Download citation
Download citation
link to html
The title compound, C18H34N2O2, has been prepared and its solid-state structure redetermined at low temperature. The crystalline structure contains only RSSR and SRRS diastereo­meric pairs occurring in alternating layers within the crystal, reinforcing the idea that a high degree of diastereoselectivity is attained in the reaction of poly­amines and cyclo­hexene oxide. The compound crystallizes in space group C2/c and the molecule sits on a crystallographic twofold axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536803024826/dn6105sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536803024826/dn6105Isup2.hkl
Contains datablock I

CCDC reference: 227784

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.044
  • wR factor = 0.131
  • Data-to-parameter ratio = 17.1

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Computing details top

Data collection: SMART-NT (Bruker, 1998); cell refinement: SAINT-Plus (Bruker, 1999); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1990); software used to prepare material for publication: SHELXTL (Bruker, 1999).

N,N'-bis(2-hydroxycyclohexyl)-trans-cyclohexane-1,2-diamine top
Crystal data top
C18H34N2O2F(000) = 688
Mr = 310.47Dx = 1.152 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 975 reflections
a = 11.8682 (17) Åθ = 2.4–29.3°
b = 17.512 (3) ŵ = 0.07 mm1
c = 10.2790 (15) ÅT = 123 K
β = 123.074 (2)°Plate, colourless
V = 1790.2 (5) Å30.40 × 0.34 × 0.12 mm
Z = 4
Data collection top
Bruker SMART 1K CCD
diffractometer
1514 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Graphite monochromatorθmax = 26.5°, θmin = 2.3°
ω scansh = 814
5446 measured reflectionsk = 2121
1852 independent reflectionsl = 1210
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.131H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0842P)2 + 0.6514P]
where P = (Fo2 + 2Fc2)/3
1852 reflections(Δ/σ)max = 0.001
108 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.26 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.87482 (11)0.26213 (6)0.24675 (12)0.0180 (3)
H1110.7916 (17)0.2784 (9)0.1813 (18)0.028 (4)*
O11.11126 (8)0.17741 (5)0.47534 (10)0.0233 (3)
H1121.109 (2)0.2033 (11)0.389 (2)0.059 (6)*
C10.97922 (12)0.15161 (7)0.42255 (14)0.0190 (3)
H10.94830.11670.33210.023*
C20.87922 (12)0.21767 (7)0.37096 (13)0.0181 (3)
H20.90820.25190.46180.022*
C30.74017 (13)0.18527 (7)0.31501 (15)0.0213 (3)
H3A0.67490.22770.28210.026*
H3B0.71020.15190.22400.026*
C40.74285 (13)0.13952 (7)0.44323 (15)0.0236 (3)
H4A0.76440.17400.53020.028*
H4B0.65280.11730.40250.028*
C50.84701 (14)0.07554 (8)0.50288 (16)0.0255 (3)
H5A0.81850.03700.42000.031*
H5B0.85260.05010.59220.031*
C60.98533 (13)0.10659 (7)0.55290 (15)0.0232 (3)
H6A1.01890.14010.64460.028*
H6B1.04910.06360.58320.028*
C70.96625 (12)0.32917 (7)0.29608 (14)0.0181 (3)
H71.03810.32290.40860.022*
C80.89101 (13)0.40360 (7)0.27741 (15)0.0216 (3)
H8A0.80940.40600.17100.026*
H8B0.86180.40350.35110.026*
C90.97674 (13)0.47427 (7)0.30632 (14)0.0217 (3)
H9A1.05580.47410.41470.026*
H9B0.92360.52090.29080.026*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0131 (5)0.0228 (6)0.0163 (5)0.0008 (4)0.0068 (4)0.0009 (4)
O10.0152 (5)0.0323 (6)0.0207 (5)0.0000 (4)0.0086 (4)0.0032 (4)
C10.0159 (6)0.0231 (7)0.0185 (6)0.0006 (5)0.0097 (5)0.0015 (5)
C20.0172 (6)0.0208 (6)0.0175 (6)0.0007 (5)0.0103 (5)0.0011 (4)
C30.0174 (6)0.0231 (7)0.0251 (6)0.0001 (5)0.0126 (5)0.0014 (5)
C40.0246 (7)0.0233 (7)0.0295 (7)0.0031 (5)0.0190 (6)0.0038 (5)
C50.0286 (8)0.0231 (7)0.0301 (7)0.0020 (6)0.0194 (6)0.0005 (5)
C60.0239 (7)0.0241 (7)0.0226 (7)0.0011 (5)0.0134 (6)0.0017 (5)
C70.0150 (6)0.0212 (6)0.0168 (6)0.0014 (5)0.0078 (5)0.0009 (4)
C80.0200 (7)0.0243 (7)0.0236 (6)0.0003 (5)0.0139 (5)0.0008 (5)
C90.0226 (7)0.0213 (7)0.0222 (6)0.0001 (5)0.0129 (5)0.0017 (5)
Geometric parameters (Å, º) top
N1—C21.4718 (15)C4—H4B0.9900
N1—C71.4874 (15)C5—C61.5276 (18)
N1—H1110.885 (17)C5—H5A0.9900
O1—C11.4234 (15)C5—H5B0.9900
O1—H1120.99 (2)C6—H6A0.9900
C1—C61.5218 (17)C6—H6B0.9900
C1—C21.5301 (17)C7—C81.5317 (17)
C1—H11.0000C7—C7i1.539 (2)
C2—C31.5298 (17)C7—H71.0000
C2—H21.0000C8—C91.5250 (17)
C3—C41.5278 (18)C8—H8A0.9900
C3—H3A0.9900C8—H8B0.9900
C3—H3B0.9900C9—C9i1.531 (2)
C4—C51.5271 (19)C9—H9A0.9900
C4—H4A0.9900C9—H9B0.9900
C2—N1—C7116.61 (9)C4—C5—H5A109.4
C2—N1—H111109.0 (10)C6—C5—H5A109.4
C7—N1—H111108.0 (10)C4—C5—H5B109.4
C1—O1—H112108.5 (12)C6—C5—H5B109.4
O1—C1—C6108.37 (10)H5A—C5—H5B108.0
O1—C1—C2112.12 (10)C1—C6—C5111.22 (10)
C6—C1—C2110.61 (10)C1—C6—H6A109.4
O1—C1—H1108.6C5—C6—H6A109.4
C6—C1—H1108.6C1—C6—H6B109.4
C2—C1—H1108.6C5—C6—H6B109.4
N1—C2—C3110.47 (10)H6A—C6—H6B108.0
N1—C2—C1110.74 (9)N1—C7—C8111.22 (10)
C3—C2—C1108.87 (10)N1—C7—C7i108.55 (8)
N1—C2—H2108.9C8—C7—C7i112.75 (8)
C3—C2—H2108.9N1—C7—H7108.1
C1—C2—H2108.9C8—C7—H7108.1
C4—C3—C2111.09 (10)C7i—C7—H7108.1
C4—C3—H3A109.4C9—C8—C7112.64 (10)
C2—C3—H3A109.4C9—C8—H8A109.1
C4—C3—H3B109.4C7—C8—H8A109.1
C2—C3—H3B109.4C9—C8—H8B109.1
H3A—C3—H3B108.0C7—C8—H8B109.1
C5—C4—C3111.25 (10)H8A—C8—H8B107.8
C5—C4—H4A109.4C8—C9—C9i109.29 (9)
C3—C4—H4A109.4C8—C9—H9A109.8
C5—C4—H4B109.4C9i—C9—H9A109.8
C3—C4—H4B109.4C8—C9—H9B109.8
H4A—C4—H4B108.0C9i—C9—H9B109.8
C4—C5—C6111.08 (11)H9A—C9—H9B108.3
C7—N1—C2—C3146.80 (10)O1—C1—C6—C5178.75 (10)
C7—N1—C2—C192.50 (12)C2—C1—C6—C557.97 (13)
O1—C1—C2—N157.93 (12)C4—C5—C6—C154.68 (14)
C6—C1—C2—N1179.02 (9)C2—N1—C7—C899.60 (12)
O1—C1—C2—C3179.58 (9)C2—N1—C7—C7i135.80 (11)
C6—C1—C2—C359.33 (12)N1—C7—C8—C9172.39 (9)
N1—C2—C3—C4179.51 (9)C7i—C7—C8—C950.19 (16)
C1—C2—C3—C458.67 (13)C7—C8—C9—C9i58.23 (15)
C2—C3—C4—C556.49 (14)C8—C7—C7i—C8i45.3 (2)
C3—C4—C5—C653.77 (14)N1—C7—C7i—N1i67.27 (17)
Symmetry code: (i) x+2, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H111···O1ii0.885 (17)2.172 (17)3.0273 (14)162.2 (14)
O1—H112···N1i0.99 (2)1.82 (2)2.8021 (14)170.3 (17)
C8—H8A···O1ii0.992.563.3800 (16)140
Symmetry codes: (i) x+2, y, z+1/2; (ii) x1/2, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds