Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111020816/eg3071sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270111020816/eg3071Isup4.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270111020816/eg3071IIsup5.hkl | |
Chemical Markup Language (CML) file https://doi.org/10.1107/S0108270111020816/eg3071Isup3.cml |
CCDC references: 838161; 838162
First attempts to synthesize adducts of rac-trans-1,2-diaminocyclohexane and di(methanesulfonyl)amine used a 2:1 molar ratio in dichloromethane. Despite this, only the 1:1 adduct was obtained. Liquid–liquid diffusion of diethyl ether into such solutions led to crystals of form (I), whereas the use of petroleum ether led to form (II). We did not investigate whether both crystal forms were formed from the alternative solvent mixtures. Elemental analysis of form (II) was satisfactory (found: C 33.42, H 7.30, N 14.32, S 22.18; calculated C 33.43, H 7.36, N 14.62, S 22.31%).
For (I) NH hydrogen atoms were refined freely, but with N—H distance restraints and U(H) constrained to 1.2Ueq(N). Methyl H atoms were identified in difference syntheses; the geometry was idealized (C—H 0.98 Å, H—C—H 109.5°) and the methyl groups refined as rigid groups that were allowed to rotate but not tip. Other H atoms were included at calculated positions (Cmethine—H 1.00, Cmethylene—H 0.99 Å) and refined using a riding model. U(H) was set to mUeq(C), with m = 1.5 for methyl and 1.2 for riding H atoms.
The compound is a racemate but crystallizes by chance in a Sohnke space group. The refinement of the highest remaining Fourier peak as oxygen yielded a site-occupancy factor of 22.1 (5)%. The hydrogen atoms of the water molecule could not be identified, but the short distances (3.225 to 3.512 Å) to potential hydrogen-bond acceptors and to H atoms of (non-classical) donor groups (2.62 to 2.87 Å) strongly suggest that treating this peak as partly occupied water is justified. Ignoring the peak results in a solvent-accessible void of 36 Å3 at x = 0.944, y = 0.726, z = 0.713 (coordinates of the peak 0.9622, 0.7419, 0.7383).
For (II) NH hydrogen atoms were refined freely; other H atoms were refined as described for compound (I).
For both compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO (Oxford Diffraction, 2009); data reduction: CrysAlis PRO (Oxford Diffraction, 2009); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP (Bruker, 1998); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
C6H15N2+·C2H6NO4S2−·0.11H2O | F(000) = 1241 |
Mr = 289.38 | Dx = 1.359 Mg m−3 |
Monoclinic, C2 | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: C 2y | Cell parameters from 26969 reflections |
a = 21.9116 (6) Å | θ = 2.2–30.9° |
b = 8.84942 (10) Å | µ = 0.39 mm−1 |
c = 17.2357 (4) Å | T = 100 K |
β = 122.196 (6)° | Tablet, colourless |
V = 2828.2 (2) Å3 | 0.25 × 0.20 × 0.10 mm |
Z = 8 |
Oxford Diffraction Xcalibur E diffractometer | 6813 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.035 |
Graphite monochromator | θmax = 29.6°, θmin = 2.2° |
Detector resolution: 16.1419 pixels mm-1 | h = −30→30 |
ω scans | k = −12→12 |
59469 measured reflections | l = −23→23 |
7844 independent reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | w = 1/[σ2(Fo2) + (0.0291P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.95 | (Δ/σ)max = 0.001 |
7844 reflections | Δρmax = 0.29 e Å−3 |
347 parameters | Δρmin = −0.27 e Å−3 |
9 restraints | Absolute structure: Flack (1983) |
Primary atom site location: structure-invariant direct methods | Absolute structure parameter: 0.04 (3) |
C6H15N2+·C2H6NO4S2−·0.11H2O | V = 2828.2 (2) Å3 |
Mr = 289.38 | Z = 8 |
Monoclinic, C2 | Mo Kα radiation |
a = 21.9116 (6) Å | µ = 0.39 mm−1 |
b = 8.84942 (10) Å | T = 100 K |
c = 17.2357 (4) Å | 0.25 × 0.20 × 0.10 mm |
β = 122.196 (6)° |
Oxford Diffraction Xcalibur E diffractometer | 6813 reflections with I > 2σ(I) |
59469 measured reflections | Rint = 0.035 |
7844 independent reflections |
R[F2 > 2σ(F2)] = 0.026 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.054 | Δρmax = 0.29 e Å−3 |
S = 0.95 | Δρmin = −0.27 e Å−3 |
7844 reflections | Absolute structure: Flack (1983) |
347 parameters | Absolute structure parameter: 0.04 (3) |
9 restraints |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. Operators for generating equivalent atoms: $4 x, y - 1, z Distance DIST 3.2246 (0.0064) O99 - O1 3.5124 (0.0063) O99 - O5_$4 3.5095 (0.0063) O99 - O8_$4 3.4352 (0.0063) O99 - N3_$4 Dihedral angle TORS 65.54 (0.08) O5 - S3 - S4 - O7 |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
S1 | 0.45268 (2) | 0.16112 (4) | 0.52978 (3) | 0.03075 (10) | |
S2 | 0.433245 (19) | 0.25381 (4) | 0.91870 (2) | 0.01815 (8) | |
S3 | 0.594403 (18) | 0.58696 (4) | 0.81208 (2) | 0.01519 (7) | |
S4 | 0.664674 (18) | 0.86459 (4) | 0.86374 (2) | 0.01797 (8) | |
O1 | 0.40533 (8) | 0.05097 (17) | 0.53122 (11) | 0.0623 (5) | |
O2 | 0.41913 (6) | 0.29327 (12) | 0.47407 (7) | 0.0316 (3) | |
O3 | 0.37423 (6) | 0.14703 (12) | 0.87663 (8) | 0.0281 (3) | |
O4 | 0.41855 (6) | 0.39566 (11) | 0.94713 (7) | 0.0241 (2) | |
O5 | 0.51769 (5) | 0.56290 (12) | 0.77023 (6) | 0.0212 (2) | |
O6 | 0.62037 (5) | 0.57944 (12) | 0.75075 (6) | 0.0186 (2) | |
O7 | 0.67664 (6) | 0.97637 (12) | 0.93183 (7) | 0.0259 (2) | |
O8 | 0.63382 (6) | 0.92174 (11) | 0.77146 (6) | 0.0233 (2) | |
N1 | 0.5000 | 0.0706 (2) | 0.5000 | 0.0308 (4) | |
N2 | 0.5000 | 0.16351 (19) | 1.0000 | 0.0206 (4) | |
N3 | 0.61650 (6) | 0.73784 (14) | 0.87115 (8) | 0.0207 (3) | |
N11 | 0.41297 (8) | 0.78424 (14) | 0.40254 (8) | 0.0245 (3) | |
H1 | 0.3974 (9) | 0.8074 (19) | 0.3469 (9) | 0.029* | |
H2 | 0.4251 (9) | 0.8649 (16) | 0.4348 (10) | 0.029* | |
H3 | 0.4511 (8) | 0.7255 (18) | 0.4185 (11) | 0.029* | |
N12 | 0.46288 (7) | 0.60805 (16) | 0.56115 (9) | 0.0265 (3) | |
H4 | 0.4741 (9) | 0.597 (2) | 0.6170 (10) | 0.032* | |
H5 | 0.4579 (10) | 0.5212 (17) | 0.5379 (12) | 0.032* | |
N21 | 0.40685 (7) | 0.86537 (15) | 0.98250 (8) | 0.0196 (2) | |
H6 | 0.4107 (9) | 0.9585 (16) | 0.9646 (11) | 0.024* | |
H7 | 0.3887 (8) | 0.8755 (19) | 1.0180 (10) | 0.024* | |
H8 | 0.4519 (7) | 0.8243 (17) | 1.0201 (10) | 0.024* | |
N22 | 0.46209 (7) | 0.70780 (16) | 0.88785 (9) | 0.0243 (3) | |
H9 | 0.4752 (9) | 0.6878 (19) | 0.8451 (10) | 0.029* | |
H10 | 0.4633 (9) | 0.6094 (17) | 0.9137 (11) | 0.029* | |
C1 | 0.51186 (10) | 0.22227 (19) | 0.64361 (11) | 0.0336 (4) | |
H1A | 0.4842 | 0.2728 | 0.6658 | 0.050* | |
H1B | 0.5470 | 0.2931 | 0.6456 | 0.050* | |
H1C | 0.5372 | 0.1349 | 0.6826 | 0.050* | |
C2 | 0.45626 (9) | 0.29192 (19) | 0.83724 (11) | 0.0284 (4) | |
H2A | 0.4159 | 0.3429 | 0.7842 | 0.043* | |
H2B | 0.4668 | 0.1969 | 0.8175 | 0.043* | |
H2C | 0.4989 | 0.3572 | 0.8647 | 0.043* | |
C3 | 0.63838 (8) | 0.44449 (18) | 0.89545 (10) | 0.0217 (3) | |
H3A | 0.6272 | 0.3456 | 0.8653 | 0.033* | |
H3B | 0.6218 | 0.4474 | 0.9382 | 0.033* | |
H3C | 0.6906 | 0.4613 | 0.9292 | 0.033* | |
C4 | 0.74847 (8) | 0.78314 (18) | 0.89614 (10) | 0.0252 (3) | |
H4A | 0.7808 | 0.8615 | 0.8979 | 0.038* | |
H4B | 0.7413 | 0.7053 | 0.8515 | 0.038* | |
H4C | 0.7699 | 0.7373 | 0.9570 | 0.038* | |
C11 | 0.36011 (9) | 0.69862 (17) | 0.41493 (10) | 0.0247 (3) | |
H11 | 0.3523 | 0.5977 | 0.3850 | 0.030* | |
C12 | 0.39027 (9) | 0.67346 (19) | 0.51662 (10) | 0.0265 (3) | |
H12 | 0.3947 | 0.7746 | 0.5450 | 0.032* | |
C13 | 0.33597 (10) | 0.5811 (2) | 0.52659 (11) | 0.0370 (4) | |
H13A | 0.3288 | 0.4818 | 0.4964 | 0.044* | |
H13B | 0.3554 | 0.5628 | 0.5924 | 0.044* | |
C14 | 0.26388 (11) | 0.6620 (3) | 0.48413 (13) | 0.0494 (5) | |
H14A | 0.2701 | 0.7573 | 0.5177 | 0.059* | |
H14B | 0.2293 | 0.5977 | 0.4893 | 0.059* | |
C15 | 0.23391 (10) | 0.6971 (3) | 0.38280 (13) | 0.0477 (5) | |
H15A | 0.2204 | 0.6012 | 0.3478 | 0.057* | |
H15B | 0.1897 | 0.7590 | 0.3582 | 0.057* | |
C16 | 0.28802 (10) | 0.7810 (2) | 0.36889 (11) | 0.0375 (5) | |
H16A | 0.2954 | 0.8841 | 0.3948 | 0.045* | |
H16B | 0.2685 | 0.7905 | 0.3024 | 0.045* | |
C21 | 0.35883 (8) | 0.76844 (17) | 0.90083 (9) | 0.0195 (3) | |
H21 | 0.3597 | 0.6635 | 0.9229 | 0.023* | |
C22 | 0.38748 (7) | 0.76341 (17) | 0.83768 (9) | 0.0194 (3) | |
H22 | 0.3881 | 0.8694 | 0.8179 | 0.023* | |
C23 | 0.33614 (9) | 0.6726 (2) | 0.75208 (11) | 0.0312 (4) | |
H23A | 0.3539 | 0.6742 | 0.7099 | 0.037* | |
H23B | 0.3359 | 0.5662 | 0.7696 | 0.037* | |
C24 | 0.25956 (9) | 0.7337 (2) | 0.70224 (11) | 0.0351 (4) | |
H24A | 0.2588 | 0.8371 | 0.6797 | 0.042* | |
H24B | 0.2280 | 0.6691 | 0.6486 | 0.042* | |
C25 | 0.23124 (8) | 0.7373 (2) | 0.76561 (11) | 0.0330 (4) | |
H25A | 0.2266 | 0.6327 | 0.7822 | 0.040* | |
H25B | 0.1828 | 0.7842 | 0.7334 | 0.040* | |
C26 | 0.28181 (8) | 0.82695 (19) | 0.85278 (11) | 0.0296 (4) | |
H26A | 0.2810 | 0.9347 | 0.8368 | 0.036* | |
H26B | 0.2644 | 0.8200 | 0.8951 | 0.036* | |
O99 | 0.4611 (3) | −0.0585 (7) | 0.7371 (4) | 0.046 (2)* | 0.221 (5) |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.0271 (2) | 0.02175 (19) | 0.0313 (2) | −0.00695 (17) | 0.00746 (17) | 0.00276 (17) |
S2 | 0.01731 (17) | 0.01602 (16) | 0.02301 (18) | −0.00121 (14) | 0.01200 (14) | −0.00102 (14) |
S3 | 0.01332 (16) | 0.02095 (17) | 0.01114 (15) | 0.00163 (14) | 0.00642 (13) | 0.00217 (14) |
S4 | 0.01646 (17) | 0.02306 (18) | 0.01372 (16) | −0.00059 (15) | 0.00759 (14) | −0.00479 (14) |
O1 | 0.0520 (9) | 0.0511 (9) | 0.0742 (11) | −0.0256 (7) | 0.0271 (8) | 0.0087 (8) |
O2 | 0.0227 (6) | 0.0290 (6) | 0.0292 (6) | 0.0036 (5) | 0.0045 (5) | 0.0014 (5) |
O3 | 0.0226 (6) | 0.0234 (5) | 0.0380 (6) | −0.0054 (5) | 0.0159 (5) | −0.0034 (5) |
O4 | 0.0249 (5) | 0.0192 (5) | 0.0298 (6) | 0.0035 (4) | 0.0156 (5) | 0.0004 (4) |
O5 | 0.0137 (5) | 0.0311 (6) | 0.0149 (5) | 0.0003 (4) | 0.0049 (4) | 0.0036 (4) |
O6 | 0.0217 (5) | 0.0224 (5) | 0.0144 (5) | −0.0007 (4) | 0.0113 (4) | −0.0004 (4) |
O7 | 0.0265 (6) | 0.0289 (6) | 0.0201 (5) | −0.0014 (5) | 0.0109 (5) | −0.0102 (5) |
O8 | 0.0294 (6) | 0.0209 (5) | 0.0161 (5) | −0.0024 (4) | 0.0099 (5) | −0.0007 (4) |
N1 | 0.0368 (11) | 0.0127 (9) | 0.0258 (10) | 0.000 | 0.0051 (8) | 0.000 |
N2 | 0.0237 (9) | 0.0140 (8) | 0.0243 (9) | 0.000 | 0.0129 (8) | 0.000 |
N3 | 0.0221 (6) | 0.0268 (7) | 0.0186 (6) | −0.0008 (5) | 0.0145 (5) | −0.0029 (5) |
N11 | 0.0369 (8) | 0.0159 (7) | 0.0105 (6) | 0.0057 (6) | 0.0058 (6) | 0.0011 (5) |
N12 | 0.0326 (8) | 0.0230 (7) | 0.0132 (6) | 0.0029 (6) | 0.0051 (6) | 0.0028 (5) |
N21 | 0.0225 (6) | 0.0222 (6) | 0.0204 (6) | −0.0009 (6) | 0.0157 (5) | −0.0016 (6) |
N22 | 0.0216 (7) | 0.0302 (7) | 0.0241 (7) | 0.0025 (5) | 0.0142 (6) | −0.0045 (5) |
C1 | 0.0392 (10) | 0.0295 (9) | 0.0238 (8) | 0.0055 (7) | 0.0113 (7) | 0.0064 (7) |
C2 | 0.0301 (9) | 0.0332 (9) | 0.0268 (8) | −0.0012 (7) | 0.0184 (7) | 0.0023 (7) |
C3 | 0.0183 (7) | 0.0277 (8) | 0.0173 (7) | 0.0059 (6) | 0.0082 (6) | 0.0108 (6) |
C4 | 0.0154 (7) | 0.0332 (9) | 0.0243 (8) | −0.0019 (6) | 0.0088 (6) | −0.0091 (7) |
C11 | 0.0299 (9) | 0.0254 (8) | 0.0143 (7) | 0.0089 (6) | 0.0088 (6) | 0.0003 (6) |
C12 | 0.0362 (9) | 0.0259 (8) | 0.0130 (7) | 0.0119 (7) | 0.0102 (7) | 0.0023 (6) |
C13 | 0.0402 (10) | 0.0513 (11) | 0.0230 (8) | 0.0142 (9) | 0.0192 (8) | 0.0067 (8) |
C14 | 0.0459 (12) | 0.0744 (14) | 0.0365 (10) | 0.0221 (11) | 0.0277 (9) | 0.0087 (11) |
C15 | 0.0351 (10) | 0.0716 (15) | 0.0343 (10) | 0.0252 (10) | 0.0171 (8) | 0.0068 (10) |
C16 | 0.0386 (10) | 0.0481 (11) | 0.0186 (8) | 0.0240 (9) | 0.0105 (7) | 0.0056 (7) |
C21 | 0.0195 (7) | 0.0187 (7) | 0.0221 (7) | −0.0019 (6) | 0.0122 (6) | −0.0009 (6) |
C22 | 0.0190 (7) | 0.0205 (7) | 0.0203 (7) | −0.0001 (6) | 0.0115 (6) | −0.0014 (6) |
C23 | 0.0282 (9) | 0.0378 (9) | 0.0222 (8) | 0.0031 (8) | 0.0098 (7) | −0.0046 (7) |
C24 | 0.0286 (9) | 0.0365 (10) | 0.0271 (9) | −0.0016 (8) | 0.0061 (7) | −0.0025 (8) |
C25 | 0.0185 (8) | 0.0329 (9) | 0.0383 (9) | −0.0028 (7) | 0.0090 (7) | −0.0003 (8) |
C26 | 0.0197 (8) | 0.0336 (9) | 0.0381 (9) | −0.0017 (6) | 0.0171 (7) | −0.0041 (7) |
S1—O1 | 1.4334 (13) | C3—H3A | 0.98 |
S1—O2 | 1.4415 (11) | C3—H3B | 0.98 |
S1—N1 | 1.5963 (10) | C3—H3C | 0.98 |
S1—C1 | 1.7643 (16) | C4—H4A | 0.98 |
S2—O4 | 1.4449 (11) | C4—H4B | 0.98 |
S2—O3 | 1.4463 (11) | C4—H4C | 0.98 |
S2—N2 | 1.5992 (9) | C11—C16 | 1.523 (2) |
S2—C2 | 1.7589 (15) | C11—C12 | 1.524 (2) |
S3—O6 | 1.4444 (10) | C11—H11 | 1.00 |
S3—O5 | 1.4488 (10) | C12—C13 | 1.527 (3) |
S3—N3 | 1.5901 (13) | C12—H12 | 1.00 |
S3—C3 | 1.7628 (14) | C13—C14 | 1.521 (2) |
S4—O7 | 1.4479 (10) | C13—H13A | 0.99 |
S4—O8 | 1.4480 (10) | C13—H13B | 0.99 |
S4—N3 | 1.5913 (13) | C14—C15 | 1.535 (2) |
S4—C4 | 1.7635 (15) | C14—H14A | 0.99 |
N1—S1i | 1.5963 (10) | C14—H14B | 0.99 |
N2—S2ii | 1.5992 (9) | C15—C16 | 1.523 (3) |
N11—C11 | 1.492 (2) | C15—H15A | 0.99 |
N11—H1 | 0.854 (13) | C15—H15B | 0.99 |
N11—H2 | 0.855 (13) | C16—H16A | 0.99 |
N11—H3 | 0.893 (13) | C16—H16B | 0.99 |
N12—C12 | 1.468 (2) | C21—C22 | 1.5196 (19) |
N12—H4 | 0.862 (14) | C21—C26 | 1.521 (2) |
N12—H5 | 0.847 (14) | C21—H21 | 1.00 |
N21—C21 | 1.4986 (19) | C22—C23 | 1.523 (2) |
N21—H6 | 0.899 (13) | C22—H22 | 1.00 |
N21—H7 | 0.893 (12) | C23—C24 | 1.520 (2) |
N21—H8 | 0.918 (12) | C23—H23A | 0.99 |
N22—C22 | 1.4684 (19) | C23—H23B | 0.99 |
N22—H9 | 0.940 (14) | C24—C25 | 1.517 (2) |
N22—H10 | 0.972 (14) | C24—H24A | 0.99 |
C1—H1A | 0.98 | C24—H24B | 0.99 |
C1—H1B | 0.98 | C25—C26 | 1.530 (2) |
C1—H1C | 0.98 | C25—H25A | 0.99 |
C2—H2A | 0.98 | C25—H25B | 0.99 |
C2—H2B | 0.98 | C26—H26A | 0.99 |
C2—H2C | 0.98 | C26—H26B | 0.99 |
O1—S1—O2 | 116.51 (8) | C16—C11—C12 | 111.27 (13) |
O1—S1—N1 | 105.33 (9) | N11—C11—H11 | 108.2 |
O2—S1—N1 | 112.41 (7) | C16—C11—H11 | 108.2 |
O1—S1—C1 | 107.41 (9) | C12—C11—H11 | 108.2 |
O2—S1—C1 | 107.68 (7) | N12—C12—C11 | 110.13 (12) |
N1—S1—C1 | 107.05 (7) | N12—C12—C13 | 114.99 (13) |
O4—S2—O3 | 115.87 (6) | C11—C12—C13 | 108.73 (13) |
O4—S2—N2 | 113.71 (7) | N12—C12—H12 | 107.6 |
O3—S2—N2 | 105.59 (7) | C11—C12—H12 | 107.6 |
O4—S2—C2 | 108.34 (7) | C13—C12—H12 | 107.6 |
O3—S2—C2 | 106.57 (7) | C14—C13—C12 | 111.44 (17) |
N2—S2—C2 | 106.13 (6) | C14—C13—H13A | 109.3 |
O6—S3—O5 | 115.71 (6) | C12—C13—H13A | 109.3 |
O6—S3—N3 | 113.77 (6) | C14—C13—H13B | 109.3 |
O5—S3—N3 | 108.59 (6) | C12—C13—H13B | 109.3 |
O6—S3—C3 | 107.83 (7) | H13A—C13—H13B | 108.0 |
O5—S3—C3 | 106.61 (7) | C13—C14—C15 | 110.35 (15) |
N3—S3—C3 | 103.35 (7) | C13—C14—H14A | 109.6 |
O7—S4—O8 | 115.38 (6) | C15—C14—H14A | 109.6 |
O7—S4—N3 | 104.95 (6) | C13—C14—H14B | 109.6 |
O8—S4—N3 | 113.14 (6) | C15—C14—H14B | 109.6 |
O7—S4—C4 | 108.31 (7) | H14A—C14—H14B | 108.1 |
O8—S4—C4 | 106.77 (7) | C16—C15—C14 | 112.38 (17) |
N3—S4—C4 | 108.04 (7) | C16—C15—H15A | 109.1 |
S1i—N1—S1 | 119.73 (11) | C14—C15—H15A | 109.1 |
S2ii—N2—S2 | 120.04 (11) | C16—C15—H15B | 109.1 |
S3—N3—S4 | 121.95 (7) | C14—C15—H15B | 109.1 |
C11—N11—H1 | 113.9 (12) | H15A—C15—H15B | 107.9 |
C11—N11—H2 | 109.1 (12) | C15—C16—C11 | 111.28 (14) |
H1—N11—H2 | 109.2 (16) | C15—C16—H16A | 109.4 |
C11—N11—H3 | 109.2 (11) | C11—C16—H16A | 109.4 |
H1—N11—H3 | 103.6 (16) | C15—C16—H16B | 109.4 |
H2—N11—H3 | 111.7 (15) | C11—C16—H16B | 109.4 |
C12—N12—H4 | 102.3 (12) | H16A—C16—H16B | 108.0 |
C12—N12—H5 | 106.2 (13) | N21—C21—C22 | 109.76 (11) |
H4—N12—H5 | 108.3 (17) | N21—C21—C26 | 109.68 (12) |
C21—N21—H6 | 110.5 (10) | C22—C21—C26 | 112.45 (12) |
C21—N21—H7 | 110.8 (11) | N21—C21—H21 | 108.3 |
H6—N21—H7 | 107.4 (15) | C22—C21—H21 | 108.3 |
C21—N21—H8 | 112.9 (10) | C26—C21—H21 | 108.3 |
H6—N21—H8 | 110.0 (15) | N22—C22—C21 | 110.08 (12) |
H7—N21—H8 | 104.9 (14) | N22—C22—C23 | 114.18 (12) |
C22—N22—H9 | 108.2 (10) | C21—C22—C23 | 109.60 (12) |
C22—N22—H10 | 108.6 (10) | N22—C22—H22 | 107.6 |
H9—N22—H10 | 104.2 (14) | C21—C22—H22 | 107.6 |
S1—C1—H1A | 109.5 | C23—C22—H22 | 107.6 |
S1—C1—H1B | 109.5 | C24—C23—C22 | 112.52 (14) |
H1A—C1—H1B | 109.5 | C24—C23—H23A | 109.1 |
S1—C1—H1C | 109.5 | C22—C23—H23A | 109.1 |
H1A—C1—H1C | 109.5 | C24—C23—H23B | 109.1 |
H1B—C1—H1C | 109.5 | C22—C23—H23B | 109.1 |
S2—C2—H2A | 109.5 | H23A—C23—H23B | 107.8 |
S2—C2—H2B | 109.5 | C25—C24—C23 | 110.64 (14) |
H2A—C2—H2B | 109.5 | C25—C24—H24A | 109.5 |
S2—C2—H2C | 109.5 | C23—C24—H24A | 109.5 |
H2A—C2—H2C | 109.5 | C25—C24—H24B | 109.5 |
H2B—C2—H2C | 109.5 | C23—C24—H24B | 109.5 |
S3—C3—H3A | 109.5 | H24A—C24—H24B | 108.1 |
S3—C3—H3B | 109.5 | C24—C25—C26 | 110.96 (14) |
H3A—C3—H3B | 109.5 | C24—C25—H25A | 109.4 |
S3—C3—H3C | 109.5 | C26—C25—H25A | 109.4 |
H3A—C3—H3C | 109.5 | C24—C25—H25B | 109.4 |
H3B—C3—H3C | 109.5 | C26—C25—H25B | 109.4 |
S4—C4—H4A | 109.5 | H25A—C25—H25B | 108.0 |
S4—C4—H4B | 109.5 | C21—C26—C25 | 111.79 (13) |
H4A—C4—H4B | 109.5 | C21—C26—H26A | 109.3 |
S4—C4—H4C | 109.5 | C25—C26—H26A | 109.3 |
H4A—C4—H4C | 109.5 | C21—C26—H26B | 109.3 |
H4B—C4—H4C | 109.5 | C25—C26—H26B | 109.3 |
N11—C11—C16 | 110.56 (13) | H26A—C26—H26B | 107.9 |
N11—C11—C12 | 110.17 (13) | ||
O1—S1—N1—S1i | 167.01 (7) | C11—C12—C13—C14 | −59.87 (18) |
O2—S1—N1—S1i | 39.16 (5) | C12—C13—C14—C15 | 56.9 (2) |
C1—S1—N1—S1i | −78.87 (6) | C13—C14—C15—C16 | −52.9 (2) |
O4—S2—N2—S2ii | −32.64 (5) | C14—C15—C16—C11 | 52.6 (2) |
O3—S2—N2—S2ii | −160.76 (5) | N11—C11—C16—C15 | −178.65 (13) |
C2—S2—N2—S2ii | 86.35 (6) | C12—C11—C16—C15 | −55.88 (19) |
O6—S3—N3—S4 | −1.59 (11) | N21—C21—C22—N22 | 56.98 (16) |
O5—S3—N3—S4 | −132.00 (8) | C26—C21—C22—N22 | 179.37 (12) |
C3—S3—N3—S4 | 115.05 (9) | N21—C21—C22—C23 | −176.63 (12) |
O7—S4—N3—S3 | −176.18 (8) | C26—C21—C22—C23 | −54.24 (17) |
O8—S4—N3—S3 | 57.20 (10) | N22—C22—C23—C24 | 179.97 (14) |
C4—S4—N3—S3 | −60.78 (10) | C21—C22—C23—C24 | 55.95 (18) |
N11—C11—C12—N12 | −51.27 (17) | C22—C23—C24—C25 | −57.1 (2) |
C16—C11—C12—N12 | −174.26 (14) | C23—C24—C25—C26 | 55.1 (2) |
N11—C11—C12—C13 | −178.10 (13) | N21—C21—C26—C25 | 176.73 (13) |
C16—C11—C12—C13 | 58.91 (18) | C22—C21—C26—C25 | 54.29 (18) |
N12—C12—C13—C14 | 176.14 (14) | C24—C25—C26—C21 | −54.08 (19) |
Symmetry codes: (i) −x+1, y, −z+1; (ii) −x+1, y, −z+2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H1···O6i | 0.85 (1) | 2.52 (2) | 2.9567 (16) | 113 (1) |
N11—H1···O8i | 0.85 (1) | 2.04 (1) | 2.8721 (16) | 164 (2) |
N11—H2···O1iii | 0.86 (1) | 2.54 (1) | 3.304 (2) | 150 (2) |
N11—H2···N1iii | 0.86 (1) | 2.30 (1) | 3.076 (2) | 151 (2) |
N11—H1···O6i | 0.85 (1) | 2.52 (2) | 2.9567 (16) | 113 (1) |
N11—H3···N12i | 0.89 (1) | 2.01 (1) | 2.900 (2) | 171 (2) |
N12—H4···O5 | 0.86 (1) | 2.30 (2) | 3.1585 (16) | 173 (2) |
N12—H5···O2 | 0.85 (1) | 2.24 (2) | 3.0656 (18) | 166 (2) |
N21—H6···O3iii | 0.90 (1) | 2.11 (1) | 2.9433 (17) | 155 (2) |
N21—H6···N2iii | 0.90 (1) | 2.49 (2) | 3.2499 (19) | 142 (1) |
N21—H7···O7ii | 0.89 (1) | 2.22 (1) | 3.0613 (16) | 157 (1) |
N21—H7···N3ii | 0.89 (1) | 2.32 (1) | 3.0453 (17) | 138 (1) |
N21—H8···N22ii | 0.92 (1) | 1.99 (1) | 2.8889 (19) | 167 (1) |
N22—H9···O5 | 0.94 (1) | 2.24 (2) | 3.1416 (16) | 160 (2) |
N22—H9···O99iii | 0.94 (1) | 2.83 (2) | 3.312 (6) | 113 (1) |
N22—H10···O4 | 0.97 (1) | 2.34 (2) | 3.2593 (18) | 158 (1) |
C1—H1C···O8iv | 0.98 | 2.63 | 3.5771 (19) | 162 |
C1—H1C···O99 | 0.98 | 2.87 | 3.452 (7) | 119 |
C2—H2B···O99 | 0.98 | 2.62 | 3.578 (6) | 166 |
C3—H3C···O7v | 0.98 | 2.61 | 3.5373 (19) | 159 |
C4—H4A···O4vi | 0.98 | 2.68 | 3.4874 (19) | 140 |
C4—H4C···O7v | 0.98 | 2.83 | 3.6972 (19) | 149 |
C11—H11···O6i | 1.00 | 2.71 | 3.2789 (17) | 116 |
C12—H12···O1iii | 1.00 | 2.48 | 3.353 (2) | 146 |
C13—H13A···O2 | 0.99 | 2.77 | 3.519 (2) | 133 |
C14—H14B···O1vii | 0.99 | 2.81 | 3.706 (3) | 151 |
C16—H16A···O1iii | 0.99 | 2.74 | 3.533 (2) | 138 |
C21—H21···O4 | 1.00 | 2.62 | 3.4812 (18) | 144 |
C22—H22···O3iii | 1.00 | 2.74 | 3.5025 (18) | 134 |
C22—H22···O99iii | 1.00 | 2.70 | 3.328 (6) | 121 |
C25—H25A···O8viii | 0.99 | 2.69 | 3.549 (2) | 145 |
C26—H26A···O3iii | 0.99 | 2.58 | 3.377 (2) | 137 |
Symmetry codes: (i) −x+1, y, −z+1; (ii) −x+1, y, −z+2; (iii) x, y+1, z; (iv) x, y−1, z; (v) −x+3/2, y−1/2, −z+2; (vi) x+1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1; (viii) x−1/2, y−1/2, z. |
C6H15N2+·C2H6NO4S2− | F(000) = 616 |
Mr = 287.40 | Dx = 1.478 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 23572 reflections |
a = 9.7958 (3) Å | θ = 2.2–30.7° |
b = 8.5522 (2) Å | µ = 0.42 mm−1 |
c = 16.0779 (4) Å | T = 90 K |
β = 106.455 (3)° | Block, colourless |
V = 1291.77 (6) Å3 | 0.25 × 0.20 × 0.18 mm |
Z = 4 |
Oxford Diffraction Xcalibur E diffractometer | 3110 reflections with I > 2σ(I) |
Radiation source: Enhance (Mo) X-ray Source | Rint = 0.024 |
Graphite monochromator | θmax = 29.6°, θmin = 2.2° |
Detector resolution: 16.1419 pixels mm-1 | h = −13→13 |
ω scans | k = −11→11 |
39527 measured reflections | l = −22→22 |
3620 independent reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.026 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | w = 1/[σ2(Fo2) + (0.0431P)2 + 0.333P] where P = (Fo2 + 2Fc2)/3 |
3620 reflections | (Δ/σ)max = 0.001 |
176 parameters | Δρmax = 0.55 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C6H15N2+·C2H6NO4S2− | V = 1291.77 (6) Å3 |
Mr = 287.40 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 9.7958 (3) Å | µ = 0.42 mm−1 |
b = 8.5522 (2) Å | T = 90 K |
c = 16.0779 (4) Å | 0.25 × 0.20 × 0.18 mm |
β = 106.455 (3)° |
Oxford Diffraction Xcalibur E diffractometer | 3110 reflections with I > 2σ(I) |
39527 measured reflections | Rint = 0.024 |
3620 independent reflections |
R[F2 > 2σ(F2)] = 0.026 | 0 restraints |
wR(F2) = 0.075 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.09 | Δρmax = 0.55 e Å−3 |
3620 reflections | Δρmin = −0.32 e Å−3 |
176 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
S1 | 0.94179 (3) | 0.25490 (3) | 0.662708 (17) | 0.01016 (7) | |
S2 | 0.79270 (3) | 0.50117 (3) | 0.563105 (18) | 0.01104 (7) | |
O1 | 0.97415 (10) | 0.09624 (10) | 0.64455 (6) | 0.01810 (19) | |
O2 | 0.86120 (9) | 0.27277 (10) | 0.72527 (5) | 0.01329 (17) | |
O3 | 0.74098 (10) | 0.53444 (11) | 0.47114 (5) | 0.01768 (19) | |
O4 | 0.88515 (10) | 0.61792 (10) | 0.61586 (6) | 0.01702 (18) | |
N1 | 0.86231 (11) | 0.33160 (11) | 0.57055 (6) | 0.01201 (19) | |
N11 | 0.88098 (10) | 1.17174 (12) | 0.41090 (7) | 0.01084 (18) | |
H1 | 0.8780 (18) | 1.2373 (19) | 0.4510 (11) | 0.021 (4)* | |
H2 | 0.9442 (18) | 1.105 (2) | 0.4342 (11) | 0.023 (4)* | |
H3 | 0.9102 (18) | 1.2202 (19) | 0.3699 (11) | 0.023 (4)* | |
N12 | 0.81235 (11) | 0.89855 (12) | 0.48862 (7) | 0.0145 (2) | |
H4 | 0.795 (2) | 0.807 (2) | 0.4644 (12) | 0.035 (5)* | |
H5 | 0.812 (2) | 0.890 (2) | 0.5422 (14) | 0.041 (5)* | |
C1 | 1.10380 (12) | 0.35498 (15) | 0.70491 (8) | 0.0166 (2) | |
H1A | 1.1602 | 0.3019 | 0.7575 | 0.025* | |
H1B | 1.0844 | 0.4626 | 0.7191 | 0.025* | |
H1C | 1.1570 | 0.3561 | 0.6616 | 0.025* | |
C2 | 0.64265 (14) | 0.48884 (16) | 0.60308 (9) | 0.0203 (3) | |
H2A | 0.5946 | 0.5905 | 0.5967 | 0.030* | |
H2B | 0.6733 | 0.4595 | 0.6645 | 0.030* | |
H2C | 0.5768 | 0.4097 | 0.5702 | 0.030* | |
C11 | 0.74053 (12) | 1.09327 (13) | 0.37289 (7) | 0.0122 (2) | |
H11 | 0.7507 | 1.0161 | 0.3283 | 0.015* | |
C12 | 0.69803 (12) | 1.00569 (13) | 0.44463 (7) | 0.0124 (2) | |
H12 | 0.6854 | 1.0841 | 0.4880 | 0.015* | |
C13 | 0.55421 (12) | 0.92553 (14) | 0.40473 (8) | 0.0144 (2) | |
H13A | 0.5657 | 0.8453 | 0.3628 | 0.017* | |
H13B | 0.5242 | 0.8717 | 0.4512 | 0.017* | |
C14 | 0.43783 (13) | 1.04004 (15) | 0.35842 (8) | 0.0172 (2) | |
H14A | 0.4170 | 1.1124 | 0.4013 | 0.021* | |
H14B | 0.3497 | 0.9816 | 0.3302 | 0.021* | |
C15 | 0.48417 (13) | 1.13384 (16) | 0.29020 (8) | 0.0182 (2) | |
H15A | 0.4113 | 1.2140 | 0.2650 | 0.022* | |
H15B | 0.4913 | 1.0631 | 0.2429 | 0.022* | |
C16 | 0.62832 (12) | 1.21408 (14) | 0.32923 (8) | 0.0140 (2) | |
H16A | 0.6582 | 1.2684 | 0.2829 | 0.017* | |
H16B | 0.6192 | 1.2931 | 0.3723 | 0.017* |
U11 | U22 | U33 | U12 | U13 | U23 | |
S1 | 0.01062 (13) | 0.01063 (13) | 0.00969 (13) | 0.00139 (9) | 0.00364 (9) | −0.00029 (9) |
S2 | 0.01209 (13) | 0.01053 (13) | 0.01018 (13) | −0.00027 (10) | 0.00265 (10) | 0.00109 (9) |
O1 | 0.0239 (5) | 0.0120 (4) | 0.0187 (4) | 0.0057 (3) | 0.0065 (4) | −0.0011 (3) |
O2 | 0.0132 (4) | 0.0167 (4) | 0.0114 (4) | 0.0016 (3) | 0.0058 (3) | 0.0013 (3) |
O3 | 0.0227 (5) | 0.0170 (4) | 0.0112 (4) | −0.0005 (3) | 0.0014 (3) | 0.0037 (3) |
O4 | 0.0202 (4) | 0.0118 (4) | 0.0163 (4) | −0.0024 (3) | 0.0008 (3) | −0.0007 (3) |
N1 | 0.0153 (5) | 0.0112 (4) | 0.0095 (4) | 0.0018 (4) | 0.0035 (4) | 0.0004 (3) |
N11 | 0.0089 (4) | 0.0123 (4) | 0.0116 (4) | 0.0004 (4) | 0.0035 (3) | 0.0013 (4) |
N12 | 0.0142 (5) | 0.0134 (5) | 0.0151 (5) | 0.0008 (4) | 0.0028 (4) | 0.0031 (4) |
C1 | 0.0110 (5) | 0.0216 (6) | 0.0165 (6) | −0.0004 (5) | 0.0027 (4) | 0.0007 (5) |
C2 | 0.0151 (6) | 0.0243 (6) | 0.0236 (6) | 0.0056 (5) | 0.0089 (5) | 0.0063 (5) |
C11 | 0.0103 (5) | 0.0131 (5) | 0.0132 (5) | −0.0010 (4) | 0.0034 (4) | 0.0005 (4) |
C12 | 0.0125 (5) | 0.0134 (5) | 0.0121 (5) | −0.0006 (4) | 0.0047 (4) | 0.0006 (4) |
C13 | 0.0125 (5) | 0.0141 (5) | 0.0164 (5) | −0.0031 (4) | 0.0039 (4) | 0.0001 (4) |
C14 | 0.0128 (5) | 0.0217 (6) | 0.0169 (6) | −0.0021 (5) | 0.0040 (4) | 0.0006 (5) |
C15 | 0.0121 (5) | 0.0255 (6) | 0.0163 (6) | −0.0001 (5) | 0.0030 (4) | 0.0032 (5) |
C16 | 0.0104 (5) | 0.0165 (5) | 0.0150 (5) | 0.0009 (4) | 0.0036 (4) | 0.0043 (4) |
S1—O1 | 1.4419 (9) | C2—H2B | 0.9800 |
S1—O2 | 1.4520 (8) | C2—H2C | 0.9800 |
S1—N1 | 1.6058 (10) | C11—C16 | 1.5269 (16) |
S1—C1 | 1.7611 (12) | C11—C12 | 1.5287 (16) |
S2—O3 | 1.4489 (9) | C11—H11 | 1.0000 |
S2—O4 | 1.4496 (9) | C12—C13 | 1.5344 (16) |
S2—N1 | 1.5925 (10) | C12—H12 | 1.0000 |
S2—C2 | 1.7664 (13) | C13—C14 | 1.5271 (17) |
N11—C11 | 1.4967 (15) | C13—H13A | 0.9900 |
N11—H1 | 0.862 (17) | C13—H13B | 0.9900 |
N11—H2 | 0.848 (18) | C14—C15 | 1.5279 (17) |
N11—H3 | 0.892 (18) | C14—H14A | 0.9900 |
N12—C12 | 1.4646 (15) | C14—H14B | 0.9900 |
N12—H4 | 0.87 (2) | C15—C16 | 1.5351 (17) |
N12—H5 | 0.87 (2) | C15—H15A | 0.9900 |
C1—H1A | 0.9800 | C15—H15B | 0.9900 |
C1—H1B | 0.9800 | C16—H16A | 0.9900 |
C1—H1C | 0.9800 | C16—H16B | 0.9900 |
C2—H2A | 0.9800 | ||
O1—S1—O2 | 115.67 (5) | N11—C11—C12 | 109.08 (9) |
O1—S1—N1 | 105.93 (5) | C16—C11—C12 | 111.35 (9) |
O2—S1—N1 | 112.31 (5) | N11—C11—H11 | 108.8 |
O1—S1—C1 | 108.03 (6) | C16—C11—H11 | 108.8 |
O2—S1—C1 | 106.82 (6) | C12—C11—H11 | 108.8 |
N1—S1—C1 | 107.79 (6) | N12—C12—C11 | 109.66 (9) |
O3—S2—O4 | 116.21 (5) | N12—C12—C13 | 114.10 (9) |
O3—S2—N1 | 105.90 (5) | C11—C12—C13 | 108.51 (9) |
O4—S2—N1 | 113.58 (5) | N12—C12—H12 | 108.1 |
O3—S2—C2 | 107.25 (6) | C11—C12—H12 | 108.1 |
O4—S2—C2 | 105.94 (6) | C13—C12—H12 | 108.1 |
N1—S2—C2 | 107.52 (6) | C14—C13—C12 | 112.80 (10) |
S2—N1—S1 | 121.78 (6) | C14—C13—H13A | 109.0 |
C11—N11—H1 | 112.0 (11) | C12—C13—H13A | 109.0 |
C11—N11—H2 | 110.5 (11) | C14—C13—H13B | 109.0 |
H1—N11—H2 | 106.5 (15) | C12—C13—H13B | 109.0 |
C11—N11—H3 | 110.9 (11) | H13A—C13—H13B | 107.8 |
H1—N11—H3 | 109.8 (15) | C13—C14—C15 | 110.74 (10) |
H2—N11—H3 | 107.0 (15) | C13—C14—H14A | 109.5 |
C12—N12—H4 | 108.7 (13) | C15—C14—H14A | 109.5 |
C12—N12—H5 | 108.2 (13) | C13—C14—H14B | 109.5 |
H4—N12—H5 | 108.4 (18) | C15—C14—H14B | 109.5 |
S1—C1—H1A | 109.5 | H14A—C14—H14B | 108.1 |
S1—C1—H1B | 109.5 | C14—C15—C16 | 111.54 (10) |
H1A—C1—H1B | 109.5 | C14—C15—H15A | 109.3 |
S1—C1—H1C | 109.5 | C16—C15—H15A | 109.3 |
H1A—C1—H1C | 109.5 | C14—C15—H15B | 109.3 |
H1B—C1—H1C | 109.5 | C16—C15—H15B | 109.3 |
S2—C2—H2A | 109.5 | H15A—C15—H15B | 108.0 |
S2—C2—H2B | 109.5 | C11—C16—C15 | 110.15 (10) |
H2A—C2—H2B | 109.5 | C11—C16—H16A | 109.6 |
S2—C2—H2C | 109.5 | C15—C16—H16A | 109.6 |
H2A—C2—H2C | 109.5 | C11—C16—H16B | 109.6 |
H2B—C2—H2C | 109.5 | C15—C16—H16B | 109.6 |
N11—C11—C16 | 110.06 (9) | H16A—C16—H16B | 108.1 |
O3—S2—N1—S1 | 176.00 (7) | C16—C11—C12—C13 | 58.49 (12) |
O4—S2—N1—S1 | 47.29 (9) | N12—C12—C13—C14 | −179.28 (10) |
C2—S2—N1—S1 | −69.58 (9) | C11—C12—C13—C14 | −56.71 (12) |
O1—S1—N1—S2 | 172.88 (7) | C12—C13—C14—C15 | 54.88 (13) |
O2—S1—N1—S2 | 45.72 (9) | C13—C14—C15—C16 | −53.63 (14) |
C1—S1—N1—S2 | −71.67 (8) | N11—C11—C16—C15 | 180.00 (9) |
N11—C11—C12—N12 | −54.62 (12) | C12—C11—C16—C15 | −58.90 (13) |
C16—C11—C12—N12 | −176.28 (9) | C14—C15—C16—C11 | 55.85 (13) |
N11—C11—C12—C13 | −179.84 (9) |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H1···N1i | 0.862 (17) | 2.129 (18) | 2.9593 (14) | 161.6 (15) |
N11—H2···O1ii | 0.848 (18) | 2.403 (17) | 2.9627 (13) | 124.0 (14) |
N11—H2···N12iii | 0.848 (18) | 2.356 (17) | 3.0408 (14) | 138.1 (14) |
N11—H3···O2iv | 0.892 (18) | 2.237 (17) | 2.9735 (13) | 139.6 (14) |
N11—H3···O4iii | 0.892 (18) | 2.393 (17) | 3.0377 (13) | 129.3 (14) |
N12—H4···O3 | 0.87 (2) | 2.40 (2) | 3.1864 (14) | 150.5 (16) |
N12—H5···O1i | 0.87 (2) | 2.62 (2) | 3.0667 (14) | 113.1 (16) |
N12—H5···O4 | 0.87 (2) | 2.62 (2) | 3.1029 (13) | 116.5 (16) |
C16—H16A···O2iv | 0.99 | 2.45 | 3.1891 (14) | 132 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x, −y+3/2, z−1/2. |
Experimental details
(I) | (II) | |
Crystal data | ||
Chemical formula | C6H15N2+·C2H6NO4S2−·0.11H2O | C6H15N2+·C2H6NO4S2− |
Mr | 289.38 | 287.40 |
Crystal system, space group | Monoclinic, C2 | Monoclinic, P21/c |
Temperature (K) | 100 | 90 |
a, b, c (Å) | 21.9116 (6), 8.84942 (10), 17.2357 (4) | 9.7958 (3), 8.5522 (2), 16.0779 (4) |
β (°) | 122.196 (6) | 106.455 (3) |
V (Å3) | 2828.2 (2) | 1291.77 (6) |
Z | 8 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.39 | 0.42 |
Crystal size (mm) | 0.25 × 0.20 × 0.10 | 0.25 × 0.20 × 0.18 |
Data collection | ||
Diffractometer | Oxford Diffraction Xcalibur E diffractometer | Oxford Diffraction Xcalibur E diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 59469, 7844, 6813 | 39527, 3620, 3110 |
Rint | 0.035 | 0.024 |
(sin θ/λ)max (Å−1) | 0.694 | 0.694 |
Refinement | ||
R[F2 > 2σ(F2)], wR(F2), S | 0.026, 0.054, 0.95 | 0.026, 0.075, 1.09 |
No. of reflections | 7844 | 3620 |
No. of parameters | 347 | 176 |
No. of restraints | 9 | 0 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.29, −0.27 | 0.55, −0.32 |
Absolute structure | Flack (1983) | ? |
Absolute structure parameter | 0.04 (3) | ? |
Computer programs: CrysAlis PRO (Oxford Diffraction, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), XP (Bruker, 1998).
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H1···O6i | 0.854 (13) | 2.521 (16) | 2.9567 (16) | 112.6 (13) |
N11—H1···O8i | 0.854 (13) | 2.042 (13) | 2.8721 (16) | 164.1 (16) |
N11—H2···O1ii | 0.855 (13) | 2.536 (14) | 3.304 (2) | 149.9 (15) |
N11—H2···N1ii | 0.855 (13) | 2.303 (14) | 3.076 (2) | 150.6 (15) |
N11—H1···O6i | 0.854 (13) | 2.521 (16) | 2.9567 (16) | 112.6 (13) |
N11—H3···N12i | 0.893 (13) | 2.013 (13) | 2.900 (2) | 171.4 (16) |
N12—H4···O5 | 0.862 (14) | 2.301 (15) | 3.1585 (16) | 173.2 (16) |
N12—H5···O2 | 0.847 (14) | 2.237 (15) | 3.0656 (18) | 166.1 (17) |
N21—H6···O3ii | 0.899 (13) | 2.105 (13) | 2.9433 (17) | 154.7 (15) |
N21—H6···N2ii | 0.899 (13) | 2.494 (15) | 3.2499 (19) | 141.9 (14) |
N21—H7···O7iii | 0.893 (12) | 2.218 (13) | 3.0613 (16) | 157.3 (14) |
N21—H7···N3iii | 0.893 (12) | 2.320 (14) | 3.0453 (17) | 138.3 (14) |
N21—H8···N22iii | 0.918 (12) | 1.987 (13) | 2.8889 (19) | 166.9 (14) |
N22—H9···O5 | 0.940 (14) | 2.243 (15) | 3.1416 (16) | 159.7 (15) |
N22—H9···O99ii | 0.940 (14) | 2.827 (18) | 3.312 (6) | 113.2 (12) |
N22—H10···O4 | 0.972 (14) | 2.340 (15) | 3.2593 (18) | 157.6 (14) |
C1—H1C···O8iv | 0.98 | 2.63 | 3.5771 (19) | 161.9 |
C1—H1C···O99 | 0.98 | 2.87 | 3.452 (7) | 118.6 |
C2—H2B···O99 | 0.98 | 2.62 | 3.578 (6) | 166.1 |
C3—H3C···O7v | 0.98 | 2.61 | 3.5373 (19) | 158.7 |
C4—H4A···O4vi | 0.98 | 2.68 | 3.4874 (19) | 139.6 |
C4—H4C···O7v | 0.98 | 2.83 | 3.6972 (19) | 148.6 |
C11—H11···O6i | 1.00 | 2.71 | 3.2789 (17) | 116.2 |
C12—H12···O1ii | 1.00 | 2.48 | 3.353 (2) | 145.6 |
C13—H13A···O2 | 0.99 | 2.77 | 3.519 (2) | 133.0 |
C14—H14B···O1vii | 0.99 | 2.81 | 3.706 (3) | 151.3 |
C16—H16A···O1ii | 0.99 | 2.74 | 3.533 (2) | 137.9 |
C21—H21···O4 | 1.00 | 2.62 | 3.4812 (18) | 143.9 |
C22—H22···O3ii | 1.00 | 2.74 | 3.5025 (18) | 133.8 |
C22—H22···O99ii | 1.00 | 2.70 | 3.328 (6) | 121.1 |
C25—H25A···O8viii | 0.99 | 2.69 | 3.549 (2) | 144.9 |
C26—H26A···O3ii | 0.99 | 2.58 | 3.377 (2) | 137.0 |
Symmetry codes: (i) −x+1, y, −z+1; (ii) x, y+1, z; (iii) −x+1, y, −z+2; (iv) x, y−1, z; (v) −x+3/2, y−1/2, −z+2; (vi) x+1/2, y+1/2, z; (vii) −x+1/2, y+1/2, −z+1; (viii) x−1/2, y−1/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N11—H1···N1i | 0.862 (17) | 2.129 (18) | 2.9593 (14) | 161.6 (15) |
N11—H2···O1ii | 0.848 (18) | 2.403 (17) | 2.9627 (13) | 124.0 (14) |
N11—H2···N12iii | 0.848 (18) | 2.356 (17) | 3.0408 (14) | 138.1 (14) |
N11—H3···O2iv | 0.892 (18) | 2.237 (17) | 2.9735 (13) | 139.6 (14) |
N11—H3···O4iii | 0.892 (18) | 2.393 (17) | 3.0377 (13) | 129.3 (14) |
N12—H4···O3 | 0.87 (2) | 2.40 (2) | 3.1864 (14) | 150.5 (16) |
N12—H5···O1i | 0.87 (2) | 2.62 (2) | 3.0667 (14) | 113.1 (16) |
N12—H5···O4 | 0.87 (2) | 2.62 (2) | 3.1029 (13) | 116.5 (16) |
C16—H16A···O2iv | 0.99 | 2.45 | 3.1891 (14) | 131.5 |
Symmetry codes: (i) x, y+1, z; (ii) −x+2, −y+1, −z+1; (iii) −x+2, −y+2, −z+1; (iv) x, −y+3/2, z−1/2. |
We are interested in the supramolecular potential of NH-acidic di(organosulfonyl)amines, (RSO2)2NH, and have published numerous crystal structures of molecular cocrystals, solvates, metal coordination compounds and organic salts involving (RSO2)2NH or (RSO2)2N- entities. In particular, proton-transfer reactions of di(methanesulfonyl)amine (`dimesylamine'), (CH3SO2)2NH, with rationally selected nitrogen bases (amines and azaaromatics) afforded an extended series of ionic crystals whose packing patterns are governed by a wide variety of charge-assisted hydrogen-bonding systems in zero, one, two or three dimensions (e.g. Moers et al., 1999, 2000, 2001; Wijaya et al., 2000; Wijaya, Moers, Blaschette et al., 2004; Wijaya, Moers, Henschel et al., 2004). Our recent studies of silver complexes of rac-trans-1,2-diaminocyclohexane (Wölper et al., 2010), in turn inspired by the work of Englert (Kalf et al., 2006) on racemic and enantiomerically pure complexes of the same amine, prompted us to use this amine to synthesize adducts with di(methanesulfonyl)amine. Here we present the structures of two crystal forms of the ionic 1:1 adduct rac-trans-1-ammonio-2-aminocyclohexane di(methanesulfonyl)amide.
rac-trans-1-Ammonio-2-aminocyclohexane di(methanesulfonyl)amide 0.11-hydrate, (I), crystallizes with a partially occupied water site in the monoclinic Sohnke space group C2. The asymmetric unit (Fig. 1) consists of two cations (C11 and C12 are R- and C21 and C22 S-configured, i.e. one of each enantiomer), one anion on a general position, two half anions, each with the nitrogen atom on a twofold axis, and approximately one fifth of a water molecule. Consequently, the compound is racemic despite its Sohnke space group. The anhydrous form, (II), crystallizes in the monoclinic space group P21/c with one formula unit in the asymmetric unit (Fig. 2), which was chosen to contain the R,R-enantiomer of the 1-ammonium-2-aminocyclohexane cation.
In the great majority of compounds containing the di(methanesulfonyl)amide anion, a `W'-shaped sequence of atoms O—S—N—S—O is observed, with two O—S—N—S torsion angles of ca ±180°. However, in one of the anions in (I) the typical `W' sequence is distorted; only O7—S4—N3—S3 fits the pattern [-176.18 (2)°], whereas around S3—N3 the largest (absolute) torsion angle is O5—S3—N3—S4 [-132.00 (8)°]. The pseudotorsion angle O5—S3···S4—O7 is 65.54 (8)°, resulting in a pseudo-gauche conformation in contrast to the normally observed pseudo-ecliptic arrangement. The rotation of the SO2 group constituted by S3, O5 and O6 allows the formation of additional hydrogen bonds (see below).
In the packing of (I), an extensive system of classical hydrogen bonds combines to form corrugated layers parallel to (100) (see Fig. 3, in which the layers are seen edge-on), consisting of a grid-like arrangement of ribbons parallel to the b and c axes. All potential classical hydrogen-bond donors and acceptors are involved, with the exception of the water site (see below). Parallel to the b axis, two independent ribbons are associated with the twofold axes, leading to a completion of the anions with nitrogen on the special position and to the formation of cation dimers via N11—H3···N12i and N21—H8···N22iii, respectively. Each of these ribbons consists of only one enantiomer of the cation, i.e. neighbouring ribbons are of opposite chirality (and are henceforth referred to as R,R and S,S ribbons according to the chirality of the respective cations). Defining the direction of the anion by the S···S vector and the direction of the cation by the vector joining the midpoints of both (N)C—C(N) bonds, the angle between these vectors is 30.0° for the anion based on S1 and 8.5° for the anion based on S2. As the anions of the R,R and S,S ribbons subtend different angles with the cation dimers, the strengths of the hydrogen bonds forming them must differ, but the qualitative patterns are the same (Figs. 4 and 5). Within each ribbon the ions are connected in one direction via the three-centred interactions with H2 (R,R ribbon) or H6 (S,S ribbon) as donors; in the opposite direction the classical two-centre interactions N12—H5···O2 or N22—H10···O4 are involved, of which the former is more linear [166.1 (17)° compared to 157.6 (14)°]. The three-centred bonds are of similar strength. The different arrangement of the ions in the two ribbons has most influence on the non-classical hydrogen bonds. In the S,S ribbon two longer interactions are observed (C21—H21···O4, C22—H22···O3iii) while in the R,R ribbon only one short interaction is found (C12—H12···O1ii); the corresponding hydrogen H11 shows a long contact to O6i which is strongly bent and presumably has a limited structure-determining influence.
The ribbons are connected by hydrogen bonds to the anion on a general position (Fig. 6). Both cases involve one three-centred (N11—H1···O6i, N11—H1···O8i and N21—H7···N3iii, N21— H7···O7iii) and one bifurcated system in which H4 and H9 share the same acceptor (O5). These interactions could explain the deviation from the typical conformation of this anion. Without the distortion of the `W' sequence only one of the SO2 groups could take part in interactions. Apparently the energy gained by the hydrogen bonds at least compensates the energy necessary to change the conformation of the anion. It should be noted that a similarly distorted anion occurs in the structure of the inversion-symmetric [trans-(CH3)2Sn(urea)4].[(CH3SO2)2N]2.6(urea), where the (SO2)2N group accepts a total of 12 hydrogen bonds with urea NH2 as donors (Wirth et al., 1998). The bond patterns between the different ribbons and the anion on the general position necessarily differ, since the S,S and R,R ribbons approach the (distorted) `W' sequence of the anion from opposite sides, and consequently the acceptors of the three-centred hydrogen bonds are not alike. The anions on general positions connect the R,R and S,S ribbons to constitute a grid-like layer in whose meshes the partially occupied water molecule is included (Fig. 7). The layers are corrugated because the cation dimers are mutually rotated about 38.7° [angle between vectors joining the midpoints of the (N)C—C(N) bonds]. O99 is a potential acceptor for several contacts, of which only C2—H2B···O99 can be described as a hydrogen bond without doubt. As the water hydrogen atoms could not be identified, no certain statement about the donor properties of O99 can be given, but O1 [3.225 (6) Å] and O5iv, O8iv, N3iv [3.435 (6) to 3.512 (6) Å] lie within the range of potential acceptors. It is not clear to what extent the partially occupied water site is essential for the formation of the partial hydrate, (I), nor over what range of water occupation factors the same structure is maintained; we have conducted no experiments to investigate this. The difference in composition between the structures (I) and (II) means however that, strictly speaking, they are not polymorphs, but could perhaps be classified as pseudopolymorphs (Nangia, 2006, and references therein).
The methyl hydrogen atoms of the anion are activated because of the electron-withdrawing effects of the hetero atoms, and this leads to several non-classical hydrogen bonds that reinforce the classical hydrogen bonds. Special attention should be drawn to C3—H3C···O7v and C4—H4C···O7v since they are inter-layer interactions, but the latter is weak. Further CH donors of the cation form hydrogen bonds of which one (C25—H25A···O8viii) also connects the layers. It is noteworthy that all hydrogen bonds within the layer are formed by lattice translation and twofold rotation, while interactions beyond the layer always include lattice centring, i.e. lattice centring itself and the 21-screw axes resulting from its combination with twofold axes.
The packing of (II) is broadly similar to that of (I) in that a system of classical hydrogen bonds combines to form layers parallel to (100); again, all potential classical hydrogen-bond donors and acceptors are involved (Fig. 8). Between these layers no directed interaction can be found. The layers can best be described as parallel ribbons of alternating cation dimers and anions. The dimers are formed via inversion, with N11—H2···N12iii connecting the cations, hence leading, unlike (I), to a racemic composition of the ribbons. N11—H3···O4iii, N12 —H4···O3 and N12—H5···O4 attach the anion to the dimer, thus establishing the repeat unit of the chain (Fig. 9) while N11—H1···N1i, N11—H2···O1ii and N12—H5···O1i connect to the next unit, thus completing the chain formation parallel to b. The remaining acceptor O2 enables the connection of the ribbons by the hydrogen bond N11—H3···O2iv, which is accompanied by the non-classical bond C16—H16A···O2iv (Fig. 10). Since most of the hydrogen-bond donors interact with more than one acceptor, most angles at the hydrogen atoms are narrow [113.1 (16) to 139.6 (14)°]; the bonds involving one acceptor only are far more linear [150.5 (16) and 161.6 (15)°]. Except for those from H5, which are both 2.62 (2) Å long, all hydrogen bonds are significantly shorter than the sum of the van der Waals radii. As N12—H5···O1i and N12—H5···O4 are not only long but also deviate the most from linearity [113.1 (16) and 116.5 (16)°, respectively] they must be regarded as weak.
In both structures well defined layers, with a separation of hydrophilic regions from the hydrophobic alkyl residues of the cations, can be observed. Ribbons of alternating anions and cation dimers can be found in both cases. However, the most obvious difference between the two structures is that in (I) the layers are corrugated while in (II) they are flat. In (I) each cation dimer consists of only one enantiomer, in contrast to (II) which is composed of racemic dimers. Because of the partially occupied water molecule the overall density of (I) is lower [(I): 1.359, (II): 1.478 Mg m-3]. Apart from the formation of the cation dimers the hydrogen-bond patterns show little similarity. For this reason it seems sensible to assume that the enantiopure or racemic dimers are responsible during nucleation for the constitution of the different structures. Alternatively one might speculate that the water molecule strongly influences the formation of the packing at an early stage of crystal growth.