10) |
C6—N7 | 1.360 (11) | O2—H2 | 0.8400 |
C6—N11 | 1.387 (11) | O3—H3A | 0.8396 |
N1—Zn1 | 2.021 (6) | O3—H3B | 0.8399 |
N2—C1—N1 | 122.9 (7) | C2—N5—C3 | 124.4 (7) |
N2—C1—N3 | 119.5 (7) | C3—N6—H6A | 120.0 |
N1—C1—N3 | 117.6 (7) | C3—N6—H6B | 120.0 |
N4—C2—N5 | 123.5 (8) | H6A—N6—H6B | 120.0 |
N4—C2—N3 | 121.9 (7) | C4—N7—C6 | 119.9 (8) |
N5—C2—N3 | 114.6 (6) | C4—N7—Zn1 | 121.0 (6) |
N6—C3—N1 | 120.8 (7) | C6—N7—Zn1 | 116.5 (6) |
N6—C3—N5 | 120.7 (8) | C4—N8—H8A | 120.0 |
N1—C3—N5 | 118.4 (8) | C4—N8—H8B | 120.0 |
N8—C4—N7 | 122.0 (8) | H8A—N8—H8B | 120.0 |
N8—C4—N9 | 119.0 (8) | C5—N9—C4 | 122.2 (7) |
N7—C4—N9 | 119.0 (7) | C5—N10—H10A | 120.0 |
N10—C5—N11 | 121.8 (8) | C5—N10—H10B | 120.0 |
N10—C5—N9 | 121.8 (8) | H10A—N10—H10B | 120.0 |
N11—C5—N9 | 116.5 (9) | C5—N11—C6 | 122.8 (7) |
N12—C6—N7 | 121.7 (8) | C6—N12—H12A | 120.0 |
N12—C6—N11 | 119.5 (7) | C6—N12—H12B | 120.0 |
N7—C6—N11 | 118.9 (8) | H12A—N12—H12B | 120.0 |
C3—N1—C1 | 120.6 (6) | Zn1—O1—H1 | 108.8 |
C3—N1—Zn1 | 114.0 (5) | Zn1—O2—H2 | 109.0 |
C1—N1—Zn1 | 125.2 (5) | H3A—O3—H3B | 100.5 |
C1—N2—H2A | 120.0 | O1—Zn1—N1 | 113.4 (3) |
C1—N2—H2B | 120.0 | O1—Zn1—N7 | 107.2 (4) |
H2A—N2—H2B | 120.0 | N1—Zn1—N7 | 112.8 (3) |
C2—N3—C1 | 124.3 (7) | O1—Zn1—O2 | 109.8 (4) |
C2—N4—H4A | 120.0 | N1—Zn1—O2 | 110.2 (4) |
C2—N4—H4B | 120.0 | N7—Zn1—O2 | 102.9 (3) |
H4A—N4—H4B | 120.0 | ||
N6—C3—N1—C1 | 176.7 (9) | N12—C6—N7—Zn1 | 21.0 (12) |
N5—C3—N1—C1 | −0.4 (14) | N11—C6—N7—Zn1 | −158.6 (7) |
N6—C3—N1—Zn1 | 1.3 (12) | N10—C5—N9—C4 | −177.1 (9) |
N5—C3—N1—Zn1 | −175.8 (6) | N11—C5—N9—C4 | 3.0 (13) |
N2—C1—N1—C3 | −178.8 (9) | N8—C4—N9—C5 | −175.8 (9) |
N3—C1—N1—C3 | −0.8 (14) | N7—C4—N9—C5 | 4.9 (13) |
N2—C1—N1—Zn1 | −3.9 (13) | N10—C5—N11—C6 | 172.1 (9) |
N3—C1—N1—Zn1 | 174.1 (6) | N9—C5—N11—C6 | −8.0 (13) |
N4—C2—N3—C1 | 176.1 (10) | N12—C6—N11—C5 | −174.5 (9) |
N5—C2—N3—C1 | −1.6 (15) | N7—C6—N11—C5 | 5.1 (14) |
N2—C1—N3—C2 | 180.0 (9) | C3—N1—Zn1—O1 | −33.1 (9) |
N1—C1—N3—C2 | 1.8 (14) | C1—N1—Zn1—O1 | 151.7 (8) |
N4—C2—N5—C3 | −177.3 (10) | C3—N1—Zn1—N7 | 88.9 (7) |
N3—C2—N5—C3 | 0.4 (15) | C1—N1—Zn1—N7 | −86.3 (9) |
N6—C3—N5—C2 | −176.5 (10) | C3—N1—Zn1—O2 | −156.7 (7) |
N1—C3—N5—C2 | 0.5 (14) | C1—N1—Zn1—O2 | 28.1 (9) |
N8—C4—N7—C6 | 172.8 (10) | C4—N7—Zn1—O1 | 143.5 (7) |
N9—C4—N7—C6 | −8.0 (13) | C6—N7—Zn1—O1 | −54.9 (7) |
N8—C4—N7—Zn1 | −26.2 (13) | C4—N7—Zn1—N1 | 18.0 (8) |
N9—C4—N7—Zn1 | 153.0 (7) | C6—N7—Zn1—N1 | 179.6 (6) |
N12—C6—N7—C4 | −177.2 (9) | C4—N7—Zn1—O2 | −100.7 (7) |
N11—C6—N7—C4 | 3.2 (13) | C6—N7—Zn1—O2 | 60.9 (7) |
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2 | 0.86 | 2.44 | 3.221 (11) | 151 |
N2—H2B···N9i | 0.86 | 2.01 | 2.865 (9) | 174 |
N4—H4A···O1ii | 0.86 | 2.37 | 3.120 (8) | 146 |
N4—H4B···O2iii | 0.86 | 2.29 | 3.089 (11) | 156 |
N6—H6A···O1 | 0.86 | 2.14 | 2.921 (10) | 151 |
N6—H6B···O3iv | 0.86 | 1.91 | 2.670 (9) | 146 |
N8—H8A···N1 | 0.86 | 2.30 | 3.070 (12) | 150 |
N8—H8B···O3v | 0.86 | 2.03 | 2.674 (9) | 131 |
N10—H10A···O2vi | 0.86 | 2.34 | 3.057 (11) | 141 |
N10—H10B···N3v | 0.86 | 1.97 | 2.826 (9) | 176 |
N12—H12A···O1 | 0.86 | 2.31 | 3.111 (10) | 155 |
N12—H12B···N5vii | 0.86 | 2.29 | 2.849 (9) | 123 |
O1—H1···O3viii | 0.84 | 2.46 | 3.209 (14) | 150 |
O2—H2···N8ix | 0.84 | 2.60 | 3.288 (10) | 139 |
O3—H3A···N11x | 0.84 | 2.43 | 2.770 (9) | 105 |
O3—H3B···N11x | 0.84 | 2.23 | 2.770 (9) | 122 |
Symmetry codes: (i) −x+2, −y+1, z+1/2; (ii) x+1/2, −y+5/2, z; (iii) x+1/2, −y+3/2, z; (iv) −x+2, −y+2, z−1/2; (v) −x+2, −y+1, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x−1/2, −y+5/2, z; (viii) x, y+1, z; (ix) −x+2, −y+2, z+1/2; (x) −x+3/2, y−1/2, z+1/2. |
Experimental details
Crystal data | |
Chemical formula | [Zn(OH)2(C3N6H6)2]·H2O |
Mr | 369.70 |
Crystal system, space group | Orthorhombic, Pna21 |
Temperature (K) | 293 |
a, b, c (Å) | 17.531 (4), 6.6251 (13), 11.335 (2) |
V (Å3) | 1316.5 (5) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.91 |
Crystal size (mm) | 0.40 × 0.40 × 0.22 |
Data collection | |
Diffractometer | Enraf–Nonius CAD-4 diffractometer |
Absorption correction | ψ scan (North et al., 1968) |
Tmin, Tmax | 0.508, 0.657 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3467, 1843, 1682 |
Rint | 0.037 |
(sin θ/λ)max (Å−1) | 0.596 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.053, 0.143, 1.09 |
No. of reflections | 1843 |
No. of parameters | 199 |
No. of restraints | 1 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.23, −0.38 |
Absolute structure | Flack (1983), 636 Friedel pairs |
Absolute structure parameter | 0.06 (3) |
Computer programs: CAD-4 Software (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 2000).
D—H···A | D—H | H···A | D···A | D—H···A |
N2—H2A···O2 | 0.86 | 2.44 | 3.221 (11) | 151 |
N2—H2B···N9i | 0.86 | 2.01 | 2.865 (9) | 174 |
N4—H4A···O1ii | 0.86 | 2.37 | 3.120 (8) | 146 |
N4—H4B···O2iii | 0.86 | 2.29 | 3.089 (11) | 156 |
N6—H6A···O1 | 0.86 | 2.14 | 2.921 (10) | 151 |
N6—H6B···O3iv | 0.86 | 1.91 | 2.670 (9) | 146 |
N8—H8A···N1 | 0.86 | 2.30 | 3.070 (12) | 150 |
N8—H8B···O3v | 0.86 | 2.03 | 2.674 (9) | 131 |
N10—H10A···O2vi | 0.86 | 2.34 | 3.057 (11) | 141 |
N10—H10B···N3v | 0.86 | 1.97 | 2.826 (9) | 176 |
N12—H12A···O1 | 0.86 | 2.31 | 3.111 (10) | 155 |
N12—H12B···N5vii | 0.86 | 2.29 | 2.849 (9) | 123 |
O1—H1···O3viii | 0.84 | 2.46 | 3.209 (14) | 150 |
O2—H2···N8ix | 0.84 | 2.60 | 3.288 (10) | 139 |
O3—H3A···N11x | 0.84 | 2.43 | 2.770 (9) | 105 |
O3—H3B···N11x | 0.84 | 2.23 | 2.770 (9) | 122 |
Symmetry codes: (i) −x+2, −y+1, z+1/2; (ii) x+1/2, −y+5/2, z; (iii) x+1/2, −y+3/2, z; (iv) −x+2, −y+2, z−1/2; (v) −x+2, −y+1, z−1/2; (vi) −x+3/2, y−1/2, z−1/2; (vii) x−1/2, −y+5/2, z; (viii) x, y+1, z; (ix) −x+2, −y+2, z+1/2; (x) −x+3/2, y−1/2, z+1/2. |
The transition metal complexes are potential photo-luminescent, paramagnetic and radioactive materials due to their attractive photochemical and photophysical properties(Ford et al., 1999). Low dimensional metal organic complexes have received great attention in recent years for their potential applications in optics, electronics, magnetics, biology, catalyst and medicine (Tandon et al., 1994). The ligand, melamine, has both acceptor and donnor atoms suitable for hydrogen bonding and is analogous to nucleobases that may lead to some interesting new chemotherapeutic possibilities (Zhu et al., 1999).
In the complex I, the zinc cation is coordinated by two melamine and two hydroxyl ligands, forming a distorted tetrahedral geometry, while intramolecular N—H···O and N—H···H hydrogen bonds help to stabilize the molecular conformation (Fig. 1). The two melamine rings make a dihedral angle of 86.3 (9) °. All of the bond lengths and angles are within normal ranges (Allen et al., 1987). The Zn—N bond lengths (2.021 Å and 2.024 Å) in the title compound are slightly shorter than that (2.039 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004). The Zn—O bond lengths (2.018 Å and 2.041 Å) are slightly longer than that (1.984 Å) in the compound [Zn(C3N6H6)(H2O)0.5Cl2](C3N6H6)(H2O) (Yu et al., 2004).
As can be seen from the packing diagram (Fig. 2), intermolecular N—H···O, N—H···N, O—H..O and O—H···N hydrogen bonds(Table 1) link the molecules into a three-dimensional network, which may be effective in the stabilization of the crystal structure.