Download citation
Download citation
link to html
The anti­biotic nitro­furan­toin {systematic name: (E)-1-[(5-nitro-2-fur­yl)methyl­idene­amino]­imidazolidine-2,4-dione} is not only used for the treatment of urinary tract infections, but also illegally applied as an animal food additive. Since derivatives of 2,6-diamino­pyridine might serve as artificial receptors for its recognition, we crystallized one potential drug–receptor complex, nitro­furan­toin–2,6-diacetamido­pyridine (1/1), C8H6N4O5·C9H11N3O2, (I·II). It is characterized by one N—H...N and two N—H...O hydrogen bonds and confirms a previous NMR study. During the crystallization screening, several new pseudopolymorphs of both components were obtained, namely a nitro­furan­toin dimethyl sulfoxide monosolvate, C8H6N4O5·C2H6OS, (Ia), a nitro­furan­toin dimethyl sulfoxide hemisolvate, C8H6N4O5·0.5C2H6OS, (Ib), two nitro­furan­toin dimethyl­acetamide monosolvates, C8H6N4O5·C4H9NO, (Ic) and (Id), and a nitro­furan­toin dimethyl­acetamide disolvate, C8H6N4O5·2C4H9NO, (Ie), as well as a 2,6-diacetamido­pyridine dimethyl­formamide monosolvate, C9H11N3O2·C3H7NO, (IIa). Of these, (Ia), (Ic) and (Id) were formed during cocrystallization attempts with 1-(4-fluorophenyl)biguanide hydrochloride. Obviously nitro­furan­toin prefers the higher-energy conformation in the crystal structures, which all exhibit N—H...O and C—H...O hydrogen-bond inter­actions. The latter are especially important for the crystal packing. 2,6-Diacetamido­pyridine shows some conformational flexibility depending on the hydrogen-bond pattern.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110046755/eg3064sup1.cif
Contains datablocks Ia, Ib, Ic, Id, Ie, II, I.II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064Icsup4.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064Idsup5.hkl
Contains datablock Id

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064Iesup6.hkl
Contains datablock Ie

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064IIsup7.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110046755/eg3064I.IIsup8.hkl
Contains datablock I.II

CCDC references: 813494; 813495; 813496; 813497; 813498; 813499; 813500

Comment top

Nitrofurantoin is an antibacterial drug used for the treatment of urinary tract infections. It is reduced by bacterial flavoproteins to reactive intermediates, which inhibit the processes of protein synthesis, aerobic energy metabolism as well as DNA, RNA and cell wall synthesis (Cadwallader & Jun, 1976). The resistance of E. coli to other antibiotics has led to an increased interest in this drug in spite of its severe side effects (Cunha, 2006). In many countries, it is illegally applied as an animal food additive, which can further be passed to humans through the food chain and cause plenty of diseases. Since the present quantification of nitrofurantoin is time-consuming and costly, diaminopyridine derivatives are developed as artificial receptors for its recognition. The drug–receptor complex is characterized by one N—H···N and two N—H···O hydrogen bonds and has been examined by NMR spectroscopy (Athikomrattanakul et al., 2009).

A study of the Cambridge Structural Database (CSD, Version 5.31 of November 2009, plus three updates; Allen, 2002) revealed that similar hydrogen-bond patterns are observed in cocrystals of 2,6-diaminopyridine derivatives and six-membered ring compounds with complementary functional groups [CSD refcodes: DOPCUG (Feibush et al., 1986), FODTIB (Hamilton & Van Engen, 1987), MAWPUW (Li et al., 2005), VABVID and VABVOJ (Muehldorf et al., 1988), XESSAQ (Spange et al., 2006)]. Since no such cocrystal with five-membered ring compounds has been reported, we cocrystallized nitrofurantoin and 2,6-diacetaminopyridine. In addition to the desired cocrystal, (I.II), five pseudopolymorphs of nitrofurantoin crystallized during the various cocrystallization experiments: a dimethyl sulfoxide solvate, (Ia), a dimethyl sulfoxide hemisolvate, (Ib), two dimethylacetamide solvates, (Ic) and (Id), and a dimethylacetamide disolvate, (Ie). Furthermore, a 2,6-diacetaminopyridine dimethylformamide solvate, (II), was obtained.

Compounds (Ia) and (Ib) formed during cocrystallization attempts from dimethyl sulfoxide (DMSO). (Ia) crystallized in the monoclinic space group P21/c with one nitrofurantoin and one DMSO molecule in the asymmetric unit. Both molecules are linked by an N—H···O hydrogen bond (Fig. 1). C—H···O interactions between nitrofurantoin molecules lead to ribbons running along the a axis, which are further stabilized by van der Waals interactions to a herringbone pattern (Fig. 2). Compound (Ib) crystallized in the monoclinic space group C2/c as a hemisolvate. The DMSO molecule lies on a twofold axis with the S atom disordered over two positions (Fig. 3). The packing of (Ib) shows zigzag chains of C—H···O-bonded nitrofurantoin molecules running along the a axis (Fig. 4).

Crystallization attempts from dimethylacetamide (DMAC) yielded another three nitrofurantoin solvates, (Ic), (Id) and (Ie). (Ic) and (Id) crystallized with one nitrofurantoin and one DMAC molecule in the asymmetric unit (Figs. 5 and 6). In both structures, the DMAC molecule is disordered over two sites with all non-hydrogen atoms of these two sites in a common plane (r.m.s. deviation = 0.024 Å). (Ic) crystallized in the triclinic space group P1, (Id) in the monoclinic space group P21/c. A similar hydrogen-bond pattern is observed: the nitrofurantoin molecules are linked to each other by C—H···O and to the solvent molecules by N—H···O interactions. However, the packing motifs of the two polymorphs are quite different. Nitrofurantoin and solvent molecules form ribbons parallel to the (0 2 3) plane in (Ic) and zigzag chains running along the b axis in (Id) (Figs. 7 and 8). In structure (Ie), which crystallized in the monoclinic space group P21/c, there are two independent solvent molecules (Fig. 9). Again, each DMAC molecule is disordered over two sites with a planar arrangement of all non-hydrogen atoms (r.m.s. deviation = 0.024 and 0.038 Å, respectively). The nitrofurantoin molecules are linked to one of these by an N—H···O and to the other one by a C—H···O hydrogen bond. The packing shows layers parallel to the (5 0 2) plane (Fig. 10).

In the five pseudopolymorphs, (Ia)–(Ie), the configuration of nitrofurantoin with respect to the C7N6 double bond is E with C7–H pointing towards the methylene group of the imidazolidinedione ring. The dihedral angle between the planes through the two rings varies from 5.9 (1) to 12.4 (1)°. Since also the nitro group is rotated by less than 10° with respect to the furan ring, the molecules are almost planar (Table 10). Due to the rotatable C7—C8 bond, nitrofurantoin can adopt two forms: an antiperiplanar conformation between N6 and the furan O9 atom [as in (Ib)] and a synperiplanar conformation (observed in the other four pseudopolymorphs). According to an ab initio energy calculation with geometry optimization [program Gaussian; basis set: RHF/6–31+G(d); Frisch et al., 2004], the synperiplanar conformation is by 11.8 kJ mol-1 less stable than the antiperiplanar one. Since high-energy conformers are rarely observed in crystal structures (Weng et al., 2008), we examined all five entries of nitrofurantoin in the CSD [refcodes: HAXBUD, HAXBUD01 (Pienaar et al., 1993a), LABJON (Bertolasi et al., 1993), LABJON01 and LABJON02 (Pienaar et al., 1993b)], which confirmed that apparently the higher-energy conformer is preferred in the solid state. A detailed analysis with our force-field program MOMO (Wagner et al., 2009), which also clearly favoured the antiperiplanar conformation, yielded that the energy difference is caused by electrostatic interactions. A closer examination of the molecular charge distribution calculated by Gaussian shows that the positive and negative charges are equally distributed in the antiperiplanar conformation, while in the synperiplanar one the molecule has positive and negative sides (Fig. 11). This may promote a more compact crystal packing, which would explain why the less stable conformer is favoured in the solid phase.

During the preparation of the nitrofurantoin receptor 2,6-diacetaminopyridine it crystallized as a dimethylformamide (DMF) solvate, (II), in the monoclinic space group P21/c. Both methyl groups of the 2,6-diacetaminopyridine molecule show rotational disorder and are antiperiplanar to the pyridine ring atoms. Thus the two N—H bonds are directed to the same side as the pyridine N atom (Fig. 12). The 2,6-diacetaminopyridine and the DMF molecule are connected by an N—H···O hydrogen bond from one amide group. These entities form zigzag chains along the c axis stabilized by further N—H···O bonds between the other amide groups (Fig. 13). Similar conformations are observed in the crystal structures of solvent-free 2,6-diacetaminopyridine [refcodes: DOPDAN (Feibush et al., 1986) and DOPDAN01 (Mahapatra et al., 2009)].

The desired complex (I.II) crystallized in the monoclinic space group P21/n, with nitrofurantoin and 2,6-diacetaminopyridine connected by one N—H···N and two N—H···O bonds (Fig. 14). As in (Ib), the nitrofurantoin molecule adopts the antiperiplanar conformation as well as the usual E configuration of the CN double bond. The nitro group and the furan ring are coplanar and the planes through the furan and the imidazolidinedione moiety form a dihedral angle of 9.0 (1)°. Similar to (II), the carbonyl O atoms of the 2,6-diacetaminopyridine molecule point away from the pyridine N atom. One of the amide groups is coplanar with the pyridine ring, while the other one encloses a dihedral angle of 16.7 (1)° with it. The crystal packing shows layers parallel to the (1 0 3) plane, which are stabilized by C—H···O interactions between both components (Fig. 15).

Nitrofurantoin forms an N—H···O and a C—H···O hydrogen bond in all (pseudo)polymorphs. Interestingly, the N—H···O bond connects two nitrofurantoin molecules only in the solvent-free forms (LABJON, LABJON01 and LABJON02); in the solvates [(Ia)–(Ie), HAXBUD, HAXBUD01], it is formed to the solvent molecule. The C—H···O interaction (always with participation of the C—H bond of the hydrazone moiety N—NC—H) usually connects two nitrofurantoin molecules and thus plays a significant role for the crystal packing, also for that of the complex (I.II). Even though its molecular structure in solvent-free forms and the dimethylformamide solvate (II) is very similar, 2,6-diacetaminopyridine shows some conformational flexibility. The dihedral angle between the planes through the amide groups and the pyridine ring varies from 2.8 to 33.4° depending on the hydrogen-bond interactions. In the cocrystal (I.II), the hydrogen-bonded complexes are further linked by C—H···O interactions to the amide. As a result of that, the 2,6-diacetaminopyridine molecule is not planar. Altogether, since no crystal structure of a complex between nitrofurantoin and a 2,6-diaminopyridine derivative has yet been published, the cocrystal (I.II) confirms the NMR study (Athikomrattanakul et al., 2009) of this drug–receptor complex.

Related literature top

For related literature, see: Allen (2002); Athikomrattanakul et al. (2009); Bertolasi et al. (1993); Cadwallader & Jun (1976); Cunha (2006); Feibush et al. (1986); Frisch et al. (2004); Hamilton & Van Engen (1987); Li et al. (2005); Mahapatra et al. (2009); Muehldorf et al. (1988); Pienaar et al. (1993a, 1993b); Spange et al. (2006); Wagner et al. (2009); Weng et al. (2008).

Experimental top

Single crystals of (Ia), (Ic) and (Id) were obtained by cocrystallization of commercially available nitrofurantoin with 1-(4-fluorophenyl)biguanide hydrochloride (Table 8). Solvent evaporation experiments with mixtures of nitrofurantoin and 2,6-diacetaminopyridine yielded (Ib), (Ie) and the cocrystal, (I.II) (Table 9).

For the preparation of compound (II), 2,6-diaminopyridine (5 g, 0.046 mol) was added to a solution of acetic acid anhydride (10.4 ml, 0.055 mol) in 1,4-dioxane (100 ml) under a nitrogen atmosphere. The reaction mixture was heated at reflux for 24 h. After cooling to room temperature, the solvent was removed using a rotary evaporator. Unreacted 2,6-diaminopyridine and acetic acid anhydride were rinsed away with water. 11.5 mg of 2,6-diacetaminopyridine dissolved in dimethylformamide (200 µl) at 323 K yielded (II).

Refinement top

Crystals (Ia), (Id) and (I.II) show Rint-values higher than 0.100: 0.176 (Ia), 0.147 (Id) and 0.138 (I.II), although the data sets were collected with high redundancy: 6.52 (Ia), 6.32 (Id) and 8.98 (I.II). (Ia) and (Id) did not diffract very strongly [Rσ values: 0.106 (Ia) and 0.099 (Id)], but there is no obvious reason for (I.II). However, all other important quality criteria are satisfied.

The H atoms, except those bonded to disordered solvent atoms, were initially located by difference Fourier synthesis. Subsequently, H atoms bonded to C atoms were refined using a riding model, with methyl C—H = 0.98 Å, secondary C—H = 0.99 Å and aromatic C—H = 0.95 Å and with Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for secondary and aromatic H. H atoms bonded to N atoms were refined isotropically.

In (Ib), the O atom of the dimethyl sulfoxide lies on a twofold axis so that the S atom is disordered. In (Ic), (Id) and (Ie), all solvent atoms except O are disordered over two positions, but the disordered methyl C atoms coincide pairwise thus forming a rectangular arrangement together with the O atom. The site-occupation factors for the major occupied orientations are 0.646 (7) in (Ic), 0.53 (1) in (Id), 0.926 (5) and 0.882 (6) in (Ie). For the minor occupied orientations of both solvent molecules in (Ie), similarity restraints were applied and the carbonyl C and the N atoms were refined isotropically.

In (II), the methyl groups of 2,6-diacetaminopyridine are rotationally disordered over two positions, with site-occupation factors of 0.58 (5) and 0.66 (2) for the major occupied orientations.

Computing details top

For all compounds, data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA (Stoe & Cie, 2001); data reduction: X-AREA (Stoe & Cie, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008) and XP (Sheldrick, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figures top
[Figure 1] Fig. 1. A perspective view of (Ia), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···O hydrogen bond.
[Figure 2] Fig. 2. A packing diagram for (Ia). N—H···O and C—H···O hydrogen bonds are shown as dashed lines.
[Figure 3] Fig. 3. A perspective view of (Ib), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···O hydrogen bond. The dimethyl sulfoxide solvent molecule lies on a twofold axis; only one of the two disordered positions is shown.
[Figure 4] Fig. 4. A packing diagram for (Ib). N—H···O and C—H···O hydrogen bonds are shown as dashed lines. Only one site of the disordered dimethyl sulfoxide is shown.
[Figure 5] Fig. 5. A perspective view of (Ic), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···O hydrogen bond. The dimethylacetamide solvent molecule is disordered; only the major occupied site is shown.
[Figure 6] Fig. 6. A perspective view of (Id), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···O hydrogen bond. The dimethylacetamide solvent molecule is disordered; only the major occupied site is shown.
[Figure 7] Fig. 7. A partial packing diagram for (Ic). N—H···O and C—H···O hydrogen bonds are shown as dashed lines. The minor occupied site of the dimethylacetamide solvent molecules has been omitted.
[Figure 8] Fig. 8. A partial packing diagram for (Id). N—H···O and C—H···O hydrogen bonds are shown as dashed lines. The minor occupied site of the dimethylacetamide solvent molecules has been omitted.
[Figure 9] Fig. 9. A perspective view of (Ie), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate hydrogen bonds. The dimethylacetamide solvent molecules are disordered; only the major occupied sites are shown.
[Figure 10] Fig. 10. A partial packing diagram for (Ie). N—H···O and C—H···O hydrogen bonds are shown as dashed lines. The minor occupied sites of the dimethylacetamide solvent molecules have been omitted.
[Figure 11] Fig. 11. (a) The molecular charge distribution of the antiperiplanar conformer of nitrofurantoin. (In the electronic version of the paper, regions of high relative negative charge are red and those of high relative positive charge are blue.) The electrostatic potential was calculated on an isosurface at 0.0004 e/b3; the colour scale ranges from -0.07 to +0.07 h (e: elementary charge; b: bohr, the atomic unit of length; h: hartree, the atomic unit of energy). (b) The molecular charge distribution of the synperiplanar conformer of nitrofurantoin. (In the electronic version of the paper, regions of high relative negative charge are red and those of high relative positive charge are blue.) The electrostatic potential was calculated on an isosurface at 0.0004 e/b3; the colour scale ranges from -0.07 to +0.07 h (e: elementary charge; b: bohr, the atomic unit of length; h: hartree, the atomic unit of energy). (c) The colour scale for the molecular charge distribution.
[Figure 12] Fig. 12. A perspective view of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed line indicates the N—H···O hydrogen bond. The rotational disorder of the methyl groups is not shown.
[Figure 13] Fig. 13. A partial packing diagram for (II). Hydrogen bonds are shown as dashes lines.
[Figure 14] Fig. 14. A perspective view of (I.II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii. The dashed lines indicate hydrogen bonds.
[Figure 15] Fig. 15. A partial packing diagram for (I.II). N—H···O, N—H···N and C—H···O hydrogen bonds are shown as dashed lines.
(Ia) (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dione dimethyl sulfoxide monosolvate top
Crystal data top
C8H6N4O5·C2H6OSF(000) = 656
Mr = 316.30Dx = 1.520 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 6.6257 (4) ÅCell parameters from 5085 reflections
b = 26.488 (2) Åθ = 3.5–25.8°
c = 8.0032 (5) ŵ = 0.27 mm1
β = 100.347 (5)°T = 173 K
V = 1381.73 (16) Å3Block, yellow
Z = 40.40 × 0.20 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2437 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.176
ω scansθmax = 25.0°, θmin = 3.5°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 77
Tmin = 0.900, Tmax = 0.948k = 3131
15878 measured reflectionsl = 99
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.89 w = 1/[σ2(Fo2) + (0.0422P)2]
where P = (Fo2 + 2Fc2)/3
2437 reflections(Δ/σ)max < 0.001
196 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.53 e Å3
Crystal data top
C8H6N4O5·C2H6OSV = 1381.73 (16) Å3
Mr = 316.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.6257 (4) ŵ = 0.27 mm1
b = 26.488 (2) ÅT = 173 K
c = 8.0032 (5) Å0.40 × 0.20 × 0.20 mm
β = 100.347 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2437 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1588 reflections with I > 2σ(I)
Tmin = 0.900, Tmax = 0.948Rint = 0.176
15878 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.110H atoms treated by a mixture of independent and constrained refinement
S = 0.89Δρmax = 0.28 e Å3
2437 reflectionsΔρmin = 0.53 e Å3
196 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7086 (4)0.37863 (10)0.4536 (4)0.0263 (6)
H10.808 (6)0.3612 (14)0.417 (5)0.031 (10)*
C20.7313 (5)0.41820 (12)0.5674 (4)0.0255 (7)
O210.8912 (3)0.43666 (10)0.6389 (3)0.0374 (6)
N30.5355 (4)0.43282 (10)0.5848 (4)0.0247 (6)
C40.3781 (5)0.40286 (13)0.4784 (4)0.0283 (8)
H4A0.28740.42420.39530.034*
H4B0.29390.38390.54750.034*
C50.5071 (5)0.36756 (13)0.3910 (5)0.0292 (8)
O510.4452 (4)0.33599 (10)0.2849 (4)0.0421 (7)
N60.5106 (4)0.47279 (9)0.6863 (3)0.0230 (6)
C70.3239 (5)0.48193 (12)0.7029 (4)0.0240 (7)
H70.21550.46140.64570.029*
C80.2799 (4)0.52292 (12)0.8074 (4)0.0240 (7)
O90.4395 (3)0.55309 (8)0.8855 (3)0.0239 (5)
C100.3505 (5)0.58815 (12)0.9710 (4)0.0278 (8)
C110.1459 (5)0.58211 (13)0.9555 (4)0.0300 (8)
H110.05310.60211.00490.036*
C120.1002 (5)0.53948 (12)0.8496 (4)0.0276 (8)
H120.03150.52490.81400.033*
N130.4882 (5)0.62297 (11)1.0693 (4)0.0341 (7)
O140.6726 (4)0.61732 (10)1.0802 (4)0.0434 (7)
O150.4070 (4)0.65681 (10)1.1426 (4)0.0463 (7)
O1A1.0023 (3)0.31445 (9)0.3776 (3)0.0315 (6)
S2A1.01025 (13)0.28756 (3)0.21177 (11)0.0271 (2)
C3A1.1797 (6)0.23559 (14)0.2655 (5)0.0391 (9)
H3A11.31900.24810.30610.059*
H3A21.17870.21440.16490.059*
H3A31.13470.21560.35500.059*
C4A0.7764 (6)0.25235 (14)0.1625 (5)0.0383 (9)
H4A10.76510.22960.25700.058*
H4A20.77640.23250.05910.058*
H4A30.65960.27570.14460.058*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0224 (14)0.0276 (15)0.0298 (16)0.0008 (12)0.0070 (11)0.0046 (13)
C20.0246 (16)0.0270 (17)0.0261 (18)0.0005 (14)0.0077 (14)0.0016 (15)
O210.0181 (12)0.0494 (16)0.0444 (16)0.0073 (11)0.0047 (11)0.0165 (13)
N30.0180 (12)0.0218 (13)0.0341 (16)0.0031 (10)0.0044 (11)0.0074 (12)
C40.0221 (16)0.0278 (18)0.035 (2)0.0033 (13)0.0041 (14)0.0080 (15)
C50.0236 (16)0.0275 (18)0.037 (2)0.0052 (14)0.0054 (14)0.0039 (16)
O510.0342 (14)0.0426 (16)0.0507 (17)0.0113 (12)0.0109 (12)0.0238 (14)
N60.0246 (14)0.0198 (13)0.0252 (15)0.0002 (11)0.0058 (11)0.0008 (11)
C70.0216 (16)0.0198 (15)0.0302 (19)0.0030 (12)0.0032 (13)0.0004 (14)
C80.0203 (15)0.0217 (16)0.0287 (18)0.0006 (12)0.0010 (13)0.0030 (14)
O90.0216 (11)0.0206 (11)0.0287 (13)0.0001 (9)0.0026 (10)0.0045 (10)
C100.0323 (18)0.0254 (18)0.0257 (18)0.0040 (13)0.0055 (14)0.0011 (15)
C110.0325 (18)0.0292 (18)0.0297 (19)0.0067 (14)0.0096 (15)0.0020 (15)
C120.0236 (17)0.0260 (18)0.033 (2)0.0037 (13)0.0054 (14)0.0056 (15)
N130.0414 (18)0.0266 (16)0.0345 (18)0.0015 (13)0.0069 (13)0.0039 (14)
O140.0334 (15)0.0403 (16)0.0531 (18)0.0056 (11)0.0012 (12)0.0062 (13)
O150.0623 (17)0.0329 (15)0.0445 (16)0.0024 (13)0.0120 (14)0.0132 (13)
O1A0.0326 (13)0.0329 (13)0.0306 (14)0.0056 (10)0.0097 (10)0.0077 (11)
S2A0.0302 (4)0.0244 (4)0.0286 (4)0.0028 (4)0.0105 (3)0.0009 (4)
C3A0.043 (2)0.0307 (19)0.043 (2)0.0124 (16)0.0065 (17)0.0025 (18)
C4A0.040 (2)0.036 (2)0.042 (2)0.0081 (16)0.0148 (17)0.0073 (18)
Geometric parameters (Å, º) top
N1—C51.371 (4)C10—C111.348 (5)
N1—C21.379 (4)C10—N131.430 (4)
N1—H10.89 (4)C11—C121.412 (5)
C2—O211.213 (4)C11—H110.9500
C2—N31.384 (4)C12—H120.9500
N3—N61.362 (4)N13—O141.218 (4)
N3—C41.457 (4)N13—O151.245 (4)
C4—C51.520 (5)O1A—S2A1.516 (2)
C4—H4A0.9900S2A—C3A1.780 (3)
C4—H4B0.9900S2A—C4A1.791 (4)
C5—O511.209 (4)C3A—H3A10.9800
N6—C71.290 (4)C3A—H3A20.9800
C7—C81.432 (4)C3A—H3A30.9800
C7—H70.9500C4A—H4A10.9800
C8—O91.382 (4)C4A—H4A20.9800
C8—C121.366 (4)C4A—H4A30.9800
O9—C101.351 (4)
C5—N1—C2112.8 (3)C11—C10—N13131.2 (3)
C5—N1—H1120 (2)O9—C10—N13115.4 (3)
C2—N1—H1128 (2)C10—C11—C12104.7 (3)
O21—C2—N3126.5 (3)C10—C11—H11127.6
O21—C2—N1126.9 (3)C12—C11—H11127.6
N3—C2—N1106.6 (3)C8—C12—C11107.6 (3)
N6—N3—C2119.6 (2)C8—C12—H12126.2
N6—N3—C4128.4 (2)C11—C12—H12126.2
C2—N3—C4112.0 (3)O14—N13—O15124.5 (3)
N3—C4—C5101.6 (2)O14—N13—C10119.5 (3)
N3—C4—H4A111.4O15—N13—C10115.9 (3)
C5—C4—H4A111.4O1A—S2A—C3A105.77 (17)
N3—C4—H4B111.4O1A—S2A—C4A105.81 (16)
C5—C4—H4B111.4C3A—S2A—C4A97.69 (19)
H4A—C4—H4B109.3S2A—C3A—H3A1109.5
O51—C5—N1126.1 (3)S2A—C3A—H3A2109.5
O51—C5—C4126.9 (3)H3A1—C3A—H3A2109.5
N1—C5—C4106.9 (3)S2A—C3A—H3A3109.5
C7—N6—N3115.4 (3)H3A1—C3A—H3A3109.5
N6—C7—C8120.1 (3)H3A2—C3A—H3A3109.5
N6—C7—H7119.9S2A—C4A—H4A1109.5
C8—C7—H7119.9S2A—C4A—H4A2109.5
O9—C8—C12109.4 (3)H4A1—C4A—H4A2109.5
O9—C8—C7118.9 (3)S2A—C4A—H4A3109.5
C12—C8—C7131.7 (3)H4A1—C4A—H4A3109.5
C10—O9—C8105.0 (2)H4A2—C4A—H4A3109.5
C11—C10—O9113.3 (3)
C5—N1—C2—O21178.1 (3)N6—C7—C8—O91.8 (5)
C5—N1—C2—N32.0 (4)N6—C7—C8—C12177.9 (3)
O21—C2—N3—N62.4 (5)C12—C8—O9—C101.2 (3)
N1—C2—N3—N6177.7 (3)C7—C8—O9—C10179.0 (3)
O21—C2—N3—C4179.3 (3)C8—O9—C10—C111.0 (4)
N1—C2—N3—C40.8 (4)C8—O9—C10—N13177.5 (3)
N6—N3—C4—C5176.1 (3)O9—C10—C11—C120.4 (4)
C2—N3—C4—C50.5 (4)N13—C10—C11—C12176.1 (3)
C2—N1—C5—O51177.0 (4)O9—C8—C12—C111.0 (4)
C2—N1—C5—C42.3 (4)C7—C8—C12—C11179.2 (3)
N3—C4—C5—O51177.7 (4)C10—C11—C12—C80.4 (4)
N3—C4—C5—N11.6 (4)C11—C10—N13—O14170.7 (4)
C2—N3—N6—C7176.1 (3)O9—C10—N13—O145.0 (5)
C4—N3—N6—C77.5 (5)C11—C10—N13—O157.4 (5)
N3—N6—C7—C8179.7 (3)O9—C10—N13—O15176.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.89 (4)1.86 (4)2.733 (4)167 (3)
C7—H7···O21i0.952.243.065 (4)145
Symmetry code: (i) x1, y, z.
(Ib) (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dione dimethyl sulfoxide hemisolvate top
Crystal data top
C8H6N4O5·0.5(C2H6OS)F(000) = 1144
Mr = ?Dx = 1.633 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 16.1710 (11) ÅCell parameters from 10186 reflections
b = 13.7985 (8) Åθ = 3.6–26.1°
c = 10.3465 (8) ŵ = 0.22 mm1
β = 102.358 (6)°T = 173 K
V = 2255.2 (3) Å3Block, yellow
Z = 80.50 × 0.40 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2116 independent reflections
Radiation source: fine-focus sealed tube1806 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.098
ω scansθmax = 25.6°, θmin = 3.6°
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
h = 1919
Tmin = 0.896, Tmax = 0.957k = 1616
13781 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.0611P)2 + 0.1688P]
where P = (Fo2 + 2Fc2)/3
2116 reflections(Δ/σ)max < 0.001
181 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.32 e Å3
Crystal data top
C8H6N4O5·0.5(C2H6OS)V = 2255.2 (3) Å3
Mr = ?Z = 8
Monoclinic, C2/cMo Kα radiation
a = 16.1710 (11) ŵ = 0.22 mm1
b = 13.7985 (8) ÅT = 173 K
c = 10.3465 (8) Å0.50 × 0.40 × 0.20 mm
β = 102.358 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2116 independent reflections
Absorption correction: multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
1806 reflections with I > 2σ(I)
Tmin = 0.896, Tmax = 0.957Rint = 0.098
13781 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.28 e Å3
2116 reflectionsΔρmin = 0.32 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.55503 (9)0.28434 (10)0.47191 (13)0.0248 (3)
H10.5384 (16)0.2546 (17)0.399 (3)0.049 (6)*
C20.56931 (10)0.23377 (11)0.59100 (15)0.0223 (3)
O210.56260 (9)0.14817 (8)0.60474 (11)0.0333 (3)
N30.59366 (9)0.30307 (9)0.68891 (12)0.0230 (3)
C40.59851 (11)0.39981 (11)0.63492 (15)0.0249 (4)
H4A0.65690.42580.65820.030*
H4B0.55960.44530.66610.030*
C50.57099 (10)0.38098 (12)0.48737 (15)0.0251 (3)
O510.56544 (8)0.44117 (9)0.39996 (11)0.0365 (3)
N60.61420 (8)0.27458 (9)0.81746 (12)0.0221 (3)
C70.64003 (10)0.34106 (11)0.90363 (14)0.0228 (3)
H70.64380.40670.87800.027*
C80.66312 (10)0.31228 (11)1.04115 (14)0.0221 (3)
O90.69640 (7)0.38476 (8)1.12747 (10)0.0243 (3)
C100.71209 (10)0.34230 (12)1.24842 (14)0.0236 (3)
C110.69100 (11)0.24745 (12)1.24310 (16)0.0269 (4)
H110.69630.20351.31500.032*
C120.65936 (10)0.22773 (12)1.10748 (15)0.0267 (4)
H120.63930.16711.06980.032*
N130.74641 (9)0.40287 (10)1.35737 (13)0.0270 (3)
O140.76313 (8)0.48756 (9)1.33718 (11)0.0331 (3)
O150.75653 (8)0.36511 (10)1.46809 (11)0.0367 (3)
O1A0.50000.16833 (11)0.25000.0283 (4)
S2A0.52129 (5)0.06598 (5)0.19909 (7)0.0209 (2)0.50
C3A0.42509 (12)0.00521 (12)0.15938 (17)0.0328 (4)
H3AA0.40970.05980.18360.049*0.50
H3AB0.37380.04130.11940.049*0.50
H3AC0.46190.00030.09550.049*0.50
H3AD0.43410.05970.12650.049*0.50
H3AE0.40110.00000.23830.049*0.50
H3AF0.38600.04130.09050.049*0.50
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0287 (7)0.0287 (7)0.0149 (6)0.0048 (6)0.0001 (5)0.0006 (5)
C20.0244 (8)0.0246 (8)0.0179 (7)0.0015 (6)0.0045 (6)0.0009 (6)
O210.0521 (8)0.0220 (6)0.0249 (6)0.0049 (5)0.0062 (5)0.0017 (5)
N30.0326 (7)0.0206 (6)0.0139 (6)0.0012 (5)0.0008 (5)0.0017 (5)
C40.0331 (9)0.0211 (8)0.0179 (7)0.0007 (6)0.0001 (6)0.0027 (6)
C50.0250 (8)0.0284 (8)0.0194 (7)0.0014 (6)0.0007 (6)0.0045 (6)
O510.0467 (8)0.0360 (7)0.0224 (6)0.0034 (6)0.0026 (5)0.0118 (5)
N60.0262 (7)0.0245 (7)0.0144 (6)0.0012 (5)0.0017 (5)0.0030 (5)
C70.0276 (8)0.0224 (7)0.0176 (7)0.0005 (6)0.0029 (6)0.0014 (6)
C80.0232 (8)0.0254 (8)0.0170 (7)0.0009 (6)0.0024 (6)0.0024 (6)
O90.0306 (6)0.0253 (6)0.0150 (5)0.0010 (4)0.0006 (4)0.0006 (4)
C100.0255 (8)0.0302 (8)0.0139 (7)0.0026 (6)0.0015 (6)0.0020 (6)
C110.0292 (8)0.0312 (8)0.0192 (7)0.0022 (7)0.0028 (6)0.0059 (6)
C120.0313 (9)0.0263 (8)0.0215 (8)0.0014 (7)0.0033 (6)0.0007 (6)
N130.0261 (7)0.0342 (8)0.0185 (7)0.0038 (6)0.0000 (5)0.0004 (5)
O140.0387 (7)0.0295 (6)0.0277 (6)0.0009 (5)0.0006 (5)0.0034 (5)
O150.0433 (8)0.0480 (8)0.0149 (6)0.0020 (6)0.0028 (5)0.0037 (5)
O1A0.0396 (10)0.0186 (8)0.0236 (8)0.0000.0004 (7)0.000
S2A0.0270 (4)0.0197 (4)0.0152 (3)0.0005 (3)0.0031 (3)0.0002 (3)
C3A0.0358 (9)0.0255 (8)0.0317 (9)0.0012 (7)0.0051 (7)0.0008 (7)
Geometric parameters (Å, º) top
N1—C51.361 (2)C11—C121.413 (2)
N1—C21.3916 (19)C11—H110.9500
N1—H10.85 (3)C12—H120.9500
C2—O211.1975 (19)N13—O141.2274 (19)
C2—N31.387 (2)N13—O151.2371 (18)
N3—N61.3582 (17)O1A—S2Ai1.5710 (15)
N3—C41.4556 (19)O1A—S2A1.5710 (15)
C4—C51.518 (2)S2A—S2Ai1.3763 (15)
C4—H4A0.9900S2A—C3A1.7374 (19)
C4—H4B0.9900S2A—C3Ai1.7482 (18)
C5—O511.2170 (19)S2A—H3AC1.5663
N6—C71.285 (2)C3A—S2Ai1.7482 (18)
C7—C81.447 (2)C3A—H3AA0.9782
C7—H70.9500C3A—H3AB0.9800
C8—C121.362 (2)C3A—H3AC0.9817
C8—O91.3718 (18)C3A—H3AD0.9797
O9—C101.3557 (18)C3A—H3AE0.9781
C10—C111.351 (2)C3A—H3AF0.9807
C10—N131.418 (2)
C5—N1—C2113.31 (13)S2Ai—O1A—S2A51.96 (7)
C5—N1—H1126.3 (16)S2Ai—S2A—O1A64.02 (4)
C2—N1—H1120.4 (16)S2Ai—S2A—C3A67.16 (8)
O21—C2—N1126.70 (14)O1A—S2A—C3A105.30 (7)
O21—C2—N3127.73 (14)S2Ai—S2A—C3Ai66.33 (8)
N1—C2—N3105.57 (13)O1A—S2A—C3Ai104.80 (7)
N6—N3—C2119.17 (12)C3A—S2A—C3Ai103.01 (11)
N6—N3—C4128.26 (12)S2Ai—S2A—H3AC100.9
C2—N3—C4112.46 (12)O1A—S2A—H3AC127.1
N3—C4—C5101.57 (12)C3Ai—S2A—H3AC114.7
N3—C4—H4A111.5S2A—C3A—S2Ai46.51 (6)
C5—C4—H4A111.5S2A—C3A—H3AA130.3
N3—C4—H4B111.5S2Ai—C3A—H3AA109.4
C5—C4—H4B111.5S2A—C3A—H3AB119.2
H4A—C4—H4B109.3S2Ai—C3A—H3AB109.4
O51—C5—N1126.82 (15)H3AA—C3A—H3AB109.6
O51—C5—C4126.12 (15)S2A—C3A—H3AC63.4
N1—C5—C4107.06 (13)S2Ai—C3A—H3AC109.5
C7—N6—N3116.61 (13)H3AA—C3A—H3AC109.5
N6—C7—C8117.61 (14)H3AB—C3A—H3AC109.3
N6—C7—H7121.2S2A—C3A—H3AD109.4
C8—C7—H7121.2S2Ai—C3A—H3AD130.2
C12—C8—O9110.50 (13)H3AA—C3A—H3AD46.8
C12—C8—C7134.49 (14)H3AB—C3A—H3AD119.6
O9—C8—C7115.01 (13)H3AC—C3A—H3AD63.1
C10—O9—C8104.81 (12)S2A—C3A—H3AE109.4
O9—C10—C11112.68 (13)S2Ai—C3A—H3AE63.3
O9—C10—N13116.31 (13)H3AA—C3A—H3AE63.3
C11—C10—N13131.01 (14)H3AB—C3A—H3AE86.5
C10—C11—C12105.17 (13)H3AC—C3A—H3AE164.2
C10—C11—H11127.4H3AD—C3A—H3AE109.7
C12—C11—H11127.4S2A—C3A—H3AF109.4
C8—C12—C11106.84 (14)S2Ai—C3A—H3AF119.4
C8—C12—H12126.6H3AA—C3A—H3AF119.5
C11—C12—H12126.6H3AC—C3A—H3AF86.3
O14—N13—O15124.63 (14)H3AD—C3A—H3AF109.4
O14—N13—C10119.28 (13)H3AE—C3A—H3AF109.6
O15—N13—C10116.09 (14)
C5—N1—C2—O21177.59 (17)C12—C8—O9—C100.56 (17)
C5—N1—C2—N31.74 (18)C7—C8—O9—C10179.28 (13)
O21—C2—N3—N61.0 (3)C8—O9—C10—C110.27 (17)
N1—C2—N3—N6178.34 (13)C8—O9—C10—N13179.27 (13)
O21—C2—N3—C4177.32 (17)O9—C10—C11—C120.10 (19)
N1—C2—N3—C42.00 (18)N13—C10—C11—C12179.55 (16)
N6—N3—C4—C5177.42 (14)O9—C8—C12—C110.63 (19)
C2—N3—C4—C51.48 (17)C7—C8—C12—C11179.16 (17)
C2—N1—C5—O51178.33 (17)C10—C11—C12—C80.44 (19)
C2—N1—C5—C40.83 (18)O9—C10—N13—O142.9 (2)
N3—C4—C5—O51179.55 (17)C11—C10—N13—O14177.64 (17)
N3—C4—C5—N10.38 (17)O9—C10—N13—O15176.39 (13)
C2—N3—N6—C7176.90 (14)C11—C10—N13—O153.0 (3)
C4—N3—N6—C71.2 (2)S2Ai—O1A—S2A—C3A54.48 (8)
N3—N6—C7—C8179.37 (13)S2Ai—O1A—S2A—C3Ai53.80 (8)
N6—C7—C8—C125.1 (3)O1A—S2A—C3A—S2Ai52.55 (5)
N6—C7—C8—O9175.15 (13)C3Ai—S2A—C3A—S2Ai57.02 (9)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.85 (3)1.94 (3)2.7841 (16)171 (2)
C7—H7···O51ii0.952.493.235 (2)136
Symmetry code: (ii) x, y+1, z+1/2.
(Ic) (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dion dimethylacetamide monosolvate top
Crystal data top
C8H6N4O5·C4H9NOZ = 2
Mr = 325.29F(000) = 340
Triclinic, P1Dx = 1.464 Mg m3
a = 6.6544 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.9842 (6) ÅCell parameters from 17770 reflections
c = 14.3515 (11) Åθ = 3.2–26.1°
α = 100.021 (6)°µ = 0.12 mm1
β = 93.566 (6)°T = 173 K
γ = 99.274 (6)°Block, colourless
V = 737.85 (10) Å30.30 × 0.30 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2111 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.062
Graphite monochromatorθmax = 25.6°, θmin = 3.2°
ω scansh = 88
24053 measured reflectionsk = 99
2770 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0657P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
2770 reflectionsΔρmax = 0.28 e Å3
232 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.028 (4)
Crystal data top
C8H6N4O5·C4H9NOγ = 99.274 (6)°
Mr = 325.29V = 737.85 (10) Å3
Triclinic, P1Z = 2
a = 6.6544 (5) ÅMo Kα radiation
b = 7.9842 (6) ŵ = 0.12 mm1
c = 14.3515 (11) ÅT = 173 K
α = 100.021 (6)°0.30 × 0.30 × 0.20 mm
β = 93.566 (6)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2111 reflections with I > 2σ(I)
24053 measured reflectionsRint = 0.062
2770 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.100H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.28 e Å3
2770 reflectionsΔρmin = 0.16 e Å3
232 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.3323 (2)0.62290 (18)0.73950 (10)0.0296 (3)
H10.230 (4)0.649 (3)0.7792 (18)0.065 (7)*
C20.2983 (2)0.4852 (2)0.66326 (11)0.0281 (4)
O210.13623 (17)0.39642 (17)0.63138 (9)0.0382 (3)
N30.4876 (2)0.47248 (18)0.63120 (9)0.0282 (3)
C40.6510 (2)0.6003 (2)0.68690 (11)0.0308 (4)
H4A0.72430.67460.64690.037*
H4B0.75000.54520.71990.037*
C50.5329 (3)0.7013 (2)0.75657 (11)0.0302 (4)
O510.60202 (19)0.82787 (16)0.81607 (9)0.0403 (3)
N60.5037 (2)0.34449 (18)0.55711 (9)0.0276 (3)
C70.6869 (2)0.3273 (2)0.53814 (11)0.0282 (4)
H70.80100.40260.57430.034*
C80.7176 (2)0.1933 (2)0.46184 (11)0.0285 (4)
O90.54888 (17)0.09676 (15)0.40652 (7)0.0298 (3)
C100.6247 (3)0.0162 (2)0.34225 (11)0.0302 (4)
C110.8301 (3)0.0020 (2)0.35424 (12)0.0336 (4)
H110.91530.06320.31780.040*
C120.8918 (3)0.1390 (2)0.43258 (12)0.0314 (4)
H121.02780.18450.45960.038*
N130.4754 (2)0.1362 (2)0.27809 (10)0.0370 (4)
O140.2939 (2)0.13929 (19)0.29028 (9)0.0469 (4)
O150.5403 (2)0.23311 (18)0.21488 (9)0.0504 (4)
O1A0.0279 (2)0.65609 (19)0.85940 (9)0.0452 (4)
C3A0.2632 (3)0.8710 (3)0.98807 (15)0.0448 (5)
H3AA0.22660.97951.01980.067*0.646 (7)
H3AB0.34980.89370.93730.067*0.646 (7)
H3AC0.33780.82121.03440.067*0.646 (7)
H3AD0.32950.95461.04410.067*0.354 (7)
H3AE0.34620.78100.97230.067*0.354 (7)
H3AF0.24970.93020.93420.067*0.354 (7)
C5A0.0287 (3)0.8084 (3)1.10608 (13)0.0534 (6)
H5AA0.15880.83411.12810.080*0.646 (7)
H5AB0.06870.91641.11120.080*0.646 (7)
H5AC0.02650.73451.14540.080*0.646 (7)
H5AD0.06340.89761.15180.080*0.354 (7)
H5AE0.16430.84081.10080.080*0.354 (7)
H5AF0.03970.69781.12790.080*0.354 (7)
C6A0.2580 (3)0.5867 (3)0.96691 (16)0.0438 (5)
H6AA0.37280.64800.96030.066*0.646 (7)
H6AB0.28750.50681.01100.066*0.646 (7)
H6AC0.23800.52160.90470.066*0.646 (7)
H6AD0.26650.63361.03410.066*0.354 (7)
H6AE0.37240.61180.92850.066*0.354 (7)
H6AF0.26440.46140.95830.066*0.354 (7)
C2A0.0691 (6)0.7444 (5)0.9457 (3)0.0391 (11)0.646 (7)
N4A0.0626 (6)0.7180 (5)1.0058 (2)0.0423 (11)0.646 (7)
N4B0.0568 (8)0.7914 (6)1.0092 (3)0.0216 (14)0.354 (7)
C2B0.0598 (8)0.6682 (6)0.9361 (3)0.0151 (15)0.354 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0264 (7)0.0314 (8)0.0296 (7)0.0049 (6)0.0033 (6)0.0015 (6)
C20.0256 (9)0.0318 (9)0.0272 (8)0.0069 (7)0.0006 (6)0.0054 (7)
O210.0225 (6)0.0410 (7)0.0452 (7)0.0034 (6)0.0013 (5)0.0044 (6)
N30.0226 (7)0.0351 (8)0.0242 (6)0.0026 (6)0.0013 (5)0.0011 (6)
C40.0255 (8)0.0351 (10)0.0289 (8)0.0008 (7)0.0004 (6)0.0048 (7)
C50.0320 (9)0.0305 (9)0.0274 (8)0.0039 (7)0.0009 (7)0.0064 (7)
O510.0417 (7)0.0357 (7)0.0370 (7)0.0008 (6)0.0033 (5)0.0032 (6)
N60.0288 (7)0.0316 (8)0.0231 (6)0.0071 (6)0.0021 (5)0.0054 (6)
C70.0247 (8)0.0355 (9)0.0245 (8)0.0040 (7)0.0005 (6)0.0075 (7)
C80.0269 (8)0.0333 (9)0.0259 (8)0.0042 (7)0.0007 (6)0.0087 (7)
O90.0271 (6)0.0360 (7)0.0263 (6)0.0058 (5)0.0020 (4)0.0057 (5)
C100.0341 (9)0.0296 (9)0.0275 (8)0.0056 (7)0.0033 (7)0.0069 (7)
C110.0355 (10)0.0341 (10)0.0327 (9)0.0096 (8)0.0077 (7)0.0059 (7)
C120.0270 (9)0.0354 (10)0.0327 (9)0.0059 (7)0.0047 (7)0.0079 (7)
N130.0438 (10)0.0353 (9)0.0311 (8)0.0014 (7)0.0010 (6)0.0102 (7)
O140.0344 (8)0.0591 (9)0.0433 (7)0.0036 (6)0.0051 (6)0.0128 (6)
O150.0642 (10)0.0405 (8)0.0402 (7)0.0064 (7)0.0015 (7)0.0057 (6)
O1A0.0425 (8)0.0622 (9)0.0309 (7)0.0205 (7)0.0056 (6)0.0022 (6)
C3A0.0293 (10)0.0386 (11)0.0586 (12)0.0022 (8)0.0002 (8)0.0039 (9)
C5A0.0553 (13)0.0746 (16)0.0290 (9)0.0188 (12)0.0049 (9)0.0010 (10)
C6A0.0249 (9)0.0415 (11)0.0668 (13)0.0009 (8)0.0063 (8)0.0188 (10)
C2A0.039 (3)0.0357 (19)0.046 (2)0.0162 (19)0.0037 (15)0.0059 (16)
N4A0.042 (2)0.0491 (19)0.037 (2)0.0142 (18)0.0043 (13)0.0055 (14)
N4B0.008 (3)0.029 (3)0.020 (3)0.007 (2)0.0021 (16)0.0089 (19)
C2B0.007 (3)0.017 (2)0.016 (3)0.003 (2)0.0009 (16)0.0031 (19)
Geometric parameters (Å, º) top
N1—C51.368 (2)C3A—N4B1.490 (6)
N1—C21.388 (2)C3A—C2A1.525 (5)
N1—H10.94 (3)C3A—H3AA0.9800
C2—O211.206 (2)C3A—H3AB0.9800
C2—N31.380 (2)C3A—H3AC0.9800
N3—N61.3629 (19)C3A—H3AD0.9801
N3—C41.454 (2)C3A—H3AE0.9800
C4—C51.513 (2)C3A—H3AF0.9800
C4—H4A0.9900C5A—N4A1.479 (4)
C4—H4B0.9900C5A—N4B1.527 (5)
C5—O511.209 (2)C5A—H5AA0.9800
N6—C71.289 (2)C5A—H5AB0.9800
C7—C81.441 (2)C5A—H5AC0.9800
C7—H70.9500C5A—H5AD0.9800
C8—C121.366 (2)C5A—H5AE0.9800
C8—O91.372 (2)C5A—H5AF0.9800
O9—C101.354 (2)C6A—C2B1.501 (6)
C10—C111.348 (2)C6A—N4A1.539 (5)
C10—N131.423 (2)C6A—H6AA0.9800
C11—C121.414 (2)C6A—H6AB0.9800
C11—H110.9500C6A—H6AC0.9800
C12—H120.9500C6A—H6AD0.9800
N13—O141.228 (2)C6A—H6AE0.9800
N13—O151.233 (2)C6A—H6AF0.9800
O1A—C2B1.274 (5)C2A—N4A1.286 (6)
O1A—C2A1.303 (5)N4B—C2B1.402 (8)
C5—N1—C2112.89 (14)H3AE—C3A—H3AF109.5
C5—N1—H1124.2 (16)N4A—C5A—H5AA109.5
C2—N1—H1122.5 (16)N4B—C5A—H5AA133.3
O21—C2—N3127.34 (15)N4A—C5A—H5AB109.5
O21—C2—N1126.86 (15)N4B—C5A—H5AB76.6
N3—C2—N1105.80 (14)H5AA—C5A—H5AB109.5
N6—N3—C2119.38 (14)N4A—C5A—H5AC109.5
N6—N3—C4127.91 (13)N4B—C5A—H5AC111.6
C2—N3—C4112.66 (13)H5AA—C5A—H5AC109.5
N3—C4—C5101.48 (13)H5AB—C5A—H5AC109.5
N3—C4—H4A111.5N4A—C5A—H5AD144.1
C5—C4—H4A111.5N4B—C5A—H5AD109.3
N3—C4—H4B111.5H5AA—C5A—H5AD98.2
C5—C4—H4B111.5H5AC—C5A—H5AD80.9
H4A—C4—H4B109.3N4A—C5A—H5AE89.9
O51—C5—N1126.24 (16)N4B—C5A—H5AE109.6
O51—C5—C4126.69 (16)H5AB—C5A—H5AE105.3
N1—C5—C4107.07 (14)H5AC—C5A—H5AE130.8
C7—N6—N3116.08 (14)H5AD—C5A—H5AE109.5
N6—C7—C8119.65 (15)N4A—C5A—H5AF90.8
N6—C7—H7120.2N4B—C5A—H5AF109.6
C8—C7—H7120.2H5AA—C5A—H5AF95.1
C12—C8—O9110.49 (14)H5AB—C5A—H5AF139.6
C12—C8—C7131.27 (16)H5AD—C5A—H5AF109.5
O9—C8—C7118.23 (14)H5AE—C5A—H5AF109.5
C10—O9—C8104.75 (12)C2B—C6A—H6AA115.6
C11—C10—O9112.89 (15)N4A—C6A—H6AA109.5
C11—C10—N13131.86 (16)C2B—C6A—H6AB131.6
O9—C10—N13115.17 (14)N4A—C6A—H6AB109.5
C10—C11—C12105.25 (14)H6AA—C6A—H6AB109.5
C10—C11—H11127.4C2B—C6A—H6AC71.5
C12—C11—H11127.4N4A—C6A—H6AC109.5
C8—C12—C11106.62 (15)H6AA—C6A—H6AC109.5
C8—C12—H12126.7H6AB—C6A—H6AC109.5
C11—C12—H12126.7C2B—C6A—H6AD109.6
O14—N13—O15124.76 (16)N4A—C6A—H6AD70.7
O14—N13—C10118.68 (15)H6AA—C6A—H6AD80.7
O15—N13—C10116.54 (15)H6AB—C6A—H6AD60.9
N4B—C3A—H3AA84.6H6AC—C6A—H6AD168.5
C2A—C3A—H3AA109.5C2B—C6A—H6AE109.5
N4B—C3A—H3AB144.7N4A—C6A—H6AE124.3
C2A—C3A—H3AB109.5H6AB—C6A—H6AE118.5
H3AA—C3A—H3AB109.5H6AC—C6A—H6AE80.2
N4B—C3A—H3AC94.8H6AD—C6A—H6AE109.5
C2A—C3A—H3AC109.5C2B—C6A—H6AF109.4
H3AA—C3A—H3AC109.5N4A—C6A—H6AF123.2
H3AB—C3A—H3AC109.5H6AA—C6A—H6AF127.0
N4B—C3A—H3AD109.2H6AB—C6A—H6AF49.1
C2A—C3A—H3AD145.3H6AC—C6A—H6AF60.4
H3AA—C3A—H3AD49.3H6AD—C6A—H6AF109.5
H3AB—C3A—H3AD104.1H6AE—C6A—H6AF109.5
H3AC—C3A—H3AD65.5N4A—C2A—O1A117.8 (5)
N4B—C3A—H3AE109.6N4A—C2A—C3A114.0 (4)
C2A—C3A—H3AE90.8O1A—C2A—C3A128.1 (3)
H3AA—C3A—H3AE158.4C2A—N4A—C5A122.1 (5)
H3AB—C3A—H3AE68.5C2A—N4A—C6A115.9 (4)
H3AC—C3A—H3AE54.7C5A—N4A—C6A122.0 (3)
H3AD—C3A—H3AE109.5C2B—N4B—C3A116.6 (5)
N4B—C3A—H3AF109.7C2B—N4B—C5A115.8 (5)
C2A—C3A—H3AF88.4C3A—N4B—C5A126.9 (4)
H3AA—C3A—H3AF79.2O1A—C2B—N4B111.6 (5)
H3AB—C3A—H3AF46.3O1A—C2B—C6A136.1 (4)
H3AC—C3A—H3AF154.9N4B—C2B—C6A112.3 (4)
H3AD—C3A—H3AF109.5
C5—N1—C2—O21178.06 (16)O9—C10—N13—O146.2 (2)
C5—N1—C2—N31.33 (18)C11—C10—N13—O158.1 (3)
O21—C2—N3—N62.1 (3)O9—C10—N13—O15175.38 (14)
N1—C2—N3—N6178.48 (13)C2B—O1A—C2A—N4A0.8 (3)
O21—C2—N3—C4179.67 (16)C2B—O1A—C2A—C3A176.8 (4)
N1—C2—N3—C40.94 (18)N4B—C3A—C2A—N4A5.0 (3)
N6—N3—C4—C5179.80 (14)N4B—C3A—C2A—O1A178.9 (5)
C2—N3—C4—C52.53 (17)O1A—C2A—N4A—C5A178.5 (2)
C2—N1—C5—O51176.88 (16)C3A—C2A—N4A—C5A2.0 (4)
C2—N1—C5—C42.93 (18)O1A—C2A—N4A—C6A1.6 (3)
N3—C4—C5—O51176.64 (16)C3A—C2A—N4A—C6A178.12 (19)
N3—C4—C5—N13.17 (16)N4B—C5A—N4A—C2A3.5 (3)
C2—N3—N6—C7172.06 (14)N4B—C5A—N4A—C6A176.4 (4)
C4—N3—N6—C75.1 (2)C2B—C6A—N4A—C2A0.5 (3)
N3—N6—C7—C8179.04 (14)C2B—C6A—N4A—C5A179.6 (4)
N6—C7—C8—C12173.89 (17)C2A—C3A—N4B—C2B2.5 (3)
N6—C7—C8—O95.3 (2)C2A—C3A—N4B—C5A172.3 (5)
C12—C8—O9—C100.68 (17)N4A—C5A—N4B—C2B0.8 (3)
C7—C8—O9—C10179.98 (14)N4A—C5A—N4B—C3A170.7 (6)
C8—O9—C10—C110.64 (18)C2A—O1A—C2B—N4B1.4 (3)
C8—O9—C10—N13177.83 (13)C2A—O1A—C2B—C6A179.7 (6)
O9—C10—C11—C120.4 (2)C3A—N4B—C2B—O1A5.5 (5)
N13—C10—C11—C12176.93 (17)C5A—N4B—C2B—O1A176.4 (3)
O9—C8—C12—C110.49 (19)C3A—N4B—C2B—C6A175.8 (3)
C7—C8—C12—C11179.71 (17)C5A—N4B—C2B—C6A4.8 (4)
C10—C11—C12—C80.09 (19)N4A—C6A—C2B—O1A179.2 (6)
C11—C10—N13—O14170.30 (18)N4A—C6A—C2B—N4B2.5 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.94 (3)1.82 (3)2.7533 (19)169 (2)
C7—H7···O21i0.952.343.123 (2)139
Symmetry code: (i) x+1, y, z.
(Id) (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dion dimethylacetamide monosolvate top
Crystal data top
C8H6N4O5·C4H9NOF(000) = 680
Mr = 325.29Dx = 1.474 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 16.2038 (16) ÅCell parameters from 5010 reflections
b = 7.4215 (5) Åθ = 3.3–25.7°
c = 13.1195 (12) ŵ = 0.12 mm1
β = 111.681 (7)°T = 173 K
V = 1466.1 (2) Å3Block, yellow
Z = 40.30 × 0.20 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1584 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.147
Graphite monochromatorθmax = 25.6°, θmin = 3.2°
ω scansh = 1919
17332 measured reflectionsk = 99
2743 independent reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.85 w = 1/[σ2(Fo2) + (0.0409P)2]
where P = (Fo2 + 2Fc2)/3
2743 reflections(Δ/σ)max < 0.001
231 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = 0.26 e Å3
Crystal data top
C8H6N4O5·C4H9NOV = 1466.1 (2) Å3
Mr = 325.29Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.2038 (16) ŵ = 0.12 mm1
b = 7.4215 (5) ÅT = 173 K
c = 13.1195 (12) Å0.30 × 0.20 × 0.20 mm
β = 111.681 (7)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1584 reflections with I > 2σ(I)
17332 measured reflectionsRint = 0.147
2743 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.106H atoms treated by a mixture of independent and constrained refinement
S = 0.85Δρmax = 0.20 e Å3
2743 reflectionsΔρmin = 0.26 e Å3
231 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.44048 (14)0.8147 (3)0.47492 (17)0.0265 (5)
H10.4047 (18)0.864 (4)0.501 (2)0.035 (8)*
C20.51946 (15)0.7335 (3)0.5398 (2)0.0262 (6)
O210.54928 (12)0.7235 (3)0.63849 (14)0.0374 (5)
N30.55619 (13)0.6646 (3)0.46797 (16)0.0255 (5)
C40.50279 (16)0.7062 (4)0.35406 (19)0.0292 (6)
H4A0.48340.59530.30970.035*
H4B0.53560.78400.32070.035*
C50.42524 (16)0.8044 (3)0.3653 (2)0.0287 (6)
O510.36091 (12)0.8639 (3)0.29181 (15)0.0413 (5)
N60.63847 (13)0.5897 (3)0.50853 (16)0.0260 (5)
C70.67150 (15)0.5385 (3)0.4376 (2)0.0273 (6)
H70.63790.55090.36140.033*
C80.75898 (16)0.4629 (3)0.4740 (2)0.0280 (6)
O90.80569 (11)0.4382 (2)0.58451 (14)0.0317 (4)
C100.88552 (16)0.3719 (4)0.5922 (2)0.0333 (6)
C110.89241 (17)0.3522 (4)0.4937 (2)0.0366 (7)
H110.94220.30880.47920.044*
C120.81008 (17)0.4095 (4)0.4164 (2)0.0341 (6)
H120.79320.41090.33900.041*
N130.94479 (16)0.3229 (4)0.6983 (2)0.0453 (6)
O140.92013 (14)0.3342 (3)0.77664 (17)0.0559 (6)
O151.01833 (14)0.2656 (4)0.70567 (19)0.0713 (8)
O1A0.34129 (11)0.9862 (3)0.57493 (17)0.0418 (5)
C3A0.21805 (19)1.0507 (4)0.3933 (2)0.0410 (7)
H3A10.15651.09180.37240.062*0.532 (12)
H3A20.21890.93270.36020.062*0.532 (12)
H3A30.25141.13760.36730.062*0.532 (12)
H3A40.19961.16250.35120.062*0.468 (12)
H3A50.18410.94940.34990.062*0.468 (12)
H3A60.28161.03080.41050.062*0.468 (12)
C6A0.25463 (19)1.0653 (4)0.6961 (2)0.0421 (7)
H6A10.21241.09950.73030.063*0.532 (12)
H6A20.30591.14660.72140.063*0.532 (12)
H6A30.27460.94120.71660.063*0.532 (12)
H6A40.31151.06720.75850.063*0.468 (12)
H6A50.21770.96710.70570.063*0.468 (12)
H6A60.22401.18040.69220.063*0.468 (12)
C5A0.11593 (18)1.1268 (5)0.5101 (3)0.0602 (10)
H5A10.08581.15560.56050.090*0.532 (12)
H5A20.08601.02480.46360.090*0.532 (12)
H5A30.11401.23170.46390.090*0.532 (12)
H5A40.06921.14370.43760.090*0.468 (12)
H5A50.12681.24090.55050.090*0.468 (12)
H5A60.09701.03530.55080.090*0.468 (12)
N4A0.2105 (4)1.0782 (6)0.5745 (6)0.0275 (18)0.532 (12)
C2A0.2596 (6)1.0357 (7)0.5153 (7)0.0293 (19)0.532 (12)
N4B0.2018 (5)1.0649 (7)0.4979 (7)0.034 (2)0.468 (12)
C2B0.2713 (5)1.0359 (8)0.5899 (8)0.030 (2)0.468 (12)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0268 (11)0.0306 (13)0.0243 (11)0.0023 (9)0.0120 (9)0.0002 (9)
C20.0239 (12)0.0277 (14)0.0279 (15)0.0018 (11)0.0107 (11)0.0001 (11)
O210.0396 (10)0.0545 (13)0.0184 (10)0.0106 (9)0.0111 (8)0.0023 (8)
N30.0237 (10)0.0360 (13)0.0186 (10)0.0003 (9)0.0101 (8)0.0004 (9)
C40.0295 (13)0.0375 (16)0.0196 (13)0.0018 (11)0.0077 (10)0.0010 (11)
C50.0291 (13)0.0305 (15)0.0256 (14)0.0058 (11)0.0091 (11)0.0010 (11)
O510.0356 (10)0.0533 (13)0.0307 (10)0.0089 (9)0.0072 (9)0.0093 (9)
N60.0255 (10)0.0282 (12)0.0260 (11)0.0041 (9)0.0113 (9)0.0008 (9)
C70.0257 (13)0.0320 (15)0.0244 (13)0.0028 (11)0.0094 (11)0.0038 (11)
C80.0301 (13)0.0297 (14)0.0229 (13)0.0045 (11)0.0084 (11)0.0058 (11)
O90.0298 (9)0.0372 (11)0.0269 (10)0.0017 (8)0.0091 (8)0.0020 (8)
C100.0261 (13)0.0370 (16)0.0323 (15)0.0025 (12)0.0055 (11)0.0051 (12)
C110.0292 (14)0.0411 (17)0.0400 (16)0.0030 (12)0.0133 (12)0.0073 (13)
C120.0332 (14)0.0410 (17)0.0306 (14)0.0010 (12)0.0148 (12)0.0076 (12)
N130.0363 (13)0.0508 (17)0.0398 (15)0.0101 (12)0.0035 (11)0.0033 (12)
O140.0532 (13)0.0788 (17)0.0322 (12)0.0126 (12)0.0118 (10)0.0052 (11)
O150.0419 (13)0.111 (2)0.0498 (14)0.0319 (14)0.0039 (10)0.0039 (14)
O1A0.0283 (10)0.0415 (12)0.0583 (13)0.0043 (9)0.0191 (10)0.0049 (10)
C3A0.0450 (16)0.0526 (19)0.0250 (14)0.0009 (14)0.0122 (13)0.0026 (13)
C6A0.0403 (16)0.059 (2)0.0283 (15)0.0010 (14)0.0144 (13)0.0047 (13)
C5A0.0235 (14)0.053 (2)0.101 (3)0.0102 (14)0.0183 (16)0.010 (2)
N4A0.023 (3)0.033 (3)0.026 (4)0.000 (2)0.010 (2)0.0008 (19)
C2A0.034 (5)0.030 (3)0.026 (4)0.009 (3)0.014 (3)0.009 (2)
N4B0.025 (4)0.039 (3)0.036 (5)0.000 (2)0.010 (3)0.000 (3)
C2B0.027 (5)0.029 (3)0.035 (5)0.007 (3)0.013 (4)0.007 (3)
Geometric parameters (Å, º) top
N1—C51.369 (3)C3A—N4B1.493 (9)
N1—C21.386 (3)C3A—C2A1.493 (9)
N1—H10.86 (3)C3A—H3A10.9800
C2—O211.206 (3)C3A—H3A20.9800
C2—N31.385 (3)C3A—H3A30.9800
N3—N61.358 (3)C3A—H3A40.9799
N3—C41.457 (3)C3A—H3A50.9800
C4—C51.506 (4)C3A—H3A60.9801
C4—H4A0.9900C6A—N4A1.492 (7)
C4—H4B0.9900C6A—C2B1.529 (10)
C5—O511.212 (3)C6A—H6A10.9800
N6—C71.291 (3)C6A—H6A20.9800
C7—C81.432 (3)C6A—H6A30.9800
C7—H70.9500C6A—H6A40.9800
C8—C121.370 (4)C6A—H6A50.9799
C8—O91.377 (3)C6A—H6A60.9800
O9—C101.352 (3)C5A—N4A1.495 (7)
C10—C111.346 (4)C5A—N4B1.529 (9)
C10—N131.416 (3)C5A—H5A10.9800
C11—C121.410 (4)C5A—H5A20.9800
C11—H110.9500C5A—H5A30.9800
C12—H120.9500C5A—H5A40.9799
N13—O151.235 (3)C5A—H5A50.9799
N13—O141.236 (3)C5A—H5A60.9800
O1A—C2B1.276 (9)N4A—C2A1.340 (13)
O1A—C2A1.317 (9)N4B—C2B1.329 (15)
C5—N1—C2112.8 (2)N4A—C6A—H6A2109.5
C5—N1—H1124.2 (18)C2B—C6A—H6A289.0
C2—N1—H1122.9 (18)H6A1—C6A—H6A2109.5
O21—C2—N3127.3 (2)N4A—C6A—H6A3109.5
O21—C2—N1126.8 (2)C2B—C6A—H6A388.0
N3—C2—N1105.9 (2)H6A1—C6A—H6A3109.5
N6—N3—C2119.40 (19)H6A2—C6A—H6A3109.5
N6—N3—C4127.9 (2)N4A—C6A—H6A4145.4
C2—N3—C4112.2 (2)C2B—C6A—H6A4109.5
N3—C4—C5101.73 (19)H6A1—C6A—H6A4102.3
N3—C4—H4A111.4H6A3—C6A—H6A470.8
C5—C4—H4A111.4N4A—C6A—H6A596.4
N3—C4—H4B111.4C2B—C6A—H6A5109.4
C5—C4—H4B111.4H6A1—C6A—H6A564.6
H4A—C4—H4B109.3H6A2—C6A—H6A5153.6
O51—C5—N1125.7 (2)H6A3—C6A—H6A554.6
O51—C5—C4127.0 (2)H6A4—C6A—H6A5109.5
N1—C5—C4107.3 (2)N4A—C6A—H6A681.6
C7—N6—N3116.5 (2)C2B—C6A—H6A6109.4
N6—C7—C8119.8 (2)H6A1—C6A—H6A651.1
N6—C7—H7120.1H6A2—C6A—H6A680.3
C8—C7—H7120.1H6A3—C6A—H6A6160.5
C12—C8—O9109.5 (2)H6A4—C6A—H6A6109.5
C12—C8—C7130.9 (2)H6A5—C6A—H6A6109.5
O9—C8—C7119.7 (2)N4A—C5A—H5A1109.5
C10—O9—C8105.40 (19)N4B—C5A—H5A1146.7
C11—C10—O9112.6 (2)N4A—C5A—H5A2109.5
C11—C10—N13130.5 (2)N4B—C5A—H5A287.9
O9—C10—N13116.7 (2)H5A1—C5A—H5A2109.5
C10—C11—C12105.4 (2)N4A—C5A—H5A3109.5
C10—C11—H11127.3N4B—C5A—H5A389.8
C12—C11—H11127.3H5A1—C5A—H5A3109.5
C8—C12—C11107.2 (2)H5A2—C5A—H5A3109.5
C8—C12—H12126.4N4A—C5A—H5A4147.3
C11—C12—H12126.4N4B—C5A—H5A4110.1
O15—N13—O14123.9 (2)H5A1—C5A—H5A4103.2
O15—N13—C10116.8 (3)H5A2—C5A—H5A457.9
O14—N13—C10119.3 (2)H5A3—C5A—H5A457.4
N4B—C3A—H3A174.3N4A—C5A—H5A587.8
C2A—C3A—H3A1109.5N4B—C5A—H5A5109.1
N4B—C3A—H3A2120.4H5A1—C5A—H5A558.7
C2A—C3A—H3A2109.5H5A2—C5A—H5A5162.2
H3A1—C3A—H3A2109.5H5A3—C5A—H5A566.8
N4B—C3A—H3A3125.5H5A4—C5A—H5A5109.5
C2A—C3A—H3A3109.5N4A—C5A—H5A689.2
H3A1—C3A—H3A3109.5N4B—C5A—H5A6109.2
H3A2—C3A—H3A3109.5H5A1—C5A—H5A656.6
N4B—C3A—H3A4109.7H5A2—C5A—H5A667.8
C2A—C3A—H3A4126.2H5A3—C5A—H5A6160.4
H3A1—C3A—H3A460.8H5A4—C5A—H5A6109.5
H3A2—C3A—H3A4123.9H5A5—C5A—H5A6109.5
H3A3—C3A—H3A448.7C2A—N4A—C6A116.9 (7)
N4B—C3A—H3A5109.7C2A—N4A—C5A115.7 (8)
C2A—C3A—H3A5119.9C6A—N4A—C5A127.3 (5)
H3A1—C3A—H3A577.4O1A—C2A—N4A113.8 (8)
H3A3—C3A—H3A5124.5O1A—C2A—C3A127.9 (6)
H3A4—C3A—H3A5109.5N4A—C2A—C3A118.3 (8)
N4B—C3A—H3A6109.0O1A—C2A—H3A690.7
C2A—C3A—H3A673.9N4A—C2A—H3A6154.8
H3A1—C3A—H3A6170.0C2B—N4B—C3A116.5 (9)
H3A2—C3A—H3A677.3C2B—N4B—C5A116.8 (9)
H3A3—C3A—H3A660.8C3A—N4B—C5A126.4 (6)
H3A4—C3A—H3A6109.5O1A—C2B—N4B114.2 (10)
H3A5—C3A—H3A6109.5O1A—C2B—C6A130.4 (7)
N4A—C6A—H6A1109.5N4B—C2B—C6A115.4 (8)
C2B—C6A—H6A1147.3
C5—N1—C2—O21179.7 (3)O9—C10—N13—O15178.7 (3)
C5—N1—C2—N31.1 (3)C11—C10—N13—O14171.2 (3)
O21—C2—N3—N66.4 (4)O9—C10—N13—O143.4 (4)
N1—C2—N3—N6174.4 (2)C2B—C6A—N4A—C2A1.1 (5)
O21—C2—N3—C4178.6 (3)C2B—C6A—N4A—C5A176.4 (7)
N1—C2—N3—C42.3 (3)N4B—C5A—N4A—C2A2.0 (4)
N6—N3—C4—C5173.8 (2)N4B—C5A—N4A—C6A175.5 (7)
C2—N3—C4—C52.4 (3)C2B—O1A—C2A—N4A0.7 (4)
C2—N1—C5—O51179.6 (3)C2B—O1A—C2A—C3A180.0 (8)
C2—N1—C5—C40.4 (3)C6A—N4A—C2A—O1A0.6 (6)
N3—C4—C5—O51178.4 (3)C5A—N4A—C2A—O1A177.2 (4)
N3—C4—C5—N11.6 (3)C6A—N4A—C2A—C3A178.8 (4)
C2—N3—N6—C7175.6 (2)C5A—N4A—C2A—C3A3.4 (6)
C4—N3—N6—C74.8 (3)N4B—C3A—C2A—O1A176.0 (8)
N3—N6—C7—C8178.3 (2)N4B—C3A—C2A—N4A4.8 (4)
N6—C7—C8—C12175.5 (3)C2A—C3A—N4B—C2B0.8 (5)
N6—C7—C8—O92.8 (4)C2A—C3A—N4B—C5A174.5 (8)
C12—C8—O9—C100.8 (3)N4A—C5A—N4B—C2B1.6 (4)
C7—C8—O9—C10177.9 (2)N4A—C5A—N4B—C3A172.2 (7)
C8—O9—C10—C110.3 (3)C2A—O1A—C2B—N4B2.9 (4)
C8—O9—C10—N13175.9 (2)C2A—O1A—C2B—C6A177.8 (9)
O9—C10—C11—C120.3 (3)C3A—N4B—C2B—O1A5.0 (7)
N13—C10—C11—C12174.5 (3)C5A—N4B—C2B—O1A179.4 (4)
O9—C8—C12—C111.0 (3)C3A—N4B—C2B—C6A175.5 (4)
C7—C8—C12—C11177.5 (3)C5A—N4B—C2B—C6A1.2 (7)
C10—C11—C12—C80.8 (3)N4A—C6A—C2B—O1A178.2 (9)
C11—C10—N13—O156.7 (5)N4A—C6A—C2B—N4B2.5 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.86 (3)1.88 (3)2.736 (3)172 (3)
C7—H7···O51i0.952.453.137 (3)129
Symmetry code: (i) x+1, y1/2, z+1/2.
(Ie) (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dione dimethylacetamide disolvat top
Crystal data top
C8H6N4O5·2C4H9NOF(000) = 872
Mr = 412.41Dx = 1.327 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 20.874 (2) ÅCell parameters from 8474 reflections
b = 11.5433 (9) Åθ = 3.5–25.9°
c = 8.7162 (9) ŵ = 0.11 mm1
β = 100.708 (9)°T = 173 K
V = 2063.6 (3) Å3Block, yellow
Z = 40.60 × 0.60 × 0.20 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2943 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.078
Graphite monochromatorθmax = 25.6°, θmin = 3.5°
ω scansh = 2523
9751 measured reflectionsk = 1313
3844 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.126 w = 1/[σ2(Fo2) + (0.0809P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
3844 reflectionsΔρmax = 0.26 e Å3
285 parametersΔρmin = 0.24 e Å3
22 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (3)
Crystal data top
C8H6N4O5·2C4H9NOV = 2063.6 (3) Å3
Mr = 412.41Z = 4
Monoclinic, P21/cMo Kα radiation
a = 20.874 (2) ŵ = 0.11 mm1
b = 11.5433 (9) ÅT = 173 K
c = 8.7162 (9) Å0.60 × 0.60 × 0.20 mm
β = 100.708 (9)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2943 reflections with I > 2σ(I)
9751 measured reflectionsRint = 0.078
3844 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.04722 restraints
wR(F2) = 0.126H atoms treated by a mixture of independent and constrained refinement
S = 0.97Δρmax = 0.26 e Å3
3844 reflectionsΔρmin = 0.24 e Å3
285 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.66679 (7)0.53815 (13)0.41046 (17)0.0360 (3)
H10.6368 (14)0.492 (2)0.341 (3)0.073 (8)*
C20.70735 (8)0.48757 (15)0.53845 (19)0.0348 (4)
O210.70772 (7)0.38678 (11)0.57660 (16)0.0484 (4)
N30.74634 (7)0.57599 (11)0.60893 (15)0.0328 (3)
C40.73370 (8)0.68598 (14)0.52766 (18)0.0327 (4)
H4A0.77270.71450.48980.039*
H4B0.71900.74570.59500.039*
C50.67955 (8)0.65254 (15)0.39306 (18)0.0332 (4)
O510.65300 (6)0.71682 (11)0.29060 (14)0.0440 (3)
N60.79325 (7)0.55227 (12)0.73625 (15)0.0317 (3)
C70.82855 (8)0.63851 (14)0.79451 (18)0.0310 (4)
H70.82100.71350.74990.037*
C80.87985 (8)0.62031 (14)0.92860 (18)0.0311 (4)
O90.89185 (5)0.50962 (9)0.98338 (12)0.0305 (3)
C100.94202 (8)0.52129 (15)1.10720 (19)0.0326 (4)
C110.96170 (8)0.63200 (16)1.1323 (2)0.0385 (4)
H110.99560.66031.21140.046*
C120.92099 (8)0.69690 (15)1.0155 (2)0.0375 (4)
H120.92210.77831.00050.045*
N130.96523 (7)0.41673 (13)1.18270 (18)0.0386 (4)
O140.93963 (6)0.32441 (11)1.13676 (16)0.0482 (4)
O151.01178 (7)0.42607 (13)1.29381 (17)0.0539 (4)
C3A0.74350 (11)1.0515 (2)0.6033 (2)0.0528 (5)
H3A10.76451.08030.51920.079*0.926 (5)
H3A20.71681.11310.63650.079*0.926 (5)
H3A30.71580.98510.56560.079*0.926 (5)
H3A40.71921.11590.54660.079*0.074 (5)
H3A50.71290.99730.63780.079*0.074 (5)
H3A60.76831.01120.53450.079*0.074 (5)
O1A0.80822 (7)0.91085 (10)0.76794 (17)0.0494 (4)
C5A0.81159 (12)1.22201 (16)0.8097 (3)0.0574 (6)
H5A10.79711.23840.69830.086*0.926 (5)
H5A20.85081.26740.84970.086*0.926 (5)
H5A30.77701.24290.86660.086*0.926 (5)
H5A40.78471.28000.74530.086*0.074 (5)
H5A50.85761.23490.80480.086*0.074 (5)
H5A60.80551.22880.91810.086*0.074 (5)
C6A0.87552 (10)1.06610 (17)0.9677 (2)0.0477 (5)
H6A10.86161.09331.06290.072*0.926 (5)
H6A20.91731.10190.95970.072*0.926 (5)
H6A30.88040.98170.97190.072*0.926 (5)
H6A40.87021.15050.96480.072*0.074 (5)
H6A50.92001.04640.95610.072*0.074 (5)
H6A60.86751.03641.06780.072*0.074 (5)
C2A0.79502 (9)1.01455 (16)0.7401 (2)0.0368 (6)0.926 (5)
N4A0.82642 (8)1.09815 (13)0.8311 (2)0.0395 (5)0.926 (5)
C2A'0.8266 (9)1.0112 (13)0.834 (2)0.031 (7)*0.074 (5)
N4A'0.7910 (9)1.0991 (13)0.748 (2)0.045 (7)*0.074 (5)
C3B0.60868 (11)0.2194 (2)0.3047 (3)0.0591 (6)
H3B10.58420.16230.35390.089*0.881 (6)
H3B20.63950.26010.38540.089*0.881 (6)
H3B30.63270.17980.23350.089*0.881 (6)
H3B40.62070.13800.32500.089*0.119 (6)
H3B50.60380.25720.40260.089*0.119 (6)
H3B60.64280.25870.26100.089*0.119 (6)
O1B0.56823 (7)0.41347 (12)0.23160 (17)0.0537 (4)
C5B0.50137 (15)0.1400 (2)0.0829 (3)0.0854 (9)
H5B10.46120.12730.00640.128*0.881 (6)
H5B20.49830.10010.18040.128*0.881 (6)
H5B30.53860.10960.04170.128*0.881 (6)
H5B40.51540.06010.10720.128*0.119 (6)
H5B50.50380.15720.02600.128*0.119 (6)
H5B60.45640.14970.09840.128*0.119 (6)
C6B0.46290 (12)0.3472 (3)0.0326 (3)0.0775 (8)
H6B10.42830.30520.03700.116*0.881 (6)
H6B20.48440.40070.02900.116*0.881 (6)
H6B30.44390.39110.10930.116*0.881 (6)
H6B40.44690.26930.00160.116*0.119 (6)
H6B50.47140.38920.05930.116*0.119 (6)
H6B60.42990.38890.07770.116*0.119 (6)
C2B0.56159 (11)0.3062 (2)0.2134 (3)0.0437 (7)0.881 (6)
N4B0.51037 (10)0.26517 (18)0.1130 (2)0.0542 (7)0.881 (6)
C2B'0.5284 (8)0.3380 (12)0.1584 (19)0.053 (6)*0.119 (6)
N4B'0.5474 (6)0.2258 (11)0.1942 (15)0.047 (5)*0.119 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0303 (7)0.0406 (8)0.0345 (7)0.0045 (6)0.0006 (6)0.0006 (6)
C20.0314 (8)0.0378 (9)0.0344 (9)0.0036 (7)0.0044 (7)0.0023 (7)
O210.0476 (7)0.0380 (7)0.0542 (8)0.0106 (6)0.0047 (6)0.0087 (6)
N30.0340 (7)0.0325 (7)0.0291 (7)0.0023 (6)0.0016 (6)0.0034 (5)
C40.0354 (8)0.0330 (9)0.0284 (8)0.0002 (7)0.0023 (6)0.0005 (6)
C50.0298 (8)0.0396 (9)0.0300 (8)0.0012 (7)0.0054 (7)0.0004 (7)
O510.0423 (7)0.0495 (8)0.0361 (6)0.0042 (6)0.0031 (5)0.0074 (5)
N60.0305 (7)0.0356 (7)0.0278 (7)0.0008 (6)0.0023 (5)0.0018 (5)
C70.0343 (8)0.0299 (8)0.0286 (8)0.0026 (7)0.0048 (6)0.0003 (6)
C80.0309 (8)0.0305 (8)0.0316 (8)0.0018 (7)0.0049 (7)0.0010 (6)
O90.0263 (5)0.0315 (6)0.0317 (6)0.0008 (4)0.0001 (5)0.0012 (4)
C100.0247 (7)0.0392 (9)0.0319 (8)0.0023 (7)0.0002 (6)0.0034 (7)
C110.0320 (8)0.0429 (10)0.0379 (9)0.0008 (7)0.0010 (7)0.0077 (7)
C120.0389 (9)0.0310 (8)0.0408 (9)0.0016 (7)0.0031 (7)0.0037 (7)
N130.0293 (7)0.0433 (8)0.0413 (8)0.0039 (6)0.0018 (6)0.0024 (6)
O140.0426 (7)0.0368 (7)0.0612 (8)0.0011 (6)0.0005 (6)0.0065 (6)
O150.0395 (7)0.0634 (9)0.0506 (8)0.0074 (6)0.0133 (6)0.0035 (6)
C3A0.0483 (11)0.0615 (13)0.0474 (11)0.0023 (10)0.0057 (9)0.0086 (9)
O1A0.0585 (8)0.0308 (7)0.0609 (9)0.0011 (6)0.0167 (7)0.0028 (6)
C5A0.0763 (14)0.0305 (10)0.0669 (13)0.0080 (10)0.0173 (11)0.0036 (9)
C6A0.0481 (10)0.0477 (11)0.0453 (10)0.0017 (9)0.0033 (8)0.0049 (8)
C2A0.0383 (10)0.0350 (11)0.0401 (11)0.0002 (8)0.0153 (9)0.0040 (8)
N4A0.0438 (10)0.0314 (9)0.0435 (10)0.0044 (7)0.0089 (8)0.0048 (6)
C3B0.0498 (11)0.0551 (13)0.0738 (14)0.0010 (10)0.0148 (10)0.0088 (11)
O1B0.0461 (7)0.0476 (8)0.0609 (9)0.0120 (6)0.0068 (6)0.0081 (6)
C5B0.102 (2)0.0764 (17)0.0851 (18)0.0538 (17)0.0357 (16)0.0341 (14)
C6B0.0633 (14)0.0932 (18)0.0636 (14)0.0358 (14)0.0201 (12)0.0175 (13)
C2B0.0424 (12)0.0474 (15)0.0434 (12)0.0128 (10)0.0138 (10)0.0089 (9)
N4B0.0576 (13)0.0585 (13)0.0454 (11)0.0291 (10)0.0070 (9)0.0074 (9)
Geometric parameters (Å, º) top
N1—C51.361 (2)C5A—H5A50.9800
N1—C21.397 (2)C5A—H5A60.9800
N1—H10.95 (3)C6A—N4A1.467 (2)
C2—O211.210 (2)C6A—C2A'1.538 (13)
C2—N31.377 (2)C6A—H6A10.9800
N3—N61.3645 (18)C6A—H6A20.9800
N3—C41.454 (2)C6A—H6A30.9800
C4—C51.520 (2)C6A—H6A40.9800
C4—H4A0.9900C6A—H6A50.9800
C4—H4B0.9900C6A—H6A60.9800
C5—O511.213 (2)C2A—N4A1.341 (3)
N6—C71.285 (2)C2A'—N4A'1.392 (17)
C7—C81.446 (2)C3B—N4B'1.452 (11)
C7—H70.9500C3B—C2B1.520 (3)
C8—C121.361 (2)C3B—H3B10.9800
C8—O91.3707 (19)C3B—H3B20.9800
O9—C101.3637 (18)C3B—H3B30.9800
C10—C111.348 (2)C3B—H3B40.9800
C10—N131.416 (2)C3B—H3B50.9800
C11—C121.414 (2)C3B—H3B60.9800
C11—H110.9500O1B—C2B1.253 (3)
C12—H120.9500O1B—C2B'1.289 (13)
N13—O141.2256 (19)C5B—N4B1.474 (3)
N13—O151.243 (2)C5B—N4B'1.581 (11)
C3A—C2A1.511 (3)C5B—H5B10.9800
C3A—N4A'1.550 (14)C5B—H5B20.9800
C3A—H3A10.9800C5B—H5B30.9800
C3A—H3A20.9800C5B—H5B40.9800
C3A—H3A30.9800C5B—H5B50.9800
C3A—H3A40.9800C5B—H5B60.9800
C3A—H3A50.9800C6B—N4B1.454 (3)
C3A—H3A60.9800C6B—C2B'1.589 (13)
O1A—C2A1.242 (2)C6B—H6B10.9800
O1A—C2A'1.317 (13)C6B—H6B20.9800
C5A—N4A1.468 (2)C6B—H6B30.9800
C5A—N4A'1.551 (14)C6B—H6B40.9800
C5A—H5A10.9800C6B—H6B50.9800
C5A—H5A20.9800C6B—H6B60.9800
C5A—H5A30.9800C2B—N4B1.336 (3)
C5A—H5A40.9800C2B'—N4B'1.374 (16)
C5—N1—C2113.10 (14)C2A'—C6A—H6A6109.5
C5—N1—H1126.6 (15)H6A2—C6A—H6A6120.8
C2—N1—H1120.1 (15)H6A3—C6A—H6A669.7
O21—C2—N3128.12 (15)H6A4—C6A—H6A6109.5
O21—C2—N1126.40 (15)H6A5—C6A—H6A6109.5
N3—C2—N1105.47 (14)O1A—C2A—N4A120.77 (17)
N6—N3—C2119.31 (13)O1A—C2A—C3A121.73 (18)
N6—N3—C4127.54 (13)N4A—C2A—C3A117.50 (17)
C2—N3—C4113.03 (13)C2A—N4A—C6A119.34 (15)
N3—C4—C5101.29 (13)C2A—N4A—C5A123.88 (17)
N3—C4—H4A111.5C6A—N4A—C5A116.64 (17)
C5—C4—H4A111.5O1A—C2A'—N4A'108.9 (11)
N3—C4—H4B111.5O1A—C2A'—C6A142.3 (12)
C5—C4—H4B111.5N4A'—C2A'—C6A108.8 (10)
H4A—C4—H4B109.3C2A'—N4A'—C5A113.1 (11)
O51—C5—N1127.11 (15)C2A'—N4A'—C3A112.1 (10)
O51—C5—C4125.83 (15)C5A—N4A'—C3A134.6 (11)
N1—C5—C4107.06 (13)N4B'—C3B—H3B181.9
C7—N6—N3115.97 (13)C2B—C3B—H3B1109.5
N6—C7—C8119.39 (14)N4B'—C3B—H3B2146.1
N6—C7—H7120.3C2B—C3B—H3B2109.5
C8—C7—H7120.3H3B1—C3B—H3B2109.5
C12—C8—O9110.87 (13)N4B'—C3B—H3B395.5
C12—C8—C7130.66 (15)C2B—C3B—H3B3109.5
O9—C8—C7118.48 (14)H3B1—C3B—H3B3109.5
C10—O9—C8104.32 (12)H3B2—C3B—H3B3109.5
C11—C10—O9112.84 (15)N4B'—C3B—H3B4109.5
C11—C10—N13131.69 (15)C2B—C3B—H3B4147.7
O9—C10—N13115.44 (14)H3B1—C3B—H3B454.1
C10—C11—C12105.16 (14)H3B2—C3B—H3B4102.6
C10—C11—H11127.4H3B3—C3B—H3B461.5
C12—C11—H11127.4N4B'—C3B—H3B5109.5
C8—C12—C11106.81 (15)C2B—C3B—H3B590.0
C8—C12—H12126.6H3B1—C3B—H3B576.8
C11—C12—H12126.6H3B2—C3B—H3B547.3
O14—N13—O15124.08 (15)H3B3—C3B—H3B5155.0
O14—N13—C10119.90 (14)H3B4—C3B—H3B5109.5
O15—N13—C10116.02 (15)N4B'—C3B—H3B6109.5
C2A—C3A—H3A1109.5C2B—C3B—H3B686.4
N4A'—C3A—H3A1100.3H3B1—C3B—H3B6163.2
C2A—C3A—H3A2109.5H3B2—C3B—H3B668.3
N4A'—C3A—H3A279.5H3B3—C3B—H3B658.3
H3A1—C3A—H3A2109.5H3B4—C3B—H3B6109.5
C2A—C3A—H3A3109.5H3B5—C3B—H3B6109.5
N4A'—C3A—H3A3143.0N4B—C5B—H5B1109.5
H3A1—C3A—H3A3109.5N4B'—C5B—H5B1149.0
H3A2—C3A—H3A3109.5N4B—C5B—H5B2109.5
C2A—C3A—H3A4146.9N4B'—C5B—H5B283.8
N4A'—C3A—H3A4109.5H5B1—C5B—H5B2109.5
H3A1—C3A—H3A468.1N4B—C5B—H5B3109.5
H3A2—C3A—H3A447.9N4B'—C5B—H5B390.9
H3A3—C3A—H3A4101.9H5B1—C5B—H5B3109.5
C2A—C3A—H3A589.2H5B2—C5B—H5B3109.5
N4A'—C3A—H3A5109.5N4B—C5B—H5B4149.5
H3A1—C3A—H3A5148.6N4B'—C5B—H5B4109.5
H3A2—C3A—H3A586.2H5B1—C5B—H5B4100.9
H3A4—C3A—H3A5109.5H5B2—C5B—H5B455.5
C2A—C3A—H3A688.2H5B3—C5B—H5B461.0
N4A'—C3A—H3A6109.5N4B—C5B—H5B586.9
H3A1—C3A—H3A648.8N4B'—C5B—H5B5109.5
H3A2—C3A—H3A6156.8H5B1—C5B—H5B564.1
H3A3—C3A—H3A676.7H5B2—C5B—H5B5163.5
H3A4—C3A—H3A6109.5H5B3—C5B—H5B562.0
H3A5—C3A—H3A6109.5H5B4—C5B—H5B5109.5
N4A—C5A—H5A1109.5N4B—C5B—H5B687.6
N4A'—C5A—H5A179.4N4B'—C5B—H5B6109.5
N4A—C5A—H5A2109.5H5B1—C5B—H5B652.4
N4A'—C5A—H5A2140.6H5B2—C5B—H5B673.4
H5A1—C5A—H5A2109.5H5B3—C5B—H5B6159.6
N4A—C5A—H5A3109.5H5B4—C5B—H5B6109.5
N4A'—C5A—H5A3102.7H5B5—C5B—H5B6109.5
H5A1—C5A—H5A3109.5N4B—C6B—H6B1109.5
H5A2—C5A—H5A3109.5C2B'—C6B—H6B1146.5
N4A—C5A—H5A4145.4N4B—C6B—H6B2109.5
N4A'—C5A—H5A4109.5C2B'—C6B—H6B289.8
H5A2—C5A—H5A4100.9H6B1—C6B—H6B2109.5
H5A3—C5A—H5A474.0N4B—C6B—H6B3109.5
N4A—C5A—H5A588.1C2B'—C6B—H6B388.2
N4A'—C5A—H5A5109.5H6B1—C6B—H6B3109.5
H5A1—C5A—H5A593.0H6B2—C6B—H6B3109.5
H5A3—C5A—H5A5143.6N4B—C6B—H6B472.6
H5A4—C5A—H5A5109.5C2B'—C6B—H6B4109.5
N4A—C5A—H5A691.0H6B2—C6B—H6B4126.5
N4A'—C5A—H5A6109.5H6B3—C6B—H6B4120.2
H5A1—C5A—H5A6150.2N4B—C6B—H6B5120.3
H5A2—C5A—H5A682.1C2B'—C6B—H6B5109.5
H5A4—C5A—H5A6109.5H6B1—C6B—H6B588.0
H5A5—C5A—H5A6109.5H6B3—C6B—H6B5117.4
N4A—C6A—H6A1109.5H6B4—C6B—H6B5109.5
C2A'—C6A—H6A1121.1N4B—C6B—H6B6126.3
N4A—C6A—H6A2109.5C2B'—C6B—H6B6109.5
C2A'—C6A—H6A2126.4H6B1—C6B—H6B690.0
H6A1—C6A—H6A2109.5H6B2—C6B—H6B6109.8
N4A—C6A—H6A3109.5H6B4—C6B—H6B6109.5
C2A'—C6A—H6A370.6H6B5—C6B—H6B6109.5
H6A1—C6A—H6A3109.5O1B—C2B—N4B119.3 (2)
H6A2—C6A—H6A3109.5O1B—C2B—C3B122.65 (19)
N4A—C6A—H6A470.7N4B—C2B—C3B118.0 (2)
C2A'—C6A—H6A4109.5C2B—N4B—C6B118.4 (2)
H6A1—C6A—H6A469.7C2B—N4B—C5B121.6 (2)
H6A2—C6A—H6A471.2C6B—N4B—C5B120.0 (2)
H6A3—C6A—H6A4179.1O1B—C2B'—N4B'113.1 (11)
N4A—C6A—H6A5120.5O1B—C2B'—C6B133.6 (10)
C2A'—C6A—H6A5109.5N4B'—C2B'—C6B113.3 (10)
H6A1—C6A—H6A5126.7C2B'—N4B'—C3B112.4 (10)
H6A3—C6A—H6A571.2C2B'—N4B'—C5B109.5 (9)
H6A4—C6A—H6A5109.5C3B—N4B'—C5B137.3 (9)
N4A—C6A—H6A6127.0
C5—N1—C2—O21177.29 (18)C2A'—C6A—N4A—C5A174.0 (14)
C5—N1—C2—N32.2 (2)N4A'—C5A—N4A—C2A2.7 (15)
O21—C2—N3—N61.7 (3)N4A'—C5A—N4A—C6A172.9 (15)
N1—C2—N3—N6177.80 (14)C2A—O1A—C2A'—N4A'2.6 (11)
O21—C2—N3—C4178.06 (18)C2A—O1A—C2A'—C6A174 (4)
N1—C2—N3—C41.40 (19)N4A—C6A—C2A'—O1A173 (4)
N6—N3—C4—C5176.26 (15)N4A—C6A—C2A'—N4A'3.9 (10)
C2—N3—C4—C50.22 (18)O1A—C2A'—N4A'—C5A176.8 (14)
C2—N1—C5—O51178.19 (17)C6A—C2A'—N4A'—C5A1 (2)
C2—N1—C5—C42.08 (19)O1A—C2A'—N4A'—C3A1 (2)
N3—C4—C5—O51179.18 (16)C6A—C2A'—N4A'—C3A176.4 (13)
N3—C4—C5—N11.08 (17)N4A—C5A—N4A'—C2A'3.5 (11)
C2—N3—N6—C7178.88 (15)N4A—C5A—N4A'—C3A171 (3)
C4—N3—N6—C73.1 (2)C2A—C3A—N4A'—C2A'1.5 (11)
N3—N6—C7—C8179.32 (14)C2A—C3A—N4A'—C5A173 (3)
N6—C7—C8—C12176.15 (18)C2B'—O1B—C2B—N4B3.7 (14)
N6—C7—C8—O94.1 (2)C2B'—O1B—C2B—C3B174.5 (15)
C12—C8—O9—C100.06 (18)N4B'—C3B—C2B—O1B174.0 (10)
C7—C8—O9—C10179.77 (14)N4B'—C3B—C2B—N4B4.3 (9)
C8—O9—C10—C110.01 (19)O1B—C2B—N4B—C6B2.2 (3)
C8—O9—C10—N13178.21 (14)C3B—C2B—N4B—C6B176.2 (2)
O9—C10—C11—C120.0 (2)O1B—C2B—N4B—C5B177.8 (2)
N13—C10—C11—C12177.89 (18)C3B—C2B—N4B—C5B3.8 (3)
O9—C8—C12—C110.1 (2)C2B'—C6B—N4B—C2B1.8 (12)
C7—C8—C12—C11179.72 (17)C2B'—C6B—N4B—C5B178.3 (12)
C10—C11—C12—C80.1 (2)N4B'—C5B—N4B—C2B6.7 (8)
C11—C10—N13—O14178.84 (19)N4B'—C5B—N4B—C6B173.4 (9)
O9—C10—N13—O141.0 (2)C2B—O1B—C2B'—N4B'3.5 (7)
C11—C10—N13—O150.9 (3)C2B—O1B—C2B'—C6B175 (3)
O9—C10—N13—O15178.66 (15)N4B—C6B—C2B'—O1B173 (3)
C2A'—O1A—C2A—N4A3.3 (15)N4B—C6B—C2B'—N4B'4.9 (7)
C2A'—O1A—C2A—C3A176.8 (15)O1B—C2B'—N4B'—C3B1 (2)
N4A'—C3A—C2A—O1A175.5 (14)C6B—C2B'—N4B'—C3B177.7 (10)
N4A'—C3A—C2A—N4A4.6 (14)O1B—C2B'—N4B'—C5B172.3 (11)
O1A—C2A—N4A—C6A1.8 (3)C6B—C2B'—N4B'—C5B6.3 (18)
C3A—C2A—N4A—C6A178.29 (18)C2B—C3B—N4B'—C2B'2.4 (9)
O1A—C2A—N4A—C5A177.25 (19)C2B—C3B—N4B'—C5B166 (2)
C3A—C2A—N4A—C5A2.8 (3)N4B—C5B—N4B'—C2B'0.4 (9)
C2A'—C6A—N4A—C2A1.8 (13)N4B—C5B—N4B'—C3B169 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1B0.95 (3)1.81 (3)2.7463 (19)169 (3)
C7—H7···O1A0.952.303.175 (2)152
(II) 2,6-diacetaminopyridine dimethylformamide monosolvate top
Crystal data top
C9H11N3O2·C3H7NOF(000) = 568
Mr = 266.30Dx = 1.270 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 11.3031 (7) ÅCell parameters from 6874 reflections
b = 13.1539 (8) Åθ = 3.3–25.9°
c = 9.3959 (5) ŵ = 0.09 mm1
β = 94.327 (5)°T = 173 K
V = 1393.00 (14) Å3Block, colourless
Z = 40.50 × 0.40 × 0.40 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
1967 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.100
Graphite monochromatorθmax = 25.6°, θmin = 3.3°
ω scansh = 1313
12406 measured reflectionsk = 1515
2603 independent reflectionsl = 1011
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0587P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.93(Δ/σ)max < 0.001
2603 reflectionsΔρmax = 0.24 e Å3
187 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.024 (3)
Crystal data top
C9H11N3O2·C3H7NOV = 1393.00 (14) Å3
Mr = 266.30Z = 4
Monoclinic, P21/cMo Kα radiation
a = 11.3031 (7) ŵ = 0.09 mm1
b = 13.1539 (8) ÅT = 173 K
c = 9.3959 (5) Å0.50 × 0.40 × 0.40 mm
β = 94.327 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
1967 reflections with I > 2σ(I)
12406 measured reflectionsRint = 0.100
2603 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 0.93Δρmax = 0.24 e Å3
2603 reflectionsΔρmin = 0.19 e Å3
187 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
N10.81887 (10)0.42930 (9)0.33685 (12)0.0280 (3)
C20.77593 (12)0.52246 (11)0.30726 (16)0.0299 (3)
C30.77636 (13)0.59988 (11)0.40791 (17)0.0356 (4)
H30.74540.66530.38380.043*
C40.82346 (14)0.57795 (12)0.54412 (17)0.0372 (4)
H40.82450.62910.61560.045*
C50.86915 (13)0.48275 (12)0.57834 (16)0.0340 (4)
H50.90160.46720.67200.041*
C60.86552 (12)0.41064 (11)0.46952 (15)0.0278 (3)
N210.72814 (12)0.53106 (10)0.16546 (14)0.0347 (3)
H210.7197 (16)0.4710 (17)0.118 (2)0.053 (5)*
C220.69884 (14)0.61764 (12)0.09140 (18)0.0371 (4)
C230.64755 (17)0.59993 (13)0.05894 (19)0.0469 (4)
H23A0.56410.62090.06740.070*0.42 (5)
H23B0.65320.52760.08220.070*0.42 (5)
H23C0.69190.63980.12510.070*0.42 (5)
H23D0.56740.57180.05720.070*0.58 (5)
H23E0.69780.55190.10670.070*0.58 (5)
H23F0.64400.66460.11110.070*0.58 (5)
O240.71192 (12)0.70272 (9)0.14172 (14)0.0516 (3)
N610.91380 (11)0.31284 (10)0.48319 (13)0.0285 (3)
H610.9215 (15)0.2810 (14)0.404 (2)0.042 (5)*
C620.95180 (12)0.26280 (12)0.60424 (15)0.0310 (3)
C631.00524 (16)0.16042 (13)0.58083 (17)0.0428 (4)
H63A1.08610.15840.62650.064*0.66 (2)
H63B1.00750.14810.47820.064*0.66 (2)
H63C0.95710.10780.62250.064*0.66 (2)
H63D0.94880.11870.52200.064*0.34 (2)
H63E1.02360.12700.67310.064*0.34 (2)
H63F1.07830.16860.53200.064*0.34 (2)
O640.94306 (11)0.29781 (8)0.72423 (11)0.0419 (3)
O1A0.66772 (10)0.34158 (9)0.02033 (13)0.0424 (3)
C2A0.65996 (13)0.26859 (12)0.10092 (17)0.0345 (4)
H2A0.70240.27230.19200.041*
N3A0.59688 (11)0.18486 (10)0.07072 (14)0.0342 (3)
C4A0.59146 (16)0.10297 (13)0.1735 (2)0.0453 (4)
H4A10.64170.11970.25990.068*
H4A20.61960.03990.13210.068*
H4A30.50930.09400.19800.068*
C5A0.53209 (15)0.17015 (14)0.06731 (19)0.0428 (4)
H5A10.53490.23280.12340.064*
H5A20.44930.15320.05340.064*
H5A30.56840.11460.11820.064*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0304 (6)0.0251 (6)0.0284 (6)0.0028 (5)0.0007 (5)0.0004 (5)
C20.0282 (7)0.0259 (8)0.0354 (8)0.0036 (5)0.0021 (6)0.0004 (6)
C30.0358 (8)0.0253 (8)0.0462 (9)0.0023 (6)0.0060 (7)0.0044 (7)
C40.0425 (9)0.0316 (8)0.0381 (9)0.0051 (6)0.0075 (7)0.0105 (6)
C50.0372 (8)0.0364 (9)0.0286 (8)0.0047 (6)0.0035 (6)0.0047 (6)
C60.0274 (7)0.0289 (7)0.0274 (7)0.0048 (5)0.0037 (6)0.0013 (6)
N210.0427 (7)0.0242 (7)0.0357 (7)0.0002 (5)0.0061 (5)0.0000 (5)
C220.0363 (8)0.0267 (8)0.0477 (10)0.0003 (6)0.0007 (7)0.0054 (7)
C230.0551 (10)0.0372 (9)0.0465 (10)0.0033 (8)0.0091 (8)0.0091 (7)
O240.0676 (8)0.0265 (7)0.0586 (8)0.0007 (5)0.0088 (6)0.0036 (5)
N610.0360 (7)0.0288 (7)0.0203 (6)0.0005 (5)0.0008 (5)0.0009 (5)
C620.0316 (7)0.0371 (8)0.0243 (7)0.0056 (6)0.0013 (6)0.0025 (6)
C630.0500 (9)0.0470 (10)0.0315 (8)0.0106 (8)0.0025 (7)0.0089 (7)
O640.0614 (7)0.0420 (7)0.0222 (5)0.0067 (5)0.0020 (5)0.0004 (5)
O1A0.0511 (7)0.0322 (6)0.0429 (6)0.0061 (5)0.0026 (5)0.0009 (5)
C2A0.0326 (8)0.0333 (8)0.0374 (8)0.0022 (6)0.0009 (6)0.0049 (7)
N3A0.0352 (7)0.0299 (7)0.0375 (7)0.0008 (5)0.0024 (5)0.0024 (5)
C4A0.0518 (10)0.0349 (9)0.0498 (10)0.0012 (7)0.0081 (8)0.0040 (7)
C5A0.0401 (9)0.0434 (10)0.0442 (9)0.0063 (7)0.0013 (7)0.0088 (7)
Geometric parameters (Å, º) top
N1—C61.3390 (19)N61—C621.3556 (19)
N1—C21.3395 (19)N61—H610.87 (2)
C2—C31.389 (2)C62—O641.2287 (18)
C2—N211.404 (2)C62—C631.499 (2)
C3—C41.379 (2)C63—H63A0.9800
C3—H30.9500C63—H63B0.9800
C4—C51.383 (2)C63—H63C0.9800
C4—H40.9500C63—H63D0.9801
C5—C61.393 (2)C63—H63E0.9801
C5—H50.9500C63—H63F0.9801
C6—N611.3995 (19)O1A—C2A1.2300 (19)
N21—C221.362 (2)C2A—N3A1.331 (2)
N21—H210.91 (2)C2A—H2A0.9500
C22—O241.220 (2)N3A—C4A1.451 (2)
C22—C231.504 (2)N3A—C5A1.453 (2)
C23—H23A0.9800C4A—H4A10.9800
C23—H23B0.9800C4A—H4A20.9800
C23—H23C0.9800C4A—H4A30.9800
C23—H23D0.9804C5A—H5A10.9800
C23—H23E0.9804C5A—H5A20.9800
C23—H23F0.9805C5A—H5A30.9800
C6—N1—C2118.16 (12)C62—N61—H61116.3 (12)
N1—C2—C3123.14 (14)C6—N61—H61115.3 (12)
N1—C2—N21112.22 (13)O64—C62—N61123.06 (14)
C3—C2—N21124.62 (14)O64—C62—C63122.18 (13)
C4—C3—C2117.36 (14)N61—C62—C63114.76 (13)
C4—C3—H3121.3C62—C63—H63A109.5
C2—C3—H3121.3C62—C63—H63B109.5
C3—C4—C5121.09 (14)C62—C63—H63C109.5
C3—C4—H4119.5C62—C63—H63D109.5
C5—C4—H4119.5C62—C63—H63E109.5
C4—C5—C6117.13 (14)H63D—C63—H63E109.5
C4—C5—H5121.4C62—C63—H63F109.5
C6—C5—H5121.4H63D—C63—H63F109.5
N1—C6—C5123.11 (14)H63E—C63—H63F109.5
N1—C6—N61112.17 (12)O1A—C2A—N3A125.21 (15)
C5—C6—N61124.67 (13)O1A—C2A—H2A117.4
C22—N21—C2127.83 (14)N3A—C2A—H2A117.4
C22—N21—H21117.5 (13)C2A—N3A—C4A121.41 (14)
C2—N21—H21114.6 (13)C2A—N3A—C5A121.75 (14)
O24—C22—N21123.46 (16)C4A—N3A—C5A116.83 (14)
O24—C22—C23122.22 (15)N3A—C4A—H4A1109.5
N21—C22—C23114.32 (14)N3A—C4A—H4A2109.5
C22—C23—H23A109.5H4A1—C4A—H4A2109.5
C22—C23—H23B109.5N3A—C4A—H4A3109.5
C22—C23—H23C109.5H4A1—C4A—H4A3109.5
C22—C23—H23D109.5H4A2—C4A—H4A3109.5
C22—C23—H23E109.5N3A—C5A—H5A1109.5
H23D—C23—H23E109.4N3A—C5A—H5A2109.5
C22—C23—H23F109.5H5A1—C5A—H5A2109.5
H23D—C23—H23F109.4N3A—C5A—H5A3109.5
H23E—C23—H23F109.4H5A1—C5A—H5A3109.5
C62—N61—C6128.32 (13)H5A2—C5A—H5A3109.5
C6—N1—C2—C30.8 (2)N1—C2—N21—C22165.90 (14)
C6—N1—C2—N21179.05 (12)C3—C2—N21—C2215.8 (2)
N1—C2—C3—C40.1 (2)C2—N21—C22—O240.5 (3)
N21—C2—C3—C4177.94 (14)C2—N21—C22—C23179.08 (14)
C2—C3—C4—C50.5 (2)N1—C6—N61—C62169.19 (13)
C3—C4—C5—C60.1 (2)C5—C6—N61—C6213.4 (2)
C2—N1—C6—C51.4 (2)C6—N61—C62—O643.5 (2)
C2—N1—C6—N61176.13 (11)C6—N61—C62—C63176.79 (13)
C4—C5—C6—N11.0 (2)O1A—C2A—N3A—C4A179.06 (14)
C4—C5—C6—N61176.14 (13)O1A—C2A—N3A—C5A2.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O1A0.91 (2)2.00 (2)2.8979 (18)168.8 (17)
N61—H61···O64i0.87 (2)2.01 (2)2.8757 (16)177.4 (18)
Symmetry code: (i) x, y+1/2, z1/2.
(I.II) (E)-1-[(5-nitro-2-furyl)methylideneamino]imidazolidine-2,4-dione–2,6- diacetaminopyridine (1/1) top
Crystal data top
C8H6N4O5·C9H11N3O2F(000) = 896
Mr = 431.38Dx = 1.490 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.8407 (6) ÅCell parameters from 18548 reflections
b = 17.9443 (10) Åθ = 3.5–25.8°
c = 10.9902 (6) ŵ = 0.12 mm1
β = 97.839 (5)°T = 173 K
V = 1922.56 (19) Å3Block, colourless
Z = 40.50 × 0.50 × 0.40 mm
Data collection top
Stoe IPDS II two-circle
diffractometer
2802 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.138
Graphite monochromatorθmax = 25.6°, θmin = 3.5°
ω scansh = 1111
32493 measured reflectionsk = 2121
3619 independent reflectionsl = 1213
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.122 w = 1/[σ2(Fo2) + (0.0793P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max = 0.004
3619 reflectionsΔρmax = 0.24 e Å3
295 parametersΔρmin = 0.25 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (3)
Crystal data top
C8H6N4O5·C9H11N3O2V = 1922.56 (19) Å3
Mr = 431.38Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.8407 (6) ŵ = 0.12 mm1
b = 17.9443 (10) ÅT = 173 K
c = 10.9902 (6) Å0.50 × 0.50 × 0.40 mm
β = 97.839 (5)°
Data collection top
Stoe IPDS II two-circle
diffractometer
2802 reflections with I > 2σ(I)
32493 measured reflectionsRint = 0.138
3619 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.122H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.24 e Å3
3619 reflectionsΔρmin = 0.25 e Å3
295 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.52583 (13)0.64458 (7)0.64174 (13)0.0296 (3)
C20.42350 (17)0.68120 (9)0.68671 (16)0.0301 (4)
C30.41884 (18)0.75887 (9)0.69434 (17)0.0349 (4)
H30.34730.78350.72840.042*
C40.52252 (18)0.79852 (10)0.65029 (17)0.0384 (4)
H40.52170.85140.65370.046*
C50.62753 (18)0.76271 (9)0.60124 (17)0.0357 (4)
H50.69730.79000.56910.043*
C60.62646 (16)0.68500 (9)0.60097 (16)0.0298 (4)
N210.32474 (15)0.63422 (8)0.72663 (15)0.0356 (4)
H210.337 (2)0.5827 (12)0.7193 (18)0.043 (5)*
C220.20514 (18)0.65339 (10)0.77066 (19)0.0397 (4)
C230.11866 (19)0.58871 (11)0.8009 (2)0.0494 (5)
H23A0.09350.59540.88350.074*
H23B0.17080.54240.79800.074*
H23C0.03530.58630.74100.074*
O240.17032 (16)0.71770 (8)0.78528 (18)0.0658 (5)
N610.72765 (14)0.64156 (8)0.55533 (14)0.0332 (3)
H610.713 (2)0.5936 (13)0.548 (2)0.050 (6)*
C620.85420 (17)0.66453 (10)0.52916 (18)0.0380 (4)
C630.9342 (2)0.60583 (11)0.4720 (2)0.0475 (5)
H63A0.89420.59840.38620.071*
H63B0.93060.55890.51710.071*
H63C1.02980.62190.47540.071*
O640.89694 (15)0.72777 (8)0.55051 (17)0.0608 (5)
N1'0.54265 (14)0.48520 (8)0.65571 (14)0.0328 (4)
H1'0.537 (2)0.5339 (13)0.6433 (19)0.050 (6)*
C2'0.64290 (17)0.44362 (8)0.60760 (16)0.0308 (4)
O21'0.72697 (12)0.46849 (6)0.54699 (12)0.0386 (3)
N3'0.62300 (14)0.37095 (7)0.64226 (14)0.0311 (3)
C4'0.50642 (16)0.36282 (8)0.71095 (16)0.0293 (4)
H4'10.53540.34280.79440.035*
H4'20.43460.33020.66730.035*
C5'0.45734 (17)0.44286 (9)0.71532 (16)0.0315 (4)
O51'0.35997 (13)0.46560 (7)0.76174 (13)0.0412 (3)
N6'0.70088 (14)0.31481 (7)0.60336 (13)0.0296 (3)
C7'0.66610 (16)0.24868 (9)0.63244 (16)0.0295 (4)
H7'0.59060.24110.67640.035*
C8'0.74453 (16)0.18599 (8)0.59668 (16)0.0290 (4)
O9'0.69141 (11)0.11784 (6)0.62218 (11)0.0326 (3)
C10'0.77851 (17)0.06735 (8)0.58329 (17)0.0316 (4)
C11'0.88363 (18)0.09948 (9)0.53549 (17)0.0331 (4)
H11'0.95680.07520.50340.040*
C12'0.86101 (17)0.17743 (9)0.54369 (17)0.0331 (4)
H12'0.91630.21600.51740.040*
N13'0.74296 (15)0.00858 (8)0.59716 (15)0.0376 (4)
O14'0.63803 (15)0.02321 (7)0.64050 (17)0.0651 (5)
O15'0.82215 (13)0.05616 (6)0.56451 (13)0.0448 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0277 (7)0.0235 (6)0.0391 (8)0.0008 (5)0.0095 (6)0.0014 (6)
C20.0302 (8)0.0246 (8)0.0364 (9)0.0012 (6)0.0079 (7)0.0019 (7)
C30.0361 (9)0.0248 (8)0.0445 (11)0.0038 (7)0.0085 (8)0.0033 (7)
C40.0447 (10)0.0221 (8)0.0481 (11)0.0001 (7)0.0052 (9)0.0001 (7)
C50.0358 (9)0.0261 (8)0.0458 (11)0.0039 (7)0.0075 (8)0.0036 (7)
C60.0272 (8)0.0263 (8)0.0365 (9)0.0008 (6)0.0060 (7)0.0015 (7)
N210.0309 (7)0.0245 (7)0.0548 (10)0.0031 (6)0.0184 (7)0.0013 (6)
C220.0302 (9)0.0384 (10)0.0532 (12)0.0087 (8)0.0158 (8)0.0033 (8)
C230.0327 (10)0.0447 (11)0.0751 (15)0.0050 (8)0.0223 (10)0.0066 (10)
O240.0575 (9)0.0364 (8)0.1135 (14)0.0176 (7)0.0478 (9)0.0051 (8)
N610.0287 (7)0.0260 (7)0.0472 (9)0.0015 (6)0.0137 (6)0.0022 (6)
C620.0304 (9)0.0381 (10)0.0475 (11)0.0033 (7)0.0127 (8)0.0065 (8)
C630.0370 (10)0.0454 (11)0.0647 (14)0.0015 (8)0.0231 (10)0.0041 (10)
O640.0432 (8)0.0428 (8)0.1021 (13)0.0155 (6)0.0313 (8)0.0097 (8)
N1'0.0325 (8)0.0191 (7)0.0503 (10)0.0024 (6)0.0183 (7)0.0038 (6)
C2'0.0305 (8)0.0218 (8)0.0414 (10)0.0004 (7)0.0096 (7)0.0009 (7)
O21'0.0367 (7)0.0256 (6)0.0581 (8)0.0004 (5)0.0230 (6)0.0045 (5)
N3'0.0313 (7)0.0190 (6)0.0462 (9)0.0009 (5)0.0172 (6)0.0001 (6)
C4'0.0284 (8)0.0222 (7)0.0397 (9)0.0006 (6)0.0131 (7)0.0001 (7)
C5'0.0303 (8)0.0267 (8)0.0390 (10)0.0008 (7)0.0106 (7)0.0012 (7)
O51'0.0386 (7)0.0310 (6)0.0588 (9)0.0066 (5)0.0239 (6)0.0047 (6)
N6'0.0290 (7)0.0204 (7)0.0406 (8)0.0031 (5)0.0090 (6)0.0018 (6)
C7'0.0270 (8)0.0225 (8)0.0404 (10)0.0003 (6)0.0096 (7)0.0002 (7)
C8'0.0306 (8)0.0194 (7)0.0377 (9)0.0014 (6)0.0072 (7)0.0018 (7)
O9'0.0287 (6)0.0199 (5)0.0518 (8)0.0018 (4)0.0147 (5)0.0002 (5)
C10'0.0304 (8)0.0217 (8)0.0440 (10)0.0043 (6)0.0096 (7)0.0015 (7)
C11'0.0309 (8)0.0283 (9)0.0423 (10)0.0034 (7)0.0134 (7)0.0013 (7)
C12'0.0319 (9)0.0255 (8)0.0437 (10)0.0002 (6)0.0120 (8)0.0009 (7)
N13'0.0354 (8)0.0217 (7)0.0571 (10)0.0021 (6)0.0108 (7)0.0005 (7)
O14'0.0537 (9)0.0265 (7)0.1245 (15)0.0029 (6)0.0463 (9)0.0034 (8)
O15'0.0446 (7)0.0242 (6)0.0658 (9)0.0096 (5)0.0088 (7)0.0046 (6)
Geometric parameters (Å, º) top
N1—C21.351 (2)N1'—C5'1.364 (2)
N1—C61.352 (2)N1'—C2'1.397 (2)
C2—C31.397 (2)N1'—H1'0.88 (2)
C2—N211.401 (2)C2'—O21'1.216 (2)
C3—C41.384 (3)C2'—N3'1.380 (2)
C3—H30.9500N3'—N6'1.3691 (19)
C4—C51.387 (3)N3'—C4'1.464 (2)
C4—H40.9500C4'—C5'1.518 (2)
C5—C61.395 (2)C4'—H4'10.9900
C5—H50.9500C4'—H4'20.9900
C6—N611.410 (2)C5'—O51'1.216 (2)
N21—C221.376 (2)N6'—C7'1.287 (2)
N21—H210.94 (2)C7'—C8'1.449 (2)
C22—O241.221 (2)C7'—H7'0.9500
C22—C231.503 (3)C8'—C12'1.363 (2)
C23—H23A0.9800C8'—O9'1.3739 (19)
C23—H23B0.9800O9'—C10'1.3557 (19)
C23—H23C0.9800C10'—C11'1.352 (2)
N61—C621.379 (2)C10'—N13'1.420 (2)
N61—H610.88 (2)C11'—C12'1.421 (2)
C62—O641.222 (2)C11'—H11'0.9500
C62—C631.503 (3)C12'—H12'0.9500
C63—H63A0.9800N13'—O14'1.223 (2)
C63—H63B0.9800N13'—O15'1.2415 (18)
C63—H63C0.9800
C2—N1—C6118.44 (14)H63B—C63—H63C109.5
N1—C2—C3122.63 (15)C5'—N1'—C2'113.39 (13)
N1—C2—N21113.91 (14)C5'—N1'—H1'126.7 (14)
C3—C2—N21123.45 (15)C2'—N1'—H1'119.9 (14)
C4—C3—C2117.38 (16)O21'—C2'—N3'129.12 (15)
C4—C3—H3121.3O21'—C2'—N1'125.44 (14)
C2—C3—H3121.3N3'—C2'—N1'105.43 (14)
C3—C4—C5121.43 (16)N6'—N3'—C2'120.18 (13)
C3—C4—H4119.3N6'—N3'—C4'126.80 (12)
C5—C4—H4119.3C2'—N3'—C4'112.77 (13)
C4—C5—C6117.28 (16)N3'—C4'—C5'101.37 (12)
C4—C5—H5121.4N3'—C4'—H4'1111.5
C6—C5—H5121.4C5'—C4'—H4'1111.5
N1—C6—C5122.78 (15)N3'—C4'—H4'2111.5
N1—C6—N61113.96 (14)C5'—C4'—H4'2111.5
C5—C6—N61123.24 (15)H4'1—C4'—H4'2109.3
C22—N21—C2128.52 (15)O51'—C5'—N1'125.91 (15)
C22—N21—H21113.8 (12)O51'—C5'—C4'127.09 (15)
C2—N21—H21117.6 (12)N1'—C5'—C4'107.00 (13)
O24—C22—N21123.48 (17)C7'—N6'—N3'114.94 (14)
O24—C22—C23121.56 (16)N6'—C7'—C8'118.61 (14)
N21—C22—C23114.97 (16)N6'—C7'—H7'120.7
C22—C23—H23A109.5C8'—C7'—H7'120.7
C22—C23—H23B109.5C12'—C8'—O9'110.63 (13)
H23A—C23—H23B109.5C12'—C8'—C7'135.52 (14)
C22—C23—H23C109.5O9'—C8'—C7'113.84 (13)
H23A—C23—H23C109.5C10'—O9'—C8'104.83 (12)
H23B—C23—H23C109.5C11'—C10'—O9'112.82 (14)
C62—N61—C6127.66 (15)C11'—C10'—N13'131.59 (15)
C62—N61—H61114.7 (15)O9'—C10'—N13'115.58 (14)
C6—N61—H61117.4 (15)C10'—C11'—C12'105.09 (15)
O64—C62—N61122.31 (17)C10'—C11'—H11'127.5
O64—C62—C63123.03 (16)C12'—C11'—H11'127.5
N61—C62—C63114.65 (16)C8'—C12'—C11'106.63 (14)
C62—C63—H63A109.5C8'—C12'—H12'126.7
C62—C63—H63B109.5C11'—C12'—H12'126.7
H63A—C63—H63B109.5O14'—N13'—O15'124.15 (14)
C62—C63—H63C109.5O14'—N13'—C10'118.76 (14)
H63A—C63—H63C109.5O15'—N13'—C10'117.09 (15)
C6—N1—C2—C31.0 (2)N6'—N3'—C4'—C5'175.01 (15)
C6—N1—C2—N21179.90 (14)C2'—N3'—C4'—C5'0.76 (19)
N1—C2—C3—C41.8 (3)C2'—N1'—C5'—O51'177.74 (17)
N21—C2—C3—C4179.38 (16)C2'—N1'—C5'—C4'1.6 (2)
C2—C3—C4—C50.4 (3)N3'—C4'—C5'—O51'178.85 (18)
C3—C4—C5—C61.6 (3)N3'—C4'—C5'—N1'0.51 (18)
C2—N1—C6—C51.3 (2)C2'—N3'—N6'—C7'174.43 (16)
C2—N1—C6—N61179.64 (14)C4'—N3'—N6'—C7'0.6 (2)
C4—C5—C6—N12.5 (3)N3'—N6'—C7'—C8'178.99 (14)
C4—C5—C6—N61179.23 (16)N6'—C7'—C8'—C12'6.2 (3)
N1—C2—N21—C22176.25 (17)N6'—C7'—C8'—O9'174.36 (15)
C3—C2—N21—C224.8 (3)C12'—C8'—O9'—C10'0.03 (19)
C2—N21—C22—O242.8 (3)C7'—C8'—O9'—C10'179.58 (14)
C2—N21—C22—C23177.57 (18)C8'—O9'—C10'—C11'0.3 (2)
N1—C6—N61—C62166.82 (16)C8'—O9'—C10'—N13'178.46 (15)
C5—C6—N61—C6214.8 (3)O9'—C10'—C11'—C12'0.5 (2)
C6—N61—C62—O644.3 (3)N13'—C10'—C11'—C12'178.06 (19)
C6—N61—C62—C63175.34 (17)O9'—C8'—C12'—C11'0.3 (2)
C5'—N1'—C2'—O21'177.07 (17)C7'—C8'—C12'—C11'179.15 (19)
C5'—N1'—C2'—N3'2.1 (2)C10'—C11'—C12'—C8'0.4 (2)
O21'—C2'—N3'—N6'2.7 (3)C11'—C10'—N13'—O14'177.6 (2)
N1'—C2'—N3'—N6'176.37 (14)O9'—C10'—N13'—O14'1.0 (3)
O21'—C2'—N3'—C4'177.41 (18)C11'—C10'—N13'—O15'2.8 (3)
N1'—C2'—N3'—C4'1.70 (19)O9'—C10'—N13'—O15'178.68 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O510.94 (2)2.16 (2)3.0640 (19)162.4 (17)
N61—H61···O210.88 (2)2.25 (2)3.1069 (19)167 (2)
N1—H1···N10.88 (2)1.99 (2)2.868 (2)171.6 (19)
C7—H7···O24i0.952.693.592 (2)159
Symmetry code: (i) x+1/2, y1/2, z+3/2.

Experimental details

(Ia)(Ib)(Ic)(Id)
Crystal data
Chemical formulaC8H6N4O5·C2H6OSC8H6N4O5·0.5(C2H6OS)C8H6N4O5·C4H9NOC8H6N4O5·C4H9NO
Mr316.30?325.29325.29
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/cTriclinic, P1Monoclinic, P21/c
Temperature (K)173173173173
a, b, c (Å)6.6257 (4), 26.488 (2), 8.0032 (5)16.1710 (11), 13.7985 (8), 10.3465 (8)6.6544 (5), 7.9842 (6), 14.3515 (11)16.2038 (16), 7.4215 (5), 13.1195 (12)
α, β, γ (°)90, 100.347 (5), 9090, 102.358 (6), 90100.021 (6), 93.566 (6), 99.274 (6)90, 111.681 (7), 90
V3)1381.73 (16)2255.2 (3)737.85 (10)1466.1 (2)
Z4824
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.270.220.120.12
Crystal size (mm)0.40 × 0.20 × 0.200.50 × 0.40 × 0.200.30 × 0.30 × 0.200.30 × 0.20 × 0.20
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correctionMulti-scan
(MULABS; Spek, 2009; Blessing, 1995)
Multi-scan
(MULABS; Spek, 2009; Blessing, 1995)
Tmin, Tmax0.900, 0.9480.896, 0.957
No. of measured, independent and
observed [I > 2σ(I)] reflections
15878, 2437, 1588 13781, 2116, 1806 24053, 2770, 2111 17332, 2743, 1584
Rint0.1760.0980.0620.147
(sin θ/λ)max1)0.5950.6090.6080.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.110, 0.89 0.039, 0.100, 1.09 0.038, 0.100, 0.97 0.050, 0.106, 0.85
No. of reflections2437211627702743
No. of parameters196181232231
No. of restraints0000
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.28, 0.530.28, 0.320.28, 0.160.20, 0.26


(Ie)(II)(I.II)
Crystal data
Chemical formulaC8H6N4O5·2C4H9NOC9H11N3O2·C3H7NOC8H6N4O5·C9H11N3O2
Mr412.41266.30431.38
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)173173173
a, b, c (Å)20.874 (2), 11.5433 (9), 8.7162 (9)11.3031 (7), 13.1539 (8), 9.3959 (5)9.8407 (6), 17.9443 (10), 10.9902 (6)
α, β, γ (°)90, 100.708 (9), 9090, 94.327 (5), 9090, 97.839 (5), 90
V3)2063.6 (3)1393.00 (14)1922.56 (19)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.110.090.12
Crystal size (mm)0.60 × 0.60 × 0.200.50 × 0.40 × 0.400.50 × 0.50 × 0.40
Data collection
DiffractometerStoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Stoe IPDS II two-circle
diffractometer
Absorption correction
Tmin, Tmax
No. of measured, independent and
observed [I > 2σ(I)] reflections
9751, 3844, 2943 12406, 2603, 1967 32493, 3619, 2802
Rint0.0780.1000.138
(sin θ/λ)max1)0.6090.6090.609
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.126, 0.97 0.042, 0.099, 0.93 0.044, 0.122, 1.00
No. of reflections384426033619
No. of parameters285187295
No. of restraints2200
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.26, 0.240.24, 0.190.24, 0.25

Computer programs: X-AREA (Stoe & Cie, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Mercury (Macrae et al., 2008) and XP (Sheldrick, 2008);, publCIF (Westrip, 2010).

Hydrogen-bond geometry (Å, º) for (Ia) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.89 (4)1.86 (4)2.733 (4)167 (3)
C7—H7···O21i0.952.243.065 (4)145.0
Symmetry code: (i) x1, y, z.
Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.85 (3)1.94 (3)2.7841 (16)171 (2)
C7—H7···O51i0.952.493.235 (2)135.6
Symmetry code: (i) x, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) for (Ic) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.94 (3)1.82 (3)2.7533 (19)169 (2)
C7—H7···O21i0.952.343.123 (2)139.4
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (Id) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1A0.86 (3)1.88 (3)2.736 (3)172 (3)
C7—H7···O51i0.952.453.137 (3)129.3
Symmetry code: (i) x+1, y1/2, z+1/2.
Hydrogen-bond geometry (Å, º) for (Ie) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1B0.95 (3)1.81 (3)2.7463 (19)169 (3)
C7—H7···O1A0.952.303.175 (2)152.4
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O1A0.91 (2)2.00 (2)2.8979 (18)168.8 (17)
N61—H61···O64i0.87 (2)2.01 (2)2.8757 (16)177.4 (18)
Symmetry code: (i) x, y+1/2, z1/2.
Hydrogen-bond geometry (Å, º) for (I.II) top
D—H···AD—HH···AD···AD—H···A
N21—H21···O51'0.94 (2)2.16 (2)3.0640 (19)162.4 (17)
N61—H61···O21'0.88 (2)2.25 (2)3.1069 (19)167 (2)
N1'—H1'···N10.88 (2)1.99 (2)2.868 (2)171.6 (19)
C7'—H7'···O24i0.952.693.592 (2)158.6
Symmetry code: (i) x+1/2, y1/2, z+3/2.
Cocrystallization of nitrofurantoin and 1-(4-fluorophenyl)biguanide hydrochloride top
CrystalNitrofurantoin (mg)1-(4-Fluorophenyl)biguanide hydrochloride (mg)SolventTemperature
(Ia)2.41.9DMSO (100 µl)277 K
(Ic)1.41.6DMAC (100 µl)room temperature
(Id)2.22.4DMAC (100 µl)277 K
Cocrystallization of nitrofurantoin and 2,6-diacetaminopyridine top
CrystalNitrofurantoin (mg)2,6-Diacetaminopyridine (mg)SolventTemperature
(Ib)2.62.2DMSO (150 µl)room temperature
(Ie)2.93.4DMAC (100 µl)277 K
(I.II)2.83.7DMAC (100 µl)323 K
Selected geometric parameters (°) of nitrofurantoin. The dihedral angle between the furan and the imidazolidinedione ring is designated by α. top
CrystalN3—N6—C7—C8N6—C7—C8—O9O9—C10—N13—O14α [°]
(Ia)179.7 (3)1.8 (5)-5.0 (5)8.5 (7)
(Ib)-179.4 (1)175.2 (1)-2.9 (2)5.9 (1)
(Ic)179.0 (1)5.3 (2)-6.2 (2)12.4 (1)
(Id)178.3 (2)2.8 (4)3.4 (4)8.8 (1)
(Ie)-179.3 (1)4.1 (2)-1.0 (2)6.4 (1)
(I.II)-179.0 (1)-174.4 (2)1.0 (3)9.0 (1)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds