Download citation
Download citation
link to html
The title com­pound, 10-iodo-1,2-di­hydro­iso­quinolino­[2,1-b][1,2,4]benzo­thia­diazine 12,12-di­oxide, C15H11IN2O2S (8), was synthesized via the metal-free intra­molecular N-iodo­succinimide (NIS)-mediated radical oxidative sp3-C—H aminative cyclization of 2-(2′-amino­benzene­sulfon­yl)-1,3,4-tri­hydro­iso­quino­line, C15H16N2O2S (7). The amino adduct 7 was prepared via a two-step reaction, starting from the condensation of 2-nitro­benzene­sulfonyl chloride (4) with 1,2,3,4-tetra­hydro­iso­quinoline (5), to afford 2-(2′-nitro­benzene­sulfon­yl)-1,3,4-tri­hydro­iso­quinoline, C15H14N2O4S (6), in 82% yield. The catalytic hydrogenation of 6 with hydrogen gas, in the presence of 10% palladium-on-charcoal catalyst, furnished 7. Products 68 were characterized by their melting points, IR and NMR (1H and 13C) spectroscopy, and single-crystal X-ray diffraction. The three compounds crystallized in the monoclinic space group, with 7 exhibiting classical intra­molecular hydrogen bonds of 2.16 and 2.26 Å. All three crystal structures exhibit centrosymmetric pairs of inter­molecular C—H...π(ring) and/or π–π stacking inter­actions. The docking studies of mol­ecules 6, 7 and 8 with de­oxy­ribonucleic acid (PDB id: 1ZEW) revealed minor-groove binding behaviours without inter­calation, with 7 presenting the most favourable global energy of the three mol­ecules. Nonetheless, mol­ecule 8 inter­acted strongly with the DNA macromolecule, with an attractive van der Waals energy of −15.53 kcal mol−1.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229620009626/ep3007sup1.cif
Contains datablocks 8, 6, 7, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620009626/ep30077sup3.hkl
Contains datablock 7

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620009626/ep30078sup4.hkl
Contains datablock 8

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229620009626/ep30076sup2.hkl
Contains datablock 6

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620009626/ep30078sup7.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620009626/ep30076sup5.cml
Supplementary material

cml

Chemical Markup Language (CML) file https://doi.org/10.1107/S2053229620009626/ep30077sup6.cml
Supplementary material

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229620009626/ep3007sup8.pdf
Additional geometry information

CCDC references: 2004452; 2004453; 2004454

Computing details top

For all structures, data collection: APEX2 (Bruker, 2012); cell refinement: APEX2 (Bruker, 2012); data reduction: SAINT (Bruker, 2012); program(s) used to solve structure: SHELXT2018 (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2018 (Sheldrick, 2015b) and ShelXle (Hübschle et al., 2011); molecular graphics: ORTEP-3 for Windows (Johnson, 1965, 1976; Farrugia, 2012); software used to prepare material for publication: PLATON (Spek, 2020) and Mercury (Macrae et al., 2020).

10-Iodo-1,2-dihydroisoquinolino[2,1-b][1,2,4]benzothiadiazine 12,12-dioxide (8) top
Crystal data top
C15H11IN2O2SF(000) = 800
Mr = 410.22Dx = 1.875 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 10.9586 (6) ÅCell parameters from 7151 reflections
b = 10.2679 (6) Åθ = 2.5–28.0°
c = 12.9392 (8) ŵ = 2.35 mm1
β = 93.624 (3)°T = 296 K
V = 1453.03 (15) Å3Platelet, yellow
Z = 40.49 × 0.36 × 0.06 mm
Data collection top
Bruker APEXII CCD
diffractometer
3628 independent reflections
Radiation source: sealed tube2871 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
Detector resolution: 8.3333 pixels mm-1θmax = 28.5°, θmin = 1.9°
φ and ω scansh = 1414
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 1313
Tmin = 0.763, Tmax = 1.000l = 1717
19964 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0905P)2 + 2.0774P]
where P = (Fo2 + 2Fc2)/3
3628 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 1.86 e Å3
0 restraintsΔρmin = 1.09 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Two reflections with large differences between their observed and calculated intensities were omitted. This is due to obstruction by the beam stop.

Single-crystal X-ray diffraction data were collected at 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker, 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT-2018/2 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL-2018/3 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker, 2012). All non-hydrogen atoms were refined anisotropically and the carbon-bound hydrogen atoms were added in idealized geometrical positions in a riding model. The crystal structure diagrams were drawn with ORTEP-3 for windows (Johnson, 1965; 1976; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
I11.01660 (3)0.46280 (3)0.16942 (3)0.06583 (18)
S10.70749 (8)0.75401 (9)0.41931 (8)0.0379 (2)
O10.8074 (3)0.7664 (4)0.4940 (3)0.0613 (9)
O20.6731 (4)0.8659 (3)0.3584 (3)0.0624 (9)
N10.5073 (3)0.5693 (3)0.3420 (2)0.0324 (6)
N20.5882 (3)0.7021 (3)0.4798 (2)0.0335 (6)
C10.4936 (3)0.6383 (3)0.4240 (2)0.0290 (6)
C20.5695 (4)0.7534 (4)0.5854 (3)0.0407 (8)
H2A0.6363820.8109990.6072580.049*
H2B0.5684880.6817630.6342250.049*
C30.4510 (4)0.8261 (4)0.5847 (3)0.0448 (9)
H3A0.4566330.9050080.5439890.054*
H3B0.4347570.8508920.6548310.054*
C110.6227 (3)0.5507 (3)0.3062 (2)0.0293 (6)
C120.7255 (3)0.6235 (3)0.3372 (2)0.0302 (7)
C130.8396 (3)0.6004 (3)0.2992 (3)0.0354 (7)
H130.9071170.6501860.3214680.042*
C140.8503 (4)0.5020 (4)0.2277 (3)0.0361 (7)
C150.7487 (4)0.4288 (4)0.1941 (3)0.0400 (8)
H150.7567780.3629380.1456540.048*
C160.6363 (4)0.4529 (4)0.2319 (3)0.0372 (8)
H160.5688300.4039900.2080680.045*
C210.3706 (3)0.6515 (3)0.4628 (3)0.0310 (7)
C220.3482 (3)0.7433 (4)0.5396 (3)0.0369 (8)
C230.2295 (4)0.7573 (5)0.5695 (3)0.0489 (10)
H230.2133870.8189060.6194660.059*
C240.1357 (4)0.6830 (5)0.5274 (4)0.0562 (12)
H240.0568780.6940860.5487630.067*
C250.1585 (4)0.5911 (5)0.4528 (4)0.0534 (11)
H250.0947780.5399730.4245880.064*
C260.2745 (4)0.5745 (4)0.4199 (3)0.0413 (8)
H260.2890540.5127250.3695430.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.0549 (2)0.0607 (3)0.0861 (3)0.00008 (14)0.03780 (19)0.01542 (16)
S10.0315 (4)0.0329 (4)0.0506 (5)0.0050 (3)0.0134 (4)0.0122 (4)
O10.0339 (15)0.082 (2)0.068 (2)0.0142 (15)0.0099 (14)0.0392 (18)
O20.074 (2)0.0292 (14)0.088 (2)0.0057 (14)0.0405 (19)0.0050 (15)
N10.0285 (14)0.0386 (15)0.0301 (13)0.0017 (12)0.0031 (11)0.0050 (11)
N20.0280 (14)0.0397 (16)0.0335 (14)0.0027 (12)0.0088 (11)0.0097 (12)
C10.0267 (15)0.0305 (15)0.0300 (15)0.0007 (12)0.0024 (12)0.0012 (12)
C20.0400 (19)0.047 (2)0.0350 (17)0.0013 (17)0.0056 (14)0.0137 (15)
C30.047 (2)0.044 (2)0.045 (2)0.0035 (18)0.0142 (17)0.0107 (17)
C110.0282 (16)0.0322 (16)0.0278 (14)0.0005 (12)0.0045 (12)0.0015 (12)
C120.0314 (16)0.0281 (15)0.0316 (15)0.0006 (12)0.0071 (13)0.0036 (12)
C130.0300 (16)0.0329 (17)0.0442 (18)0.0014 (14)0.0109 (14)0.0042 (14)
C140.0364 (18)0.0358 (17)0.0374 (17)0.0019 (15)0.0137 (14)0.0024 (14)
C150.047 (2)0.0387 (18)0.0351 (17)0.0001 (17)0.0121 (15)0.0073 (15)
C160.0377 (19)0.0404 (19)0.0339 (17)0.0048 (15)0.0050 (14)0.0097 (14)
C210.0259 (15)0.0332 (16)0.0345 (16)0.0051 (13)0.0058 (12)0.0061 (13)
C220.0364 (18)0.0411 (19)0.0338 (16)0.0095 (15)0.0087 (14)0.0043 (14)
C230.041 (2)0.061 (3)0.046 (2)0.015 (2)0.0143 (17)0.0056 (19)
C240.031 (2)0.079 (3)0.060 (3)0.014 (2)0.0143 (18)0.020 (2)
C250.0276 (18)0.066 (3)0.067 (3)0.0008 (19)0.0033 (18)0.012 (2)
C260.0298 (17)0.045 (2)0.049 (2)0.0005 (16)0.0018 (15)0.0051 (17)
Geometric parameters (Å, º) top
I1—C142.055 (4)C12—C131.393 (5)
S1—O11.419 (3)C13—C141.379 (5)
S1—O21.430 (4)C13—H130.9300
S1—N21.653 (3)C14—C151.391 (6)
S1—C121.729 (3)C15—C161.376 (6)
N1—C11.293 (4)C15—H150.9300
N1—C111.388 (4)C16—H160.9300
N2—C11.389 (4)C21—C261.403 (5)
N2—C21.491 (4)C21—C221.403 (5)
C1—C211.474 (5)C22—C231.388 (6)
C2—C31.498 (6)C23—C241.365 (7)
C2—H2A0.9700C23—H230.9300
C2—H2B0.9700C24—C251.384 (8)
C3—C221.500 (6)C24—H240.9300
C3—H3A0.9700C25—C261.376 (6)
C3—H3B0.9700C25—H250.9300
C11—C121.389 (5)C26—H260.9300
C11—C161.405 (5)
O1—S1—O2117.9 (2)C14—C13—C12118.6 (3)
O1—S1—N2107.81 (19)C14—C13—H13120.7
O2—S1—N2109.33 (19)C12—C13—H13120.7
O1—S1—C12112.00 (19)C13—C14—C15120.3 (3)
O2—S1—C12108.68 (19)C13—C14—I1120.3 (3)
N2—S1—C1299.50 (16)C15—C14—I1119.4 (3)
C1—N1—C11120.3 (3)C16—C15—C14120.6 (3)
C1—N2—C2120.1 (3)C16—C15—H15119.7
C1—N2—S1119.5 (2)C14—C15—H15119.7
C2—N2—S1118.6 (2)C15—C16—C11120.5 (3)
N1—C1—N2124.3 (3)C15—C16—H16119.8
N1—C1—C21119.0 (3)C11—C16—H16119.8
N2—C1—C21116.7 (3)C26—C21—C22119.9 (3)
N2—C2—C3109.9 (3)C26—C21—C1119.6 (3)
N2—C2—H2A109.7C22—C21—C1120.5 (3)
C3—C2—H2A109.7C23—C22—C21118.4 (4)
N2—C2—H2B109.7C23—C22—C3121.8 (4)
C3—C2—H2B109.7C21—C22—C3119.7 (3)
H2A—C2—H2B108.2C24—C23—C22121.8 (4)
C2—C3—C22110.5 (3)C24—C23—H23119.1
C2—C3—H3A109.6C22—C23—H23119.1
C22—C3—H3A109.6C23—C24—C25119.6 (4)
C2—C3—H3B109.6C23—C24—H24120.2
C22—C3—H3B109.6C25—C24—H24120.2
H3A—C3—H3B108.1C26—C25—C24120.8 (4)
N1—C11—C12124.6 (3)C26—C25—H25119.6
N1—C11—C16117.7 (3)C24—C25—H25119.6
C12—C11—C16117.6 (3)C25—C26—C21119.5 (4)
C11—C12—C13122.4 (3)C25—C26—H26120.2
C11—C12—S1118.2 (3)C21—C26—H26120.2
C13—C12—S1119.3 (3)
O1—S1—N2—C1157.1 (3)C11—C12—C13—C140.4 (5)
O2—S1—N2—C173.5 (3)S1—C12—C13—C14175.2 (3)
C12—S1—N2—C140.2 (3)C12—C13—C14—C150.5 (6)
O1—S1—N2—C238.2 (3)C12—C13—C14—I1179.7 (3)
O2—S1—N2—C291.1 (3)C13—C14—C15—C160.3 (6)
C12—S1—N2—C2155.1 (3)I1—C14—C15—C16179.9 (3)
C11—N1—C1—N22.5 (5)C14—C15—C16—C110.9 (6)
C11—N1—C1—C21177.3 (3)N1—C11—C16—C15179.4 (3)
C2—N2—C1—N1166.0 (4)C12—C11—C16—C151.8 (5)
S1—N2—C1—N129.6 (5)N1—C1—C21—C269.3 (5)
C2—N2—C1—C2113.8 (5)N2—C1—C21—C26170.5 (3)
S1—N2—C1—C21150.6 (3)N1—C1—C21—C22168.6 (3)
C1—N2—C2—C346.8 (5)N2—C1—C21—C2211.6 (5)
S1—N2—C2—C3117.8 (3)C26—C21—C22—C231.5 (5)
N2—C2—C3—C2252.9 (4)C1—C21—C22—C23176.4 (3)
C1—N1—C11—C1215.1 (5)C26—C21—C22—C3179.5 (3)
C1—N1—C11—C16166.1 (3)C1—C21—C22—C31.7 (5)
N1—C11—C12—C13179.7 (3)C2—C3—C22—C23150.6 (4)
C16—C11—C12—C131.5 (5)C2—C3—C22—C2131.4 (5)
N1—C11—C12—S14.7 (5)C21—C22—C23—C241.1 (6)
C16—C11—C12—S1174.1 (3)C3—C22—C23—C24179.1 (4)
O1—S1—C12—C11142.0 (3)C22—C23—C24—C250.1 (7)
O2—S1—C12—C1185.9 (3)C23—C24—C25—C260.6 (7)
N2—S1—C12—C1128.3 (3)C24—C25—C26—C210.2 (7)
O1—S1—C12—C1342.3 (4)C22—C21—C26—C250.8 (6)
O2—S1—C12—C1389.8 (3)C1—C21—C26—C25177.0 (4)
N2—S1—C12—C13156.0 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2A···O10.972.492.934 (5)107
2-(2'-Nitrobenzenesulfonyl)-1,3,4-trihydroisoquinoline (6) top
Crystal data top
C15H14N2O4SF(000) = 664
Mr = 318.34Dx = 1.446 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.048 (2) ÅCell parameters from 9277 reflections
b = 13.802 (3) Åθ = 2.4–28.3°
c = 10.543 (2) ŵ = 0.24 mm1
β = 90.487 (10)°T = 296 K
V = 1462.2 (5) Å3Block, colourless
Z = 40.71 × 0.44 × 0.37 mm
Data collection top
Bruker APEXII CCD
diffractometer
3655 independent reflections
Radiation source: sealed tube3186 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.026
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 2.4°
φ and ω scansh = 1313
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 1818
Tmin = 0.953, Tmax = 1.000l = 1414
88246 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034H-atom parameters constrained
wR(F2) = 0.099 w = 1/[σ2(Fo2) + (0.0497P)2 + 0.3875P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
3655 reflectionsΔρmax = 0.26 e Å3
200 parametersΔρmin = 0.32 e Å3
0 restraintsExtinction correction: SHELXL2018 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: dualExtinction coefficient: 0.0196 (17)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

Single-crystal X-ray diffraction data were collected at 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker, 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT-2018/2 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL-2018/3 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker, 2012). All non-hydrogen atoms were refined anisotropically and the carbon-bound hydrogen atoms were added in idealized geometrical positions in a riding model. The crystal structure diagrams were drawn with ORTEP-3 for windows (Johnson, 1965; 1976; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.22434 (3)0.26068 (2)0.60528 (3)0.04245 (12)
O10.50587 (11)0.20404 (9)0.77057 (11)0.0604 (3)
O20.38599 (13)0.11032 (8)0.88638 (13)0.0684 (3)
O30.08662 (11)0.26975 (10)0.57400 (11)0.0639 (3)
O40.28485 (13)0.16783 (7)0.60442 (10)0.0601 (3)
N10.40900 (12)0.18751 (8)0.83468 (11)0.0447 (3)
N20.30384 (11)0.32965 (8)0.50775 (10)0.0387 (2)
C110.23944 (12)0.30865 (9)0.76181 (12)0.0378 (3)
C120.31513 (12)0.26713 (9)0.85821 (12)0.0382 (3)
C130.30676 (14)0.29842 (12)0.98299 (13)0.0512 (3)
H130.3546900.2671561.0467700.061*
C140.22664 (16)0.37633 (13)1.01123 (16)0.0595 (4)
H140.2206680.3983291.0943590.071*
C150.15540 (17)0.42156 (12)0.91610 (17)0.0609 (4)
H150.1044490.4759010.9347400.073*
C160.15893 (14)0.38686 (11)0.79286 (15)0.0507 (3)
H160.1069490.4161770.7303540.061*
C210.24900 (13)0.42650 (10)0.48524 (13)0.0429 (3)
H21A0.2672960.4673450.5582010.052*
H21B0.1532140.4221110.4745120.052*
C220.30903 (13)0.47152 (9)0.36841 (11)0.0383 (3)
C230.24522 (16)0.55062 (11)0.31337 (14)0.0503 (3)
H230.1663120.5735470.3477180.060*
C240.29830 (19)0.59550 (12)0.20775 (15)0.0596 (4)
H240.2553360.6485390.1715860.071*
C250.41473 (18)0.56144 (12)0.15648 (14)0.0576 (4)
H250.4501020.5911030.0850930.069*
C260.47847 (15)0.48399 (11)0.21043 (13)0.0508 (3)
H260.5573770.4616620.1754090.061*
C270.42689 (13)0.43775 (9)0.31754 (12)0.0405 (3)
C280.49646 (14)0.35160 (11)0.37493 (14)0.0506 (3)
H28A0.5914870.3639520.3770850.061*
H28B0.4811580.2955720.3212190.061*
C290.45009 (13)0.32842 (10)0.50848 (13)0.0450 (3)
H29A0.4824050.2651210.5342320.054*
H29B0.4842810.3762320.5677930.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0496 (2)0.04094 (18)0.03662 (18)0.01290 (13)0.00905 (13)0.00428 (12)
O10.0539 (6)0.0632 (7)0.0643 (7)0.0073 (5)0.0114 (5)0.0065 (5)
O20.0834 (8)0.0445 (6)0.0772 (8)0.0024 (5)0.0016 (6)0.0179 (5)
O30.0494 (6)0.0888 (8)0.0534 (6)0.0281 (6)0.0163 (5)0.0193 (6)
O40.0991 (9)0.0331 (5)0.0480 (6)0.0088 (5)0.0127 (5)0.0023 (4)
N10.0480 (6)0.0434 (6)0.0427 (6)0.0013 (5)0.0067 (5)0.0030 (5)
N20.0410 (5)0.0378 (5)0.0373 (5)0.0013 (4)0.0002 (4)0.0046 (4)
C110.0372 (6)0.0376 (6)0.0385 (6)0.0076 (5)0.0000 (5)0.0033 (5)
C120.0347 (6)0.0399 (6)0.0401 (6)0.0081 (5)0.0030 (5)0.0001 (5)
C130.0447 (7)0.0685 (9)0.0401 (7)0.0084 (6)0.0060 (5)0.0058 (6)
C140.0539 (8)0.0724 (10)0.0523 (8)0.0098 (7)0.0060 (7)0.0202 (8)
C150.0570 (9)0.0538 (9)0.0722 (11)0.0028 (7)0.0166 (8)0.0105 (8)
C160.0465 (7)0.0501 (8)0.0558 (8)0.0045 (6)0.0063 (6)0.0078 (6)
C210.0434 (6)0.0421 (7)0.0433 (7)0.0072 (5)0.0078 (5)0.0080 (5)
C220.0425 (6)0.0371 (6)0.0355 (6)0.0017 (5)0.0018 (5)0.0015 (5)
C230.0571 (8)0.0464 (7)0.0474 (7)0.0071 (6)0.0025 (6)0.0077 (6)
C240.0815 (11)0.0471 (8)0.0500 (8)0.0018 (7)0.0031 (7)0.0138 (6)
C250.0770 (10)0.0560 (9)0.0400 (7)0.0201 (8)0.0061 (7)0.0071 (6)
C260.0529 (8)0.0571 (8)0.0425 (7)0.0127 (6)0.0103 (6)0.0050 (6)
C270.0435 (6)0.0408 (6)0.0371 (6)0.0045 (5)0.0038 (5)0.0036 (5)
C280.0464 (7)0.0524 (8)0.0530 (8)0.0102 (6)0.0112 (6)0.0002 (6)
C290.0412 (6)0.0474 (7)0.0464 (7)0.0065 (5)0.0024 (5)0.0024 (6)
Geometric parameters (Å, º) top
S1—O41.4185 (12)C21—C221.5099 (17)
S1—O31.4254 (12)C21—H21A0.9700
S1—N21.6172 (11)C21—H21B0.9700
S1—C111.7835 (13)C22—C271.3849 (18)
O1—N11.2114 (16)C22—C231.3905 (18)
O2—N11.2197 (16)C23—C241.385 (2)
N1—C121.4707 (18)C23—H230.9300
N2—C211.4645 (16)C24—C251.376 (3)
N2—C291.4696 (17)C24—H240.9300
C11—C121.3880 (18)C25—C261.368 (2)
C11—C161.3898 (19)C25—H250.9300
C12—C131.3878 (19)C26—C271.4005 (18)
C13—C141.377 (2)C26—H260.9300
C13—H130.9300C27—C281.5039 (19)
C14—C151.377 (3)C28—C291.521 (2)
C14—H140.9300C28—H28A0.9700
C15—C161.386 (2)C28—H28B0.9700
C15—H150.9300C29—H29A0.9700
C16—H160.9300C29—H29B0.9700
O4—S1—O3119.55 (8)N2—C21—H21B109.5
O4—S1—N2108.28 (7)C22—C21—H21B109.5
O3—S1—N2106.56 (6)H21A—C21—H21B108.1
O4—S1—C11107.95 (6)C27—C22—C23119.69 (12)
O3—S1—C11104.85 (7)C27—C22—C21121.76 (11)
N2—S1—C11109.35 (6)C23—C22—C21118.53 (12)
O1—N1—O2124.76 (13)C24—C23—C22120.49 (14)
O1—N1—C12118.22 (11)C24—C23—H23119.8
O2—N1—C12116.94 (12)C22—C23—H23119.8
C21—N2—C29112.72 (10)C25—C24—C23119.85 (15)
C21—N2—S1116.94 (8)C25—C24—H24120.1
C29—N2—S1119.29 (9)C23—C24—H24120.1
C12—C11—C16117.68 (12)C26—C25—C24120.03 (13)
C12—C11—S1124.49 (10)C26—C25—H25120.0
C16—C11—S1117.46 (10)C24—C25—H25120.0
C13—C12—C11121.90 (13)C25—C26—C27121.09 (14)
C13—C12—N1115.88 (12)C25—C26—H26119.5
C11—C12—N1122.22 (11)C27—C26—H26119.5
C14—C13—C12119.21 (14)C22—C27—C26118.85 (13)
C14—C13—H13120.4C22—C27—C28120.42 (11)
C12—C13—H13120.4C26—C27—C28120.72 (12)
C15—C14—C13119.85 (14)C27—C28—C29113.19 (11)
C15—C14—H14120.1C27—C28—H28A108.9
C13—C14—H14120.1C29—C28—H28A108.9
C14—C15—C16120.61 (15)C27—C28—H28B108.9
C14—C15—H15119.7C29—C28—H28B108.9
C16—C15—H15119.7H28A—C28—H28B107.8
C15—C16—C11120.59 (14)N2—C29—C28107.87 (11)
C15—C16—H16119.7N2—C29—H29A110.1
C11—C16—H16119.7C28—C29—H29A110.1
N2—C21—C22110.82 (10)N2—C29—H29B110.1
N2—C21—H21A109.5C28—C29—H29B110.1
C22—C21—H21A109.5H29A—C29—H29B108.4
O4—S1—N2—C21174.25 (10)C14—C15—C16—C113.1 (2)
O3—S1—N2—C2144.45 (12)C12—C11—C16—C150.1 (2)
C11—S1—N2—C2168.37 (11)S1—C11—C16—C15173.41 (12)
O4—S1—N2—C2944.33 (11)C29—N2—C21—C2251.67 (15)
O3—S1—N2—C29174.13 (11)S1—N2—C21—C22164.46 (9)
C11—S1—N2—C2973.05 (11)N2—C21—C22—C2718.59 (17)
O4—S1—C11—C128.80 (13)N2—C21—C22—C23163.18 (12)
O3—S1—C11—C12137.28 (11)C27—C22—C23—C240.3 (2)
N2—S1—C11—C12108.79 (11)C21—C22—C23—C24178.59 (14)
O4—S1—C11—C16164.02 (11)C22—C23—C24—C250.3 (2)
O3—S1—C11—C1635.55 (12)C23—C24—C25—C260.6 (2)
N2—S1—C11—C1678.38 (11)C24—C25—C26—C270.3 (2)
C16—C11—C12—C133.29 (19)C23—C22—C27—C260.57 (19)
S1—C11—C12—C13169.52 (10)C21—C22—C27—C26178.78 (12)
C16—C11—C12—N1176.67 (11)C23—C22—C27—C28179.31 (13)
S1—C11—C12—N110.51 (17)C21—C22—C27—C282.48 (19)
O1—N1—C12—C13113.75 (14)C25—C26—C27—C220.2 (2)
O2—N1—C12—C1363.11 (16)C25—C26—C27—C28178.98 (14)
O1—N1—C12—C1166.22 (16)C22—C27—C28—C2917.28 (19)
O2—N1—C12—C11116.92 (14)C26—C27—C28—C29164.01 (13)
C11—C12—C13—C143.6 (2)C21—N2—C29—C2867.02 (14)
N1—C12—C13—C14176.35 (13)S1—N2—C29—C28150.04 (10)
C12—C13—C14—C150.5 (2)C27—C28—C29—N247.28 (16)
C13—C14—C15—C162.8 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C13—H13···O3i0.932.403.1093 (19)133
C21—H21A···O2ii0.972.573.1843 (18)121
C21—H21B···O30.972.452.8713 (17)106
C29—H29A···O40.972.512.9532 (18)108
Symmetry codes: (i) x+1/2, y+1/2, z+1/2; (ii) x+1/2, y+1/2, z+3/2.
2-(2'-Aminobenzenesulfonyl)-1,3,4-trihydroisoquinoline (7) top
Crystal data top
C15H16N2O2SF(000) = 608
Mr = 288.36Dx = 1.358 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 10.3376 (5) ÅCell parameters from 9944 reflections
b = 12.6151 (5) Åθ = 2.5–28.1°
c = 10.8850 (5) ŵ = 0.23 mm1
β = 96.590 (2)°T = 296 K
V = 1410.13 (11) Å3Platelet, colourless
Z = 40.70 × 0.63 × 0.25 mm
Data collection top
Bruker APEXII CCD
diffractometer
3524 independent reflections
Radiation source: sealed tube2860 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.3333 pixels mm-1θmax = 28.4°, θmin = 2.5°
φ and ω scansh = 1313
Absorption correction: numerical
(SADABS; Bruker, 2012)
k = 1616
Tmin = 0.938, Tmax = 1.000l = 1414
24938 measured reflections
Refinement top
Refinement on F2Primary atom site location: dual
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: mixed
wR(F2) = 0.103H atoms treated by a mixture of independent and constrained refinement
S = 1.07 w = 1/[σ2(Fo2) + (0.0514P)2 + 0.3199P]
where P = (Fo2 + 2Fc2)/3
3524 reflections(Δ/σ)max < 0.001
189 parametersΔρmax = 0.30 e Å3
0 restraintsΔρmin = 0.36 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Carbon-bound H atoms were placed in calculated positions and were included in the refinement in the riding model approximation, with Uiso(H) set to 1.2 Ueq(C).

The nitrogen-bound H atoms were located on a difference map and refined freely.

Single-crystal X-ray diffraction data were collected at 296 K on a Bruker APEXII CCD diffractometer with graphite-monochromated Mo Kα radiation using the APEX2 data collection software and SAINT (Bruker, 2012) for cell refinement and data reduction. The structures were solved by dual-space methods applying SHELXT-2018/2 (Sheldrick, 2015a) and refined by least-squares procedures using SHELXL-2018/3 (Sheldrick, 2015b). Data were corrected for absorption effects using the numerical method implemented in SADABS (Bruker, 2012). All non-hydrogen atoms were refined anisotropically and the carbon-bound hydrogen atoms were added in idealized geometrical positions in a riding model. The crystal structure diagrams were drawn with ORTEP-3 for windows (Johnson, 1965; 1976; Farrugia, 2012).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.36887 (3)0.30805 (3)0.41884 (3)0.03528 (11)
O10.34861 (12)0.19583 (8)0.41677 (10)0.0495 (3)
O20.49141 (10)0.34827 (10)0.47555 (9)0.0479 (3)
N10.19007 (18)0.22126 (15)0.19078 (17)0.0631 (4)
N20.25856 (11)0.35848 (9)0.49702 (10)0.0349 (3)
C10.25700 (14)0.47423 (11)0.50735 (13)0.0380 (3)
H1A0.2143330.5046560.4314450.046*
H1B0.3455810.5008240.5198210.046*
C20.06877 (16)0.33107 (13)0.60393 (16)0.0501 (4)
H2A0.0247530.3208620.5896190.060*
H2B0.1038380.2777160.6627250.060*
C30.12588 (14)0.31450 (13)0.48327 (15)0.0447 (3)
H3A0.1282830.2394820.4641120.054*
H3B0.0727290.3500370.4164010.054*
C110.34692 (13)0.35721 (11)0.26712 (12)0.0356 (3)
C120.25866 (14)0.31072 (12)0.17451 (13)0.0417 (3)
C130.24247 (17)0.36177 (16)0.05937 (14)0.0549 (4)
H130.1836820.3340570.0035310.066*
C140.31081 (19)0.45126 (17)0.03702 (16)0.0628 (5)
H140.2973030.4833920.0402810.075*
C150.39995 (19)0.49467 (15)0.12815 (17)0.0588 (5)
H150.4475190.5545930.1118080.071*
C160.41707 (15)0.44793 (13)0.24301 (15)0.0455 (3)
H160.4758070.4769660.3050530.055*
C210.18557 (13)0.50654 (12)0.61447 (12)0.0370 (3)
C220.09610 (13)0.43882 (12)0.65963 (13)0.0400 (3)
C230.03411 (16)0.47287 (15)0.76068 (15)0.0529 (4)
H230.0260150.4285830.7921750.063*
C240.06035 (16)0.57013 (17)0.81395 (15)0.0581 (5)
H240.0189480.5907480.8815720.070*
C250.14736 (17)0.63706 (16)0.76791 (16)0.0584 (5)
H250.1640880.7035030.8032290.070*
C260.21007 (16)0.60530 (14)0.66878 (15)0.0492 (4)
H260.2695260.6506140.6379090.059*
H1C0.140 (2)0.1999 (17)0.134 (2)0.072 (7)*
H1D0.208 (2)0.1835 (16)0.255 (2)0.067 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.03212 (18)0.0394 (2)0.03337 (17)0.00473 (13)0.00013 (12)0.00224 (13)
O10.0616 (7)0.0373 (6)0.0492 (6)0.0098 (5)0.0046 (5)0.0044 (4)
O20.0306 (5)0.0674 (7)0.0438 (6)0.0037 (5)0.0041 (4)0.0023 (5)
N10.0664 (10)0.0648 (10)0.0532 (9)0.0158 (8)0.0148 (8)0.0044 (8)
N20.0312 (6)0.0366 (6)0.0373 (6)0.0041 (5)0.0055 (4)0.0011 (5)
C10.0374 (7)0.0385 (7)0.0395 (7)0.0049 (6)0.0102 (5)0.0018 (5)
C20.0397 (8)0.0495 (9)0.0634 (10)0.0062 (7)0.0153 (7)0.0086 (7)
C30.0339 (7)0.0452 (8)0.0544 (9)0.0095 (6)0.0029 (6)0.0032 (6)
C110.0336 (7)0.0415 (7)0.0318 (6)0.0079 (6)0.0043 (5)0.0011 (5)
C120.0370 (7)0.0504 (8)0.0372 (7)0.0100 (6)0.0028 (6)0.0046 (6)
C130.0491 (9)0.0798 (13)0.0343 (7)0.0148 (9)0.0021 (6)0.0016 (7)
C140.0605 (11)0.0862 (14)0.0429 (9)0.0230 (10)0.0114 (8)0.0203 (9)
C150.0608 (11)0.0597 (11)0.0587 (10)0.0051 (9)0.0197 (8)0.0181 (8)
C160.0422 (8)0.0490 (8)0.0460 (8)0.0016 (7)0.0080 (6)0.0029 (6)
C210.0307 (6)0.0451 (8)0.0350 (6)0.0006 (6)0.0035 (5)0.0014 (5)
C220.0307 (7)0.0527 (9)0.0369 (7)0.0024 (6)0.0049 (5)0.0069 (6)
C230.0391 (8)0.0785 (12)0.0427 (8)0.0048 (8)0.0115 (6)0.0114 (8)
C240.0443 (9)0.0918 (14)0.0385 (8)0.0128 (9)0.0059 (6)0.0123 (8)
C250.0457 (9)0.0737 (12)0.0548 (9)0.0033 (9)0.0019 (7)0.0257 (9)
C260.0409 (8)0.0544 (9)0.0525 (9)0.0055 (7)0.0065 (7)0.0139 (7)
Geometric parameters (Å, º) top
S1—O11.4309 (11)C11—C121.408 (2)
S1—O21.4366 (11)C12—C131.402 (2)
S1—N21.6285 (12)C13—C141.368 (3)
S1—C111.7542 (13)C13—H130.9300
N1—C121.355 (2)C14—C151.387 (3)
N1—H1C0.81 (2)C14—H140.9300
N1—H1D0.84 (2)C15—C161.375 (2)
N2—C11.4648 (18)C15—H150.9300
N2—C31.4712 (17)C16—H160.9300
C1—C211.5062 (19)C21—C221.390 (2)
C1—H1A0.9700C21—C261.390 (2)
C1—H1B0.9700C22—C231.402 (2)
C2—C221.502 (2)C23—C241.371 (3)
C2—C31.515 (2)C23—H230.9300
C2—H2A0.9700C24—C251.370 (3)
C2—H2B0.9700C24—H240.9300
C3—H3A0.9700C25—C261.380 (2)
C3—H3B0.9700C25—H250.9300
C11—C161.396 (2)C26—H260.9300
O1—S1—O2118.45 (7)N1—C12—C13119.26 (15)
O1—S1—N2106.54 (6)N1—C12—C11124.01 (14)
O2—S1—N2105.86 (6)C13—C12—C11116.73 (15)
O1—S1—C11109.40 (7)C14—C13—C12121.80 (16)
O2—S1—C11106.98 (7)C14—C13—H13119.1
N2—S1—C11109.34 (6)C12—C13—H13119.1
C12—N1—H1C118.6 (16)C13—C14—C15120.86 (15)
C12—N1—H1D120.6 (14)C13—C14—H14119.6
H1C—N1—H1D120 (2)C15—C14—H14119.6
C1—N2—C3111.43 (11)C16—C15—C14119.11 (17)
C1—N2—S1116.37 (9)C16—C15—H15120.4
C3—N2—S1120.00 (10)C14—C15—H15120.4
N2—C1—C21109.87 (11)C15—C16—C11120.47 (16)
N2—C1—H1A109.7C15—C16—H16119.8
C21—C1—H1A109.7C11—C16—H16119.8
N2—C1—H1B109.7C22—C21—C26119.79 (14)
C21—C1—H1B109.7C22—C21—C1120.85 (13)
H1A—C1—H1B108.2C26—C21—C1119.35 (13)
C22—C2—C3113.64 (12)C21—C22—C23118.14 (15)
C22—C2—H2A108.8C21—C22—C2121.03 (13)
C3—C2—H2A108.8C23—C22—C2120.81 (14)
C22—C2—H2B108.8C24—C23—C22121.32 (16)
C3—C2—H2B108.8C24—C23—H23119.3
H2A—C2—H2B107.7C22—C23—H23119.3
N2—C3—C2108.14 (12)C25—C24—C23120.22 (15)
N2—C3—H3A110.1C25—C24—H24119.9
C2—C3—H3A110.1C23—C24—H24119.9
N2—C3—H3B110.1C24—C25—C26119.60 (17)
C2—C3—H3B110.1C24—C25—H25120.2
H3A—C3—H3B108.4C26—C25—H25120.2
C16—C11—C12121.00 (13)C25—C26—C21120.91 (16)
C16—C11—S1116.94 (11)C25—C26—H26119.5
C12—C11—S1122.00 (11)C21—C26—H26119.5
O1—S1—N2—C1177.66 (10)C11—C12—C13—C141.2 (2)
O2—S1—N2—C155.39 (11)C12—C13—C14—C150.4 (3)
C11—S1—N2—C159.54 (11)C13—C14—C15—C161.4 (3)
O1—S1—N2—C338.45 (12)C14—C15—C16—C110.8 (3)
O2—S1—N2—C3165.39 (11)C12—C11—C16—C150.9 (2)
C11—S1—N2—C379.68 (12)S1—C11—C16—C15176.48 (13)
C3—N2—C1—C2156.94 (15)N2—C1—C21—C2222.43 (18)
S1—N2—C1—C21160.49 (9)N2—C1—C21—C26157.38 (13)
C1—N2—C3—C268.32 (15)C26—C21—C22—C230.7 (2)
S1—N2—C3—C2150.63 (11)C1—C21—C22—C23179.12 (13)
C22—C2—C3—N242.95 (18)C26—C21—C22—C2179.23 (14)
O1—S1—C11—C16151.08 (11)C1—C21—C22—C20.6 (2)
O2—S1—C11—C1621.61 (13)C3—C2—C22—C2111.2 (2)
N2—S1—C11—C1692.59 (12)C3—C2—C22—C23170.24 (14)
O1—S1—C11—C1231.61 (14)C21—C22—C23—C240.0 (2)
O2—S1—C11—C12161.08 (11)C2—C22—C23—C24178.59 (15)
N2—S1—C11—C1284.72 (12)C22—C23—C24—C250.8 (3)
C16—C11—C12—N1178.24 (16)C23—C24—C25—C261.0 (3)
S1—C11—C12—N14.6 (2)C24—C25—C26—C210.4 (3)
C16—C11—C12—C131.8 (2)C22—C21—C26—C250.5 (2)
S1—C11—C12—C13175.35 (11)C1—C21—C26—C25179.33 (15)
N1—C12—C13—C14178.85 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1C···O2i0.81 (2)2.26 (2)3.0612 (19)176 (2)
N1—H1D···O10.84 (2)2.16 (2)2.813 (2)134.0 (18)
C1—H1B···O20.972.522.9512 (18)107
C1—H1B···O2ii0.972.543.4207 (18)151
C3—H3A···O10.972.452.9067 (19)108
C16—H16···O20.932.462.8516 (19)106
C23—H23···O1iii0.932.533.441 (2)168
Symmetry codes: (i) x1/2, y+1/2, z1/2; (ii) x+1, y+1, z+1; (iii) x1/2, y+1/2, z+1/2.
Hydrogen-bond, C—H···π(ring) and ππ stacking interaction geometries (Å, °) for the crystal structures of compounds 68 top
CompoundD—H···AD—HH···AD···AD—H···A<Slippage*
6C13—H13···O3i0.932.403.1093 (19)133
C21—H21A···O2ii0.972.573.1843 (18)121
C21—H21B···O30.972.452.8713 (17)106
C29—H29A···O40.972.512.9532 (18)108
C29—H29B···Cg1iii0.972.783.7264 (17)166
C14—H14···Cg1iv0.932.793.544 (2)139
7N1—H1C···O2v0.81 (2)2.26 (2)3.0612 (19)176 (2)
N1—H1D···O10.84 (2)2.16 (2)2.813 (2)134.0 (18)
C1—H1B···O20.972.522.9512 (18)107
C1—H1B···O2vi0.972.543.4207 (18)151
C3—H3A···O10.972.452.9067 (19)108
C16—H16···O20.932.462.8516 (19)106
C23—H23···O1vii0.932.533.441 (2)168
C3—H3B···Cg2viii0.972.723.6575 (17)162
8C2—H2A···O10.972.492.934 (5)107
C3—H3B···N1ix0.972.633.515 (5)152
C2—H2A···Cg3ix0.972.823.662 (4)146
C15—H15···Cg4x0.932.723.639 (4)172
Cg3···Cg4xi3.666 (2)0.877
Cg4···Cg3xi3.666 (2)0.927
Symmetry codes: (i) x+1/2, -y+1/2, z+1/2; (ii) –x+1/2, y+1/2, –z+3/2; (iii) –x+1, –y+1, –z+1; (iv) x, y, z+1; (v) x-1/2, -y+1/2, z-1/2; (vi) -x+1, -y+1, -z+1; (vii) x-1/2, -y+1/2, z+1/2; (viii) –x, –y+1, –z+1; (ix) x, –y+3/2, z+1/2; (x) –x+1, y–1/2, –z+1/2; (xi) –x+1, –y+1, –z+1.

Cg1 is the centroid of the C22–C27 ring, Cg2 of the C21–C26 ring, Cg3 of the C11–C16 ring and Cg4 of the C21–C26 ring.

Note: (*) PLATON (Spek, 2020) calculated different values for the two interactions.
Docking studies of compounds 68 with DNA (1zew) top
CompoundGlobal energyAttractive VdWRepulsive VdWACEGSC scoreAI area
(kcal mol-1)(kcal mol-1)(kcal mol-1)(kcal mol-1)
6-53.90-17.36+6.09-3273906423
7-54.69-17.96+4.22-3413822418
8-52.30-15.53+4.17-2813598390
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds