
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113022075/eg3129sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270113022075/eg3129Isup2.hkl |
CCDC reference: 964763
In the last two decades, the design and synthesis of coordination polymers with novel structures have attracted considerable interest because of their unusual structures and special functional properties with respect to magnetism, optics and gas storage (Chae et al., 2003; Cui et al., 2002; Pan et al., 2003; Sun et al., 2001; Yan et al., 2004; Zhang et al., 2005). In particular, heteronuclear complexes have proven promising for applications as magnetic and optical materials, due to their structural diversity and physical and chemical properties (Li et al., 2007; Qiu et al., 2007). Suitable organic ligands favouring structure-specific self-assembly are the basis for the construction of heteronuclear complexes. The carboxylate group can bridge metal ions to give rise to a wide variety of polynuclear complexes, ranging from discrete entities to three-dimensional systems (Cheng et al., 2007; Dey et al., 2003; Eddaoudi et al., 2002; Fan et al., 2010; Foreman et al., 2000; Ge et al., 2006; Kato & Muto, 1988; Wang et al., 2005). In these complexes, the carboxylate group may adopt many types of bridging conformation, the most important being triatomic syn–syn, anti–anti and syn–anti, and monoatomic bridging. Aminopolycarboxylic acids contain both amino and carboxylic acid groups and therefore many potential coordination sites. They may easily chelate to and bridge various metal ions and lead to structurally diverse complexes (Li et al., 2010; Manna et al., 2007; Shen et al., 2007; Stavila et al., 2006).
Iminodiacetic acid (H2ida) has been a useful ligand and polymeric derivatives of many transition metals have already been documented (Bresciani-Pahor et al., 1984; Cui et al., 2008; Ding et al., 2009; Li et al., 2010; Manna et al., 2007; Ren et al., 2003; Song et al., 2011; Zhai et al., 2006; Zhou et al., 2011). We report here the crystal structure of poly[diaquatetra-µ4-iminodiacetato-copper(II)sodium(I)], (I), a three-dimensional Cu–Na coordination polymer obtained by hydrothermal synthesis from iminodiacetic acid, copper(II) chloride and sodium hydroxide.
CuCl2.2H2O (0.0171 g, 0.1 mmol), iminodiacetic acid (0.0266 g, 0.2 mmol), NaOH (0.0168 g, 0.4 mmol), H2O (0.5 ml) and ethanol (3 ml) were placed in a thick Pyrex tube and heated at 393.15 K for 5 d. After cooling to ambient temperature at a rate of 5 K h-1, blue block-shaped crystals were collected, washed with anhydrous ethanol and dried at room temperature. The yield is 58% based on CuCl2.2H2O. Analysis found: C 24.39, H 3.07, N 7.01%; calculated for C16H24Cu3N4Na2O18: C 24.09, H 3.01, N 7.03%.
Crystal data, data collection and structure refinement details are summarized in Table 1. C-bound H atoms were included in calculated positions and refined as riding, with C—H = 0.98 Å and with Uiso(H) = 1.2Ueq(C). The H atoms of the aqua ligands and the imino group were located from a difference Fourier map and refined isotropically, with O—H and N—H distances restrained to 0.84 (2) and 0.91 (2) Å, respectively.
The title heteronuclear compound, (I), displays a three-dimensional coordination network. The asymmetric unit consists of one and a half copper(II) cations, a sodium cation, two iminodiacetate ligands and a coordinated water molecule. A displacement ellipsoid plot of a section of (I) is shown in Fig. 1, and selected bond lengths and angles are given in Table 2. Compound (I) features two independent CuII centres. The Cu1 cation is in a general position and adopts a distorted square-pyramidal geometry, being five-coordinated by three donor atoms (O1, N1 and O3) of the same ida ligand. Two more ida ligands are attached via single O atoms, one by O5 and another by O8i [symmetry code: (i) x, -y + 3/2, z + 1/2]. The coordination environment around Cu1 corresponds to a slightly distorted square pyramid, with a distortion parameter τ of 0.0812. This parameter is defined as τ = (β - α)/60°, with β and α being the two largest angles subtended at the central atom (Addison et al., 1984); for a perfectly square pyramid, τ = zero. The Cu2 cation is located on a crystallographic inversion centre. Two O- [O7 and O7ii; symmetry code: (ii) -x + 1, -y + 2, -z + 1] and two N-atom donors (N2 and N2ii) from two chelating ida ligands are arranged in a slightly distorted square-planar geometry, with angles of 84.85 (7) [For which atom sequence?] and 95.16 (7)° [For which atom sequence?]. In line with the above discussion, cation Cu1 and the tris-chelating ida ligand can be described as a [Cu(ida)] unit, while cation Cu2 and its two ida ligands can be seen as a [Cu(ida)2] unit.
The sodium cation is coordinated by six O atoms: O4, O6, O8i, O4iii and O2iv are associated with five ida ligands, and O9 with a coordinated water molecule [symmetry codes: (iii) -x, -y + 1, -z + 1; (iv) x - 1, y, z]. Fig. 2 shows the two different coordination modes which the ligands adopt in (I): in the [Cu(ida)] unit, one carboxylate group links CuII and NaI cations in an anti–anti conformation, whereas the second carboxylate group adopts anti–syn and syn–syn conformations with respect to the Cu/Na and Na/Na cations (Fig. 2a). In the [Cu(ida)2] unit, one carboxylate group bridges Cu and Na centres in a syn–syn conformation, whereas the second carboxylate group is in anti–anti and anti–syn conformations with respect to Cu/Na and Cu/Cu cations (Fig. 2b). Each [Cu(ida)2] fragment can be seen as a 4-connected node and each [Cu(ida)] fragment as a 2-connected node, with each [Cu(ida)2] fragment binding to four [Cu(ida)] fragments.
The carboxylate groups act as bridges and link the [Cu(ida)] and [Cu(ida)2] units in a 2:1 ratio, thus forming a two-dimensional array (Fig. 3) with Cu1···Cu2 separations of 4.0613 (6) and 5.3519 (11) Å. The two-dimensional layers are crosslinked to form a three-dimensional structure by sodium ions.
To understand clearly the different connectivities of [Cu(ida)], [Cu(ida)2] and the NaI cations, the rather complicated three-dimensional structure of (I) was simplified with the help of the program TOPOS4.0 (Blatov, 2012). Each [Cu(ida)] unit connects two [Cu(ida)2] units and three NaI cations through its carboxylate O atoms, thus representing a 5-connected node. Each [Cu(ida)2] unit binds to four [Cu(ida)] and four NaI cations and is 8-connected. Each NaI cation is linked to three [Cu(ida)] and two [Cu(ida)2] units and can thus be treated as a 5-connected node. Overall, based on coordinative bonds, (I) can be simplified as a 5,5,8-trinodal network with the point symbol (32.43.52.63)2(32.43.52.63)2(34.616.78) (Fig. 4).
Two kinds of interlayer hydrogen bonds exist, namely O—H···O contacts between the coordinated water molecule and carboxylate groups, and N—H···O hydrogen bonds between amino groups and carboxylate groups. Hydrogen-bonding distances and angles are listed in Table 3.
The optical diffuse reflectance spectrum of (I) is shown in Fig. 5. Absorption data were calculated from the reflectance (Wendlandt & Heeht, 1966). Complex (I) exhibits two bands with edges at about 1.09 and 3.34 eV. Two main contributions have to be considered in the spectrum: one is the absorption due to the Cu–Na interaction, which appears above 3.34 eV, and the second is the coordination field absorption for square-planar CuII (d8), which can be assigned to ca 1.09 eV. The optical band gap of (I) is estimated as 3.34 eV, indicating potential semiconductor properties.
The differential scanning calorimetry–thermogravimetric analysis (DSC–TGA) curve of (I) is illustrated in Fig. 6. The compound is thermally stable up to 425.25 K. The TGA curve displays an initial weight loss of 4.33% between 425.25 and 499.35 K, which corresponds to the loss of the coordinated water molecule (calculated 4.52%). When the temperature is higher than 515.95 K, (I) rapidly decomposes, and the residue at 1073.15 K consists of CuO, Na2O and elemental carbon.
Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear (Rigaku, 2001); data reduction: CrystalStructure (Rigaku, 2001); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).
Fig. 1. The local coordination of the CuII and NaI cations in (I), with the
atom-numbering scheme. H atoms have been omitted for clarity. Displacement
ellipsoids are drawn at the 30% probability level. [Symmetry codes: (i)
x, -y + 3/2, z + 1/2; (ii) -x + 1, -y + 2,
-z + 1; (iii) -x, -y + 1, -z + 1; (iv) x -
1, y, z; (v) x + 1, y, z; (vi) x,
-y + 3/2, z - 1/2.] Fig. 2. The two coordination modes of the carboxylate groups in the ida ligands of (I). Fig. 3. A view of a two-dimensional layer formed by the [Cu(ida)] and [Cu(ida)2] units of (I). Fig. 4. The three-dimensional equivalent topological network of (I). The dark (blue in the electronic version of the paper), dark-grey (pink) and light-grey nodes represent NaI centres and [Cu(ida)] and [Cu(ida)2] units, respectively. Fig. 5. The optical diffuse reflectance spectrum for (I). Fig. 6. The TGA (open squares?) and DSC (solid line?) curves for (I). |
[Cu3Na2(C4H5NO4)4(H2O)2] | F(000) = 802 |
Mr = 796.99 | Dx = 2.138 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71075 Å |
Hall symbol: -P 2ybc | Cell parameters from 5930 reflections |
a = 8.9432 (18) Å | θ = 3.0–27.5° |
b = 9.8441 (18) Å | µ = 2.69 mm−1 |
c = 14.470 (3) Å | T = 223 K |
β = 103.632 (4)° | Block, blue |
V = 1238.1 (4) Å3 | 0.40 × 0.30 × 0.20 mm |
Z = 2 |
Rigaku Saturn diffractometer | 2830 independent reflections |
Radiation source: fine-focus sealed tube | 2473 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.025 |
Detector resolution: 14.63 pixels mm-1 | θmax = 27.5°, θmin = 3.1° |
ω scans | h = −8→11 |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | k = −10→12 |
Tmin = 0.413, Tmax = 0.616 | l = −18→15 |
6895 measured reflections |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.031 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | w = 1/[σ2(Fo2) + (0.0355P)2 + 0.279P] where P = (Fo2 + 2Fc2)/3 |
2830 reflections | (Δ/σ)max < 0.001 |
213 parameters | Δρmax = 0.40 e Å−3 |
4 restraints | Δρmin = −0.38 e Å−3 |
[Cu3Na2(C4H5NO4)4(H2O)2] | V = 1238.1 (4) Å3 |
Mr = 796.99 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 8.9432 (18) Å | µ = 2.69 mm−1 |
b = 9.8441 (18) Å | T = 223 K |
c = 14.470 (3) Å | 0.40 × 0.30 × 0.20 mm |
β = 103.632 (4)° |
Rigaku Saturn diffractometer | 2830 independent reflections |
Absorption correction: multi-scan (REQAB; Jacobson, 1998) | 2473 reflections with I > 2σ(I) |
Tmin = 0.413, Tmax = 0.616 | Rint = 0.025 |
6895 measured reflections |
R[F2 > 2σ(F2)] = 0.031 | 4 restraints |
wR(F2) = 0.073 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.08 | Δρmax = 0.40 e Å−3 |
2830 reflections | Δρmin = −0.38 e Å−3 |
213 parameters |
Experimental. UV-VIS-NIR diffuse reflectance spectra of (I) were measured at room temperature using BaSO4 as a standard reference on a Shimadzu UV-3150 spectrometer. The absorption (α/S) data were calculated from the reflectance using the Kubelka–Munk function, α/S =(1 - R)2/2R ∞ (Wendlandt & Heeht, 1966). The optical band gaps (Eonset) are obtained by extrapolation of the linear portion of the absorption edges. The thermal stability and decomposition behavior of complex (I) were studied by DSC–TGA. Thermoanalytical measurements was performed using a DCS-TGA microanalyzer of SDT 2960 under a flowing atmosphere of N2 in the temperature range 293.15–1073.15 K. |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
Cu1 | 0.40735 (3) | 0.66243 (3) | 0.63796 (2) | 0.01676 (10) | |
Cu2 | 0.5000 | 1.0000 | 0.5000 | 0.01532 (11) | |
Na1 | 0.02804 (11) | 0.62325 (10) | 0.63873 (7) | 0.0218 (2) | |
O1 | 0.6107 (2) | 0.73572 (18) | 0.69804 (13) | 0.0237 (4) | |
O2 | 0.8569 (2) | 0.67501 (18) | 0.74221 (13) | 0.0247 (4) | |
O3 | 0.2469 (2) | 0.55865 (17) | 0.54944 (12) | 0.0217 (4) | |
O4 | 0.2022 (2) | 0.35365 (17) | 0.48315 (13) | 0.0241 (4) | |
O5 | 0.3487 (2) | 0.83648 (17) | 0.57967 (13) | 0.0232 (4) | |
O6 | 0.1070 (2) | 0.83560 (18) | 0.59614 (14) | 0.0256 (4) | |
O7 | 0.45416 (19) | 0.91655 (17) | 0.37452 (11) | 0.0190 (4) | |
O8 | 0.2646 (2) | 0.86522 (18) | 0.25060 (12) | 0.0217 (4) | |
O9 | −0.0069 (3) | 0.3863 (2) | 0.63865 (16) | 0.0351 (5) | |
N1 | 0.5050 (2) | 0.4823 (2) | 0.67410 (15) | 0.0177 (4) | |
N2 | 0.2811 (2) | 1.0622 (2) | 0.46430 (13) | 0.0142 (4) | |
C1 | 0.7190 (3) | 0.6474 (2) | 0.71275 (17) | 0.0188 (5) | |
C2 | 0.6733 (3) | 0.5000 (2) | 0.69110 (18) | 0.0181 (5) | |
H2A | 0.7075 | 0.4706 | 0.6347 | 0.022* | |
H2B | 0.7246 | 0.4429 | 0.7447 | 0.022* | |
C3 | 0.4333 (3) | 0.3833 (3) | 0.60075 (19) | 0.0233 (6) | |
H3A | 0.4162 | 0.2980 | 0.6316 | 0.028* | |
H3B | 0.5038 | 0.3646 | 0.5597 | 0.028* | |
C4 | 0.2813 (3) | 0.4335 (2) | 0.54014 (17) | 0.0186 (5) | |
C5 | 0.2169 (3) | 0.8904 (3) | 0.57446 (17) | 0.0178 (5) | |
C6 | 0.2041 (3) | 1.0386 (2) | 0.54247 (17) | 0.0158 (5) | |
H6A | 0.0953 | 1.0635 | 0.5214 | 0.019* | |
H6B | 0.2509 | 1.0969 | 0.5964 | 0.019* | |
C7 | 0.2022 (3) | 0.9939 (3) | 0.37500 (17) | 0.0201 (5) | |
H7A | 0.1467 | 1.0618 | 0.3303 | 0.024* | |
H7B | 0.1267 | 0.9294 | 0.3885 | 0.024* | |
C8 | 0.3142 (3) | 0.9194 (2) | 0.32982 (16) | 0.0157 (5) | |
H9 | 0.036 (4) | 0.320 (3) | 0.669 (3) | 0.066 (13)* | |
H9A | −0.045 (5) | 0.365 (4) | 0.5850 (16) | 0.064 (14)* | |
H20 | 0.277 (3) | 1.1511 (17) | 0.4548 (19) | 0.017 (7)* | |
H10 | 0.486 (3) | 0.459 (3) | 0.7305 (15) | 0.026 (8)* |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cu1 | 0.01521 (16) | 0.01300 (15) | 0.02098 (17) | 0.00062 (11) | 0.00208 (12) | 0.00038 (12) |
Cu2 | 0.0122 (2) | 0.0177 (2) | 0.0151 (2) | 0.00113 (15) | 0.00143 (16) | −0.00322 (16) |
Na1 | 0.0167 (5) | 0.0233 (5) | 0.0243 (5) | −0.0007 (4) | 0.0023 (4) | 0.0043 (4) |
O1 | 0.0192 (10) | 0.0184 (9) | 0.0315 (10) | −0.0011 (7) | 0.0020 (8) | −0.0008 (8) |
O2 | 0.0175 (9) | 0.0291 (10) | 0.0257 (9) | −0.0025 (8) | 0.0017 (7) | −0.0049 (8) |
O3 | 0.0213 (10) | 0.0162 (8) | 0.0235 (9) | 0.0024 (7) | −0.0033 (7) | −0.0017 (7) |
O4 | 0.0264 (10) | 0.0179 (9) | 0.0239 (9) | −0.0014 (7) | −0.0020 (8) | −0.0034 (7) |
O5 | 0.0175 (9) | 0.0163 (8) | 0.0358 (10) | 0.0028 (7) | 0.0064 (8) | 0.0050 (8) |
O6 | 0.0191 (10) | 0.0228 (9) | 0.0361 (10) | 0.0000 (7) | 0.0089 (8) | 0.0109 (8) |
O7 | 0.0141 (9) | 0.0234 (9) | 0.0184 (8) | 0.0024 (7) | 0.0013 (7) | −0.0044 (7) |
O8 | 0.0174 (9) | 0.0292 (10) | 0.0177 (8) | −0.0023 (7) | 0.0028 (7) | −0.0066 (8) |
O9 | 0.0461 (14) | 0.0271 (11) | 0.0310 (12) | 0.0037 (10) | 0.0066 (11) | 0.0041 (10) |
N1 | 0.0140 (11) | 0.0192 (10) | 0.0192 (10) | 0.0001 (8) | 0.0025 (8) | 0.0004 (9) |
N2 | 0.0160 (10) | 0.0120 (9) | 0.0143 (9) | 0.0011 (8) | 0.0031 (8) | 0.0005 (8) |
C1 | 0.0188 (13) | 0.0236 (13) | 0.0137 (11) | −0.0005 (10) | 0.0035 (9) | 0.0003 (10) |
C2 | 0.0135 (12) | 0.0190 (12) | 0.0215 (12) | 0.0015 (9) | 0.0032 (10) | 0.0032 (10) |
C3 | 0.0217 (14) | 0.0149 (12) | 0.0300 (14) | −0.0013 (10) | −0.0005 (11) | −0.0036 (11) |
C4 | 0.0204 (13) | 0.0191 (12) | 0.0166 (11) | −0.0007 (10) | 0.0052 (10) | 0.0025 (10) |
C5 | 0.0175 (12) | 0.0203 (12) | 0.0146 (11) | 0.0009 (10) | 0.0014 (9) | −0.0010 (10) |
C6 | 0.0138 (12) | 0.0153 (11) | 0.0190 (11) | 0.0009 (9) | 0.0052 (9) | −0.0004 (10) |
C7 | 0.0150 (12) | 0.0276 (13) | 0.0159 (11) | 0.0013 (10) | 0.0000 (9) | −0.0034 (11) |
C8 | 0.0170 (12) | 0.0150 (11) | 0.0152 (11) | 0.0000 (9) | 0.0043 (9) | 0.0025 (9) |
Cu1—O5 | 1.9270 (17) | O6—C5 | 1.225 (3) |
Cu1—O1 | 1.9589 (18) | O7—C8 | 1.267 (3) |
Cu1—O3 | 1.9690 (17) | O8—C8 | 1.247 (3) |
Cu1—N1 | 1.991 (2) | O8—Cu1iii | 2.3109 (18) |
Cu1—O8i | 2.3109 (18) | O8—Na1iii | 2.344 (2) |
Cu1—Na1 | 3.4168 (12) | O9—H9 | 0.829 (19) |
Cu1—Cu2 | 4.0613 (6) | O9—H9A | 0.800 (19) |
Cu2—O7ii | 1.9466 (16) | N1—C3 | 1.472 (3) |
Cu2—O7 | 1.9466 (16) | N1—C2 | 1.477 (3) |
Cu2—N2ii | 2.000 (2) | N1—H10 | 0.900 (17) |
Cu2—N2 | 2.000 (2) | N2—C6 | 1.474 (3) |
Cu2—Cu1iii | 5.3519 (11) | N2—C7 | 1.480 (3) |
Na1—O6 | 2.335 (2) | N2—H20 | 0.885 (17) |
Na1—O8i | 2.344 (2) | C1—C2 | 1.520 (3) |
Na1—O9 | 2.354 (2) | C2—H2A | 0.9800 |
Na1—O4iv | 2.385 (2) | C2—H2B | 0.9800 |
Na1—O2v | 2.434 (2) | C3—C4 | 1.516 (3) |
Na1—O3 | 2.664 (2) | C3—H3A | 0.9800 |
O1—C1 | 1.282 (3) | C3—H3B | 0.9800 |
O2—C1 | 1.236 (3) | C5—C6 | 1.527 (3) |
O2—Na1vi | 2.434 (2) | C6—H6A | 0.9800 |
O3—C4 | 1.284 (3) | C6—H6B | 0.9800 |
O4—C4 | 1.235 (3) | C7—C8 | 1.509 (3) |
O4—Na1iv | 2.385 (2) | C7—H7A | 0.9800 |
O5—C5 | 1.279 (3) | C7—H7B | 0.9800 |
O5—Cu1—O1 | 89.72 (8) | C4—O3—Na1 | 120.09 (16) |
O5—Cu1—O3 | 95.46 (7) | Cu1—O3—Na1 | 93.83 (7) |
O1—Cu1—O3 | 159.67 (8) | C4—O4—Na1iv | 133.80 (16) |
O5—Cu1—N1 | 164.57 (8) | C5—O5—Cu1 | 123.13 (16) |
O1—Cu1—N1 | 84.70 (8) | C5—O6—Na1 | 140.55 (17) |
O3—Cu1—N1 | 85.19 (8) | C8—O7—Cu2 | 115.63 (15) |
O5—Cu1—O8i | 105.95 (7) | C8—O8—Cu1iii | 124.26 (16) |
O1—Cu1—O8i | 109.85 (7) | C8—O8—Na1iii | 132.95 (16) |
O3—Cu1—O8i | 87.64 (7) | Cu1iii—O8—Na1iii | 94.44 (7) |
N1—Cu1—O8i | 89.48 (8) | Na1—O9—H9 | 137 (3) |
O5—Cu1—Na1 | 86.21 (6) | Na1—O9—H9A | 107 (3) |
O1—Cu1—Na1 | 149.15 (6) | H9—O9—H9A | 110 (4) |
O3—Cu1—Na1 | 51.07 (6) | C3—N1—C2 | 116.9 (2) |
N1—Cu1—Na1 | 105.84 (6) | C3—N1—Cu1 | 108.09 (15) |
O8i—Cu1—Na1 | 43.16 (5) | C2—N1—Cu1 | 107.77 (14) |
O5—Cu1—Cu2 | 28.76 (5) | C3—N1—H10 | 110.2 (19) |
O1—Cu1—Cu2 | 68.98 (5) | C2—N1—H10 | 106.1 (19) |
O3—Cu1—Cu2 | 107.85 (5) | Cu1—N1—H10 | 107.4 (19) |
N1—Cu1—Cu2 | 136.89 (6) | C6—N2—C7 | 112.70 (19) |
O8i—Cu1—Cu2 | 130.82 (5) | C6—N2—Cu2 | 111.04 (14) |
Na1—Cu1—Cu2 | 114.312 (18) | C7—N2—Cu2 | 108.81 (15) |
O7ii—Cu2—O7 | 180.00 (10) | C6—N2—H20 | 105.4 (18) |
O7ii—Cu2—N2ii | 84.85 (7) | C7—N2—H20 | 108.7 (18) |
O7—Cu2—N2ii | 95.16 (7) | Cu2—N2—H20 | 110.1 (18) |
O7ii—Cu2—N2 | 95.15 (7) | O2—C1—O1 | 124.2 (2) |
O7—Cu2—N2 | 84.85 (7) | O2—C1—C2 | 118.6 (2) |
N2ii—Cu2—N2 | 179.999 (1) | O1—C1—C2 | 117.2 (2) |
O7ii—Cu2—Cu1 | 84.80 (5) | N1—C2—C1 | 111.18 (19) |
O7—Cu2—Cu1 | 95.20 (5) | N1—C2—H2A | 109.4 |
N2ii—Cu2—Cu1 | 85.59 (6) | C1—C2—H2A | 109.4 |
N2—Cu2—Cu1 | 94.41 (6) | N1—C2—H2B | 109.4 |
O7ii—Cu2—Cu1iii | 171.56 (5) | C1—C2—H2B | 109.4 |
O7—Cu2—Cu1iii | 8.44 (5) | H2A—C2—H2B | 108.0 |
N2ii—Cu2—Cu1iii | 94.45 (5) | N1—C3—C4 | 112.3 (2) |
N2—Cu2—Cu1iii | 85.55 (5) | N1—C3—H3A | 109.1 |
Cu1—Cu2—Cu1iii | 103.548 (12) | C4—C3—H3A | 109.1 |
O6—Na1—O8i | 81.90 (7) | N1—C3—H3B | 109.1 |
O6—Na1—O9 | 159.31 (9) | C4—C3—H3B | 109.1 |
O8i—Na1—O9 | 98.42 (8) | H3A—C3—H3B | 107.9 |
O6—Na1—O4iv | 88.94 (7) | O4—C4—O3 | 124.6 (2) |
O8i—Na1—O4iv | 170.84 (8) | O4—C4—C3 | 118.2 (2) |
O9—Na1—O4iv | 90.16 (8) | O3—C4—C3 | 117.2 (2) |
O6—Na1—O2v | 104.36 (8) | O6—C5—O5 | 125.9 (2) |
O8i—Na1—O2v | 99.28 (7) | O6—C5—C6 | 119.4 (2) |
O9—Na1—O2v | 96.04 (8) | O5—C5—C6 | 114.6 (2) |
O4iv—Na1—O2v | 82.90 (7) | N2—C6—C5 | 111.61 (19) |
O6—Na1—O3 | 77.49 (7) | N2—C6—H6A | 109.3 |
O8i—Na1—O3 | 72.52 (6) | C5—C6—H6A | 109.3 |
O9—Na1—O3 | 82.86 (7) | N2—C6—H6B | 109.3 |
O4iv—Na1—O3 | 105.60 (7) | C5—C6—H6B | 109.3 |
O2v—Na1—O3 | 171.40 (7) | H6A—C6—H6B | 108.0 |
O6—Na1—Cu1 | 62.35 (5) | N2—C7—C8 | 111.8 (2) |
O8i—Na1—Cu1 | 42.40 (5) | N2—C7—H7A | 109.3 |
O9—Na1—Cu1 | 104.10 (7) | C8—C7—H7A | 109.3 |
O4iv—Na1—Cu1 | 132.18 (6) | N2—C7—H7B | 109.3 |
O2v—Na1—Cu1 | 138.35 (6) | C8—C7—H7B | 109.3 |
O3—Na1—Cu1 | 35.10 (4) | H7A—C7—H7B | 107.9 |
C1—O1—Cu1 | 114.22 (16) | O8—C8—O7 | 123.7 (2) |
C1—O2—Na1vi | 117.55 (16) | O8—C8—C7 | 118.5 (2) |
C4—O3—Cu1 | 114.20 (15) | O7—C8—C7 | 117.8 (2) |
O5—Cu1—Cu2—O7ii | 81.51 (13) | O4iv—Na1—O3—C4 | −94.50 (17) |
O1—Cu1—Cu2—O7ii | −52.08 (8) | O2v—Na1—O3—C4 | 76.8 (5) |
O3—Cu1—Cu2—O7ii | 149.24 (7) | Cu1—Na1—O3—C4 | 120.90 (19) |
N1—Cu1—Cu2—O7ii | −108.34 (10) | O6—Na1—O3—Cu1 | 59.28 (7) |
O8i—Cu1—Cu2—O7ii | 46.47 (8) | O8i—Na1—O3—Cu1 | −26.05 (7) |
Na1—Cu1—Cu2—O7ii | 94.61 (5) | O9—Na1—O3—Cu1 | −127.24 (8) |
O5—Cu1—Cu2—O7 | −98.48 (13) | O4iv—Na1—O3—Cu1 | 144.59 (7) |
O1—Cu1—Cu2—O7 | 127.92 (8) | O2v—Na1—O3—Cu1 | −44.1 (5) |
O3—Cu1—Cu2—O7 | −30.76 (7) | O1—Cu1—O5—C5 | −138.0 (2) |
N1—Cu1—Cu2—O7 | 71.66 (10) | O3—Cu1—O5—C5 | 61.7 (2) |
O8i—Cu1—Cu2—O7 | −133.52 (8) | N1—Cu1—O5—C5 | 153.4 (3) |
Na1—Cu1—Cu2—O7 | −85.39 (5) | O8i—Cu1—O5—C5 | −27.4 (2) |
O5—Cu1—Cu2—N2ii | 166.73 (13) | Na1—Cu1—O5—C5 | 11.38 (19) |
O1—Cu1—Cu2—N2ii | 33.14 (8) | Cu2—Cu1—O5—C5 | 179.4 (3) |
O3—Cu1—Cu2—N2ii | −125.55 (8) | O8i—Na1—O6—C5 | 52.4 (3) |
N1—Cu1—Cu2—N2ii | −23.13 (10) | O9—Na1—O6—C5 | −40.0 (4) |
O8i—Cu1—Cu2—N2ii | 131.69 (8) | O4iv—Na1—O6—C5 | −127.6 (3) |
Na1—Cu1—Cu2—N2ii | 179.82 (6) | O2v—Na1—O6—C5 | 150.0 (3) |
O5—Cu1—Cu2—N2 | −13.27 (13) | O3—Na1—O6—C5 | −21.4 (3) |
O1—Cu1—Cu2—N2 | −146.86 (8) | Cu1—Na1—O6—C5 | 12.5 (3) |
O3—Cu1—Cu2—N2 | 54.45 (8) | O7ii—Cu2—O7—C8 | −47.7 (18) |
N1—Cu1—Cu2—N2 | 156.88 (10) | N2ii—Cu2—O7—C8 | 172.09 (16) |
O8i—Cu1—Cu2—N2 | −48.31 (8) | N2—Cu2—O7—C8 | −7.91 (16) |
Na1—Cu1—Cu2—N2 | −0.18 (6) | Cu1—Cu2—O7—C8 | 86.07 (16) |
O5—Cu1—Cu2—Cu1iii | −99.75 (12) | Cu1iii—Cu2—O7—C8 | −102.3 (4) |
O1—Cu1—Cu2—Cu1iii | 126.66 (6) | O5—Cu1—N1—C3 | −77.7 (4) |
O3—Cu1—Cu2—Cu1iii | −32.02 (6) | O1—Cu1—N1—C3 | −146.98 (17) |
N1—Cu1—Cu2—Cu1iii | 70.40 (9) | O3—Cu1—N1—C3 | 15.36 (16) |
O8i—Cu1—Cu2—Cu1iii | −134.79 (6) | O8i—Cu1—N1—C3 | 103.03 (17) |
Na1—Cu1—Cu2—Cu1iii | −86.65 (2) | Na1—Cu1—N1—C3 | 62.57 (17) |
O5—Cu1—Na1—O6 | −8.52 (8) | Cu2—Cu1—N1—C3 | −95.76 (17) |
O1—Cu1—Na1—O6 | 74.56 (12) | O5—Cu1—N1—C2 | 49.4 (4) |
O3—Cu1—Na1—O6 | −108.66 (9) | O1—Cu1—N1—C2 | −19.82 (15) |
N1—Cu1—Na1—O6 | −178.71 (9) | O3—Cu1—N1—C2 | 142.52 (16) |
O8i—Cu1—Na1—O6 | 109.74 (9) | O8i—Cu1—N1—C2 | −129.81 (15) |
Cu2—Cu1—Na1—O6 | −14.79 (6) | Na1—Cu1—N1—C2 | −170.27 (14) |
O5—Cu1—Na1—O8i | −118.25 (9) | Cu2—Cu1—N1—C2 | 31.40 (19) |
O1—Cu1—Na1—O8i | −35.18 (13) | O7ii—Cu2—N2—C6 | −45.84 (16) |
O3—Cu1—Na1—O8i | 141.60 (10) | O7—Cu2—N2—C6 | 134.17 (15) |
N1—Cu1—Na1—O8i | 71.55 (9) | N2ii—Cu2—N2—C6 | −26 (4) |
Cu2—Cu1—Na1—O8i | −124.53 (7) | Cu1—Cu2—N2—C6 | 39.32 (15) |
O5—Cu1—Na1—O9 | 154.68 (9) | Cu1iii—Cu2—N2—C6 | 142.60 (15) |
O1—Cu1—Na1—O9 | −122.24 (12) | O7ii—Cu2—N2—C7 | −170.44 (15) |
O3—Cu1—Na1—O9 | 54.53 (9) | O7—Cu2—N2—C7 | 9.56 (15) |
N1—Cu1—Na1—O9 | −15.51 (9) | N2ii—Cu2—N2—C7 | −151 (4) |
O8i—Cu1—Na1—O9 | −87.07 (9) | Cu1—Cu2—N2—C7 | −85.28 (15) |
Cu2—Cu1—Na1—O9 | 148.41 (6) | Cu1iii—Cu2—N2—C7 | 18.00 (14) |
O5—Cu1—Na1—O4iv | 51.29 (9) | Na1vi—O2—C1—O1 | −117.7 (2) |
O1—Cu1—Na1—O4iv | 134.37 (12) | Na1vi—O2—C1—C2 | 61.6 (3) |
O3—Cu1—Na1—O4iv | −48.85 (9) | Cu1—O1—C1—O2 | 173.50 (19) |
N1—Cu1—Na1—O4iv | −118.90 (10) | Cu1—O1—C1—C2 | −5.7 (3) |
O8i—Cu1—Na1—O4iv | 169.55 (11) | C3—N1—C2—C1 | 143.4 (2) |
Cu2—Cu1—Na1—O4iv | 45.02 (8) | Cu1—N1—C2—C1 | 21.5 (2) |
O5—Cu1—Na1—O2v | −88.86 (10) | O2—C1—C2—N1 | 169.5 (2) |
O1—Cu1—Na1—O2v | −5.78 (15) | O1—C1—C2—N1 | −11.2 (3) |
O3—Cu1—Na1—O2v | 170.99 (11) | C2—N1—C3—C4 | −139.3 (2) |
N1—Cu1—Na1—O2v | 100.95 (11) | Cu1—N1—C3—C4 | −17.6 (3) |
O8i—Cu1—Na1—O2v | 29.40 (10) | Na1iv—O4—C4—O3 | 4.2 (4) |
Cu2—Cu1—Na1—O2v | −95.13 (9) | Na1iv—O4—C4—C3 | −172.99 (17) |
O5—Cu1—Na1—O3 | 100.15 (9) | Cu1—O3—C4—O4 | −174.40 (19) |
O1—Cu1—Na1—O3 | −176.77 (12) | Na1—O3—C4—O4 | 75.4 (3) |
N1—Cu1—Na1—O3 | −70.05 (9) | Cu1—O3—C4—C3 | 2.8 (3) |
O8i—Cu1—Na1—O3 | −141.60 (10) | Na1—O3—C4—C3 | −107.3 (2) |
Cu2—Cu1—Na1—O3 | 93.87 (7) | N1—C3—C4—O4 | −172.2 (2) |
O5—Cu1—O1—C1 | −150.64 (18) | N1—C3—C4—O3 | 10.4 (3) |
O3—Cu1—O1—C1 | −45.5 (3) | Na1—O6—C5—O5 | −9.0 (4) |
N1—Cu1—O1—C1 | 14.95 (17) | Na1—O6—C5—C6 | 174.21 (18) |
O8i—Cu1—O1—C1 | 102.48 (17) | Cu1—O5—C5—O6 | −7.7 (4) |
Na1—Cu1—O1—C1 | 127.25 (16) | Cu1—O5—C5—C6 | 169.23 (15) |
Cu2—Cu1—O1—C1 | −130.24 (18) | C7—N2—C6—C5 | 67.7 (2) |
O5—Cu1—O3—C4 | 153.84 (17) | Cu2—N2—C6—C5 | −54.7 (2) |
O1—Cu1—O3—C4 | 49.7 (3) | O6—C5—C6—N2 | −141.4 (2) |
N1—Cu1—O3—C4 | −10.68 (18) | O5—C5—C6—N2 | 41.5 (3) |
O8i—Cu1—O3—C4 | −100.35 (17) | C6—N2—C7—C8 | −133.5 (2) |
Na1—Cu1—O3—C4 | −125.52 (19) | Cu2—N2—C7—C8 | −9.9 (2) |
Cu2—Cu1—O3—C4 | 127.27 (16) | Cu1iii—O8—C8—O7 | −29.6 (3) |
O5—Cu1—O3—Na1 | −80.64 (7) | Na1iii—O8—C8—O7 | −169.25 (16) |
O1—Cu1—O3—Na1 | 175.24 (18) | Cu1iii—O8—C8—C7 | 149.74 (17) |
N1—Cu1—O3—Na1 | 114.84 (8) | Na1iii—O8—C8—C7 | 10.1 (3) |
O8i—Cu1—O3—Na1 | 25.17 (6) | Cu2—O7—C8—O8 | −176.69 (18) |
Cu2—Cu1—O3—Na1 | −107.21 (5) | Cu2—O7—C8—C7 | 3.9 (3) |
O6—Na1—O3—C4 | −179.82 (18) | N2—C7—C8—O8 | −175.0 (2) |
O8i—Na1—O3—C4 | 94.85 (17) | N2—C7—C8—O7 | 4.4 (3) |
O9—Na1—O3—C4 | −6.34 (17) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) −x+1, −y+2, −z+1; (iii) x, −y+3/2, z−1/2; (iv) −x, −y+1, −z+1; (v) x−1, y, z; (vi) x+1, y, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···O2vii | 0.83 (2) | 2.01 (2) | 2.830 (3) | 173 (4) |
O9—H9A···O3iv | 0.80 (2) | 2.44 (3) | 3.091 (3) | 139 (4) |
N2—H20···O4viii | 0.89 (2) | 2.17 (2) | 2.982 (3) | 152 (2) |
N1—H10···O7i | 0.90 (2) | 2.49 (2) | 3.199 (3) | 136 (2) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (iv) −x, −y+1, −z+1; (vii) −x+1, y−1/2, −z+3/2; (viii) x, y+1, z. |
Experimental details
Crystal data | |
Chemical formula | [Cu3Na2(C4H5NO4)4(H2O)2] |
Mr | 796.99 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 223 |
a, b, c (Å) | 8.9432 (18), 9.8441 (18), 14.470 (3) |
β (°) | 103.632 (4) |
V (Å3) | 1238.1 (4) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 2.69 |
Crystal size (mm) | 0.40 × 0.30 × 0.20 |
Data collection | |
Diffractometer | Rigaku Saturn diffractometer |
Absorption correction | Multi-scan (REQAB; Jacobson, 1998) |
Tmin, Tmax | 0.413, 0.616 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 6895, 2830, 2473 |
Rint | 0.025 |
(sin θ/λ)max (Å−1) | 0.649 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.031, 0.073, 1.08 |
No. of reflections | 2830 |
No. of parameters | 213 |
No. of restraints | 4 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.40, −0.38 |
Computer programs: CrystalClear (Rigaku, 2001), CrystalStructure (Rigaku, 2001), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL (Sheldrick, 2008).
Cu1—O5 | 1.9270 (17) | Cu2—Cu1ii | 5.3519 (11) |
Cu1—O1 | 1.9589 (18) | Na1—O6 | 2.335 (2) |
Cu1—O3 | 1.9690 (17) | Na1—O8i | 2.344 (2) |
Cu1—N1 | 1.991 (2) | Na1—O9 | 2.354 (2) |
Cu1—O8i | 2.3109 (18) | Na1—O4iii | 2.385 (2) |
Cu2—O7 | 1.9466 (16) | Na1—O2iv | 2.434 (2) |
Cu2—N2 | 2.000 (2) | Na1—O3 | 2.664 (2) |
O5—Cu1—O1 | 89.72 (8) | O8i—Na1—O9 | 98.42 (8) |
O5—Cu1—O3 | 95.46 (7) | O6—Na1—O4iii | 88.94 (7) |
O1—Cu1—O3 | 159.67 (8) | O8i—Na1—O4iii | 170.84 (8) |
O5—Cu1—N1 | 164.57 (8) | O9—Na1—O4iii | 90.16 (8) |
O1—Cu1—N1 | 84.70 (8) | O6—Na1—O2iv | 104.36 (8) |
O3—Cu1—N1 | 85.19 (8) | O8i—Na1—O2iv | 99.28 (7) |
O5—Cu1—O8i | 105.95 (7) | O9—Na1—O2iv | 96.04 (8) |
O1—Cu1—O8i | 109.85 (7) | O4iii—Na1—O2iv | 82.90 (7) |
O3—Cu1—O8i | 87.64 (7) | O6—Na1—O3 | 77.49 (7) |
N1—Cu1—O8i | 89.48 (8) | O8i—Na1—O3 | 72.52 (6) |
O7—Cu2—N2v | 95.16 (7) | O9—Na1—O3 | 82.86 (7) |
O7—Cu2—N2 | 84.85 (7) | O4iii—Na1—O3 | 105.60 (7) |
O6—Na1—O8i | 81.90 (7) | O2iv—Na1—O3 | 171.40 (7) |
O6—Na1—O9 | 159.31 (9) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (ii) x, −y+3/2, z−1/2; (iii) −x, −y+1, −z+1; (iv) x−1, y, z; (v) −x+1, −y+2, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
O9—H9···O2vi | 0.829 (19) | 2.01 (2) | 2.830 (3) | 173 (4) |
O9—H9A···O3iii | 0.800 (19) | 2.44 (3) | 3.091 (3) | 139 (4) |
N2—H20···O4vii | 0.885 (17) | 2.17 (2) | 2.982 (3) | 152 (2) |
N1—H10···O7i | 0.900 (17) | 2.49 (2) | 3.199 (3) | 136 (2) |
Symmetry codes: (i) x, −y+3/2, z+1/2; (iii) −x, −y+1, −z+1; (vi) −x+1, y−1/2, −z+3/2; (vii) x, y+1, z. |