Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104013174/fa1064sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270104013174/fa1064Isup2.hkl |
CCDC reference: 248133
Squaric acid (0.57 g, 5 mmol), dissolved in water (25 ml), was neutralized with NaOH (0.40 g, 10 mmol) and was added to a hot solution of CdCl2·H2O(0.201 g, 5 mmol) dissolved in water (50 ml). The mixture was stirred at 333 K for 12 h and then cooled to room temperature. The resulting yellow crystals were filtered, washed with water and alcohol, and dried in a vacuum. A solution of triethanolamine (0.298 g, 2 mmol) in methanol (50 ml) was added dropwise with stirring to a suspension of CdSq·2H2O (0.26 g, 1 mmol) in water (50 ml). The mixture was heated to 323 K for 12 h and then left to cool to room temperature. A few days later, well formed crystals were selected for X-ray studies.
The hydroxy and water H atoms were located from a difference map and then restrained to an O—H distance of 0.84 (3) Å. Other H atoms were placed at calculated positions (C—H = 0.97 Å) and were allowed to ride on their parent atoms [Uiso(H)= 1.2Ueq(C)]. The disordered hydroxymethyl moiety (site-occupancy factors are 0.7 for O22a/C22a and 0.3 for O22b/C22b) was refined anisotropically, with constraints and restraints imposed on the C—C and O—C distances, the N—C—C and C—C—O angles, and the anisotropic displacement parameters of the O and C atoms. The highest peak and deepest hole are located 0.05 and 0.11 Å from atoms O2 and O22b, respectively, and are thus related to disorder in the O atoms.
Data collection: X-AREA (Stoe & Cie, 2001); cell refinement: X-AREA; data reduction: X-RED32 (Stoe & Cie, 2001); program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: WinGX (Farrugia, 1999).
[Cd(C6H15NO3)2](C4O4)·H2O | Z = 2 |
Mr = 539.83 | F(000) = 554 |
Triclinic, P1 | Dx = 1.678 Mg m−3 |
Hall symbol: -P 1 | Mo Kα radiation, λ = 0.71069 Å |
a = 9.135 (5) Å | Cell parameters from 16158 reflections |
b = 10.972 (5) Å | θ = 1.9–25.9° |
c = 11.968 (5) Å | µ = 1.08 mm−1 |
α = 71.537 (5)° | T = 293 K |
β = 70.118 (5)° | Prism, colorless |
γ = 86.582 (5)° | 0.4 × 0.3 × 0.2 mm |
V = 1068.4 (9) Å3 |
Stoe IPDS-II diffractometer | 4123 independent reflections |
Radiation source: fine-focus sealed tube | 3368 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.000 |
Detector resolution: 6.67 pixels mm-1 | θmax = 25.9°, θmin = 1.9° |
rotation method scans | h = −10→11 |
Absorption correction: integration X-RED32 (Stoe & Cie, 2002) | k = −12→13 |
Tmin = 0.480, Tmax = 0.819 | l = 0→14 |
4123 measured reflections |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.044 | H atoms treated by a mixture of independent and constrained refinement |
wR(F2) = 0.118 | w = 1/[σ2(Fo2) + (0.0878P)2] where P = (Fo2 + 2Fc2)/3 |
S = 0.97 | (Δ/σ)max < 0.001 |
4123 reflections | Δρmax = 1.17 e Å−3 |
277 parameters | Δρmin = −2.53 e Å−3 |
192 restraints | Extinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.023 (2) |
[Cd(C6H15NO3)2](C4O4)·H2O | γ = 86.582 (5)° |
Mr = 539.83 | V = 1068.4 (9) Å3 |
Triclinic, P1 | Z = 2 |
a = 9.135 (5) Å | Mo Kα radiation |
b = 10.972 (5) Å | µ = 1.08 mm−1 |
c = 11.968 (5) Å | T = 293 K |
α = 71.537 (5)° | 0.4 × 0.3 × 0.2 mm |
β = 70.118 (5)° |
Stoe IPDS-II diffractometer | 4123 independent reflections |
Absorption correction: integration X-RED32 (Stoe & Cie, 2002) | 3368 reflections with I > 2σ(I) |
Tmin = 0.480, Tmax = 0.819 | Rint = 0.000 |
4123 measured reflections |
R[F2 > 2σ(F2)] = 0.044 | 192 restraints |
wR(F2) = 0.118 | H atoms treated by a mixture of independent and constrained refinement |
S = 0.97 | Δρmax = 1.17 e Å−3 |
4123 reflections | Δρmin = −2.53 e Å−3 |
277 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Cd1 | 0.22532 (4) | 0.28813 (3) | 0.72935 (3) | 0.02810 (15) | |
O1 | 0.2512 (5) | 0.2761 (4) | 0.5343 (4) | 0.0501 (6) | |
O2 | 0.0902 (5) | 0.0773 (4) | 0.7933 (4) | 0.0501 (6) | |
O3 | 0.2163 (4) | 0.2490 (4) | 0.9375 (3) | 0.0407 (8) | |
O4 | 0.4230 (4) | 0.4433 (3) | 0.6900 (3) | 0.0368 (8) | |
O5 | 0.1398 (4) | 0.4937 (3) | 0.6345 (3) | 0.0400 (8) | |
O6 | 0.1266 (5) | −0.0639 (4) | 0.6425 (4) | 0.0493 (10) | |
O7 | 0.0006 (5) | −0.2045 (3) | 0.4908 (4) | 0.0508 (10) | |
O8 | 0.6041 (5) | 0.4212 (4) | 1.1553 (4) | 0.0495 (10) | |
O9 | 0.4516 (5) | 0.2954 (4) | 1.0075 (4) | 0.0500 (10) | |
O10 | 0.1873 (6) | −0.3195 (4) | 0.7214 (4) | 0.0520 (10) | |
N1 | 0.4703 (5) | 0.1970 (4) | 0.6580 (4) | 0.0339 (9) | |
N2 | −0.0425 (5) | 0.2951 (4) | 0.8537 (4) | 0.0327 (9) | |
C1 | −0.0737 (8) | 0.0711 (6) | 0.8552 (6) | 0.0546 (9) | |
H1A | −0.0975 | 0.0287 | 0.9443 | 0.065* | |
H1B | −0.1246 | 0.0205 | 0.8241 | 0.065* | |
C2 | −0.1355 (6) | 0.2040 (5) | 0.8338 (5) | 0.0403 (11) | |
H2A | −0.1367 | 0.2368 | 0.7487 | 0.048* | |
H2B | −0.2421 | 0.1984 | 0.8901 | 0.048* | |
C3 | −0.0555 (6) | 0.2591 (6) | 0.9875 (5) | 0.0453 (13) | |
H3A | −0.0689 | 0.1663 | 1.0240 | 0.054* | |
H3B | −0.1473 | 0.2957 | 1.0321 | 0.054* | |
C4 | 0.0845 (7) | 0.3049 (6) | 1.0036 (5) | 0.0470 (13) | |
H4A | 0.0973 | 0.3980 | 0.9704 | 0.056* | |
H4B | 0.0729 | 0.2789 | 1.0917 | 0.056* | |
C5 | −0.0950 (6) | 0.4262 (5) | 0.8113 (5) | 0.0438 (12) | |
H5A | −0.0664 | 0.4791 | 0.8527 | 0.053* | |
H5B | −0.2078 | 0.4223 | 0.8354 | 0.053* | |
C6 | −0.0256 (6) | 0.4877 (5) | 0.6722 (5) | 0.0445 (12) | |
H6A | −0.0589 | 0.4381 | 0.6300 | 0.053* | |
H6B | −0.0619 | 0.5738 | 0.6485 | 0.053* | |
C7 | 0.5754 (6) | 0.3984 (5) | 0.6620 (5) | 0.0384 (11) | |
H7A | 0.5969 | 0.3553 | 0.7388 | 0.046* | |
H7B | 0.6514 | 0.4700 | 0.6123 | 0.046* | |
C8 | 0.5854 (6) | 0.3069 (6) | 0.5908 (6) | 0.0447 (12) | |
H8A | 0.5705 | 0.3532 | 0.5120 | 0.054* | |
H8B | 0.6891 | 0.2745 | 0.5716 | 0.054* | |
C9 | 0.3846 (7) | 0.2144 (6) | 0.4770 (5) | 0.0429 (12) | |
H9A | 0.4621 | 0.2793 | 0.4129 | 0.052* | |
H9B | 0.3545 | 0.1610 | 0.4367 | 0.052* | |
C10 | 0.4561 (7) | 0.1314 (6) | 0.5720 (5) | 0.0468 (13) | |
H10A | 0.3919 | 0.0525 | 0.6203 | 0.056* | |
H10B | 0.5587 | 0.1085 | 0.5277 | 0.056* | |
C11 | 0.5240 (8) | 0.1089 (6) | 0.7575 (6) | 0.0546 (9) | |
H11A | 0.6275 | 0.0842 | 0.7173 | 0.065* | 0.694 (6) |
H11B | 0.5344 | 0.1575 | 0.8097 | 0.065* | 0.694 (6) |
H11C | 0.5992 | 0.1641 | 0.7623 | 0.065* | 0.306 (6) |
H11D | 0.4337 | 0.1014 | 0.8318 | 0.065* | 0.306 (6) |
C12 | −0.0002 (6) | −0.0929 (5) | 0.4962 (5) | 0.0361 (11) | |
C13 | 0.0567 (6) | −0.0290 (5) | 0.5645 (5) | 0.0359 (11) | |
C14 | 0.4775 (6) | 0.4077 (5) | 1.0040 (5) | 0.0329 (10) | |
C15 | 0.5461 (6) | 0.4637 (5) | 1.0708 (4) | 0.0323 (10) | |
H1 | 0.175 (6) | 0.253 (7) | 0.529 (7) | 0.07 (2)* | |
H2 | 0.105 (7) | 0.039 (5) | 0.747 (4) | 0.039 (15)* | |
H3 | 0.288 (5) | 0.263 (6) | 0.957 (5) | 0.040 (16)* | |
H4 | 0.403 (8) | 0.479 (6) | 0.744 (5) | 0.06 (2)* | |
H5 | 0.163 (10) | 0.542 (7) | 0.671 (7) | 0.09 (3)* | |
H6 | 0.169 (9) | −0.243 (3) | 0.690 (6) | 0.07 (2)* | |
H7 | 0.270 (7) | −0.325 (11) | 0.736 (10) | 0.12 (4)* | |
C22A | 0.4306 (11) | −0.0067 (8) | 0.8384 (8) | 0.0546 (9) | 0.694 (6) |
H22A | 0.4483 | −0.0323 | 0.9179 | 0.065* | 0.694 (6) |
H22B | 0.3215 | 0.0113 | 0.8543 | 0.065* | 0.694 (6) |
O22A | 0.4631 (7) | −0.1110 (5) | 0.7881 (6) | 0.0501 (6) | 0.694 (6) |
C22B | 0.5252 | −0.0132 | 0.7790 | 0.0546 (9) | 0.306 (6) |
H22C | 0.6127 | −0.0363 | 0.7174 | 0.065* | 0.306 (6) |
H22D | 0.4291 | −0.0473 | 0.7799 | 0.065* | 0.306 (6) |
O22B | 0.5390 | −0.0548 | 0.8922 | 0.0501 (6) | 0.306 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Cd1 | 0.0268 (2) | 0.0295 (2) | 0.0308 (2) | 0.00259 (12) | −0.01022 (13) | −0.01297 (13) |
O1 | 0.0629 (17) | 0.0414 (14) | 0.0572 (15) | 0.0048 (12) | −0.0281 (13) | −0.0222 (12) |
O2 | 0.0629 (17) | 0.0414 (14) | 0.0572 (15) | 0.0048 (12) | −0.0281 (13) | −0.0222 (12) |
O3 | 0.037 (2) | 0.055 (2) | 0.0372 (19) | 0.0018 (17) | −0.0155 (16) | −0.0218 (17) |
O4 | 0.0325 (18) | 0.0362 (19) | 0.049 (2) | 0.0066 (14) | −0.0161 (15) | −0.0215 (16) |
O5 | 0.0389 (19) | 0.0318 (19) | 0.046 (2) | 0.0046 (15) | −0.0139 (16) | −0.0095 (16) |
O6 | 0.072 (3) | 0.034 (2) | 0.067 (2) | 0.0156 (19) | −0.053 (2) | −0.0215 (18) |
O7 | 0.067 (3) | 0.0293 (19) | 0.081 (3) | 0.0163 (18) | −0.051 (2) | −0.0266 (19) |
O8 | 0.072 (3) | 0.045 (2) | 0.054 (2) | 0.022 (2) | −0.046 (2) | −0.0223 (18) |
O9 | 0.069 (3) | 0.031 (2) | 0.068 (3) | 0.0077 (18) | −0.044 (2) | −0.0185 (18) |
O10 | 0.069 (3) | 0.041 (2) | 0.064 (3) | 0.022 (2) | −0.042 (2) | −0.024 (2) |
N1 | 0.036 (2) | 0.029 (2) | 0.041 (2) | 0.0091 (17) | −0.0168 (18) | −0.0140 (17) |
N2 | 0.032 (2) | 0.032 (2) | 0.035 (2) | 0.0022 (16) | −0.0112 (16) | −0.0113 (17) |
C1 | 0.063 (2) | 0.0429 (19) | 0.060 (2) | 0.0056 (18) | −0.0284 (19) | −0.0119 (17) |
C2 | 0.031 (3) | 0.043 (3) | 0.050 (3) | 0.002 (2) | −0.017 (2) | −0.014 (2) |
C3 | 0.038 (3) | 0.059 (4) | 0.036 (3) | 0.005 (2) | −0.008 (2) | −0.016 (2) |
C4 | 0.047 (3) | 0.064 (4) | 0.036 (3) | 0.005 (3) | −0.012 (2) | −0.026 (3) |
C5 | 0.032 (3) | 0.038 (3) | 0.058 (3) | 0.011 (2) | −0.011 (2) | −0.017 (2) |
C6 | 0.038 (3) | 0.038 (3) | 0.051 (3) | 0.007 (2) | −0.019 (2) | −0.003 (2) |
C7 | 0.029 (2) | 0.037 (3) | 0.052 (3) | 0.000 (2) | −0.015 (2) | −0.016 (2) |
C8 | 0.032 (3) | 0.045 (3) | 0.057 (3) | 0.006 (2) | −0.011 (2) | −0.023 (3) |
C9 | 0.050 (3) | 0.046 (3) | 0.037 (3) | 0.003 (2) | −0.014 (2) | −0.019 (2) |
C10 | 0.053 (3) | 0.044 (3) | 0.051 (3) | 0.011 (3) | −0.017 (3) | −0.027 (3) |
C11 | 0.063 (2) | 0.0429 (19) | 0.060 (2) | 0.0056 (18) | −0.0284 (19) | −0.0119 (17) |
C12 | 0.040 (3) | 0.031 (3) | 0.048 (3) | 0.007 (2) | −0.025 (2) | −0.016 (2) |
C13 | 0.042 (3) | 0.030 (3) | 0.046 (3) | 0.006 (2) | −0.024 (2) | −0.017 (2) |
C14 | 0.033 (2) | 0.032 (3) | 0.038 (2) | 0.006 (2) | −0.017 (2) | −0.014 (2) |
C15 | 0.033 (2) | 0.034 (3) | 0.035 (2) | 0.011 (2) | −0.0154 (19) | −0.014 (2) |
C22A | 0.063 (2) | 0.0429 (19) | 0.060 (2) | 0.0056 (18) | −0.0284 (19) | −0.0119 (17) |
O22A | 0.0629 (17) | 0.0414 (14) | 0.0572 (15) | 0.0048 (12) | −0.0281 (13) | −0.0222 (12) |
C22B | 0.063 (2) | 0.0429 (19) | 0.060 (2) | 0.0056 (18) | −0.0284 (19) | −0.0119 (17) |
O22B | 0.0629 (17) | 0.0414 (14) | 0.0572 (15) | 0.0048 (12) | −0.0281 (13) | −0.0222 (12) |
Cd1—O1 | 2.310 (4) | C3—H3A | 0.9700 |
Cd1—O3 | 2.363 (4) | C3—H3B | 0.9700 |
Cd1—O4 | 2.379 (4) | C4—H4A | 0.9700 |
Cd1—N1 | 2.390 (4) | C4—H4B | 0.9700 |
Cd1—O5 | 2.399 (4) | C5—C6 | 1.500 (8) |
Cd1—N2 | 2.404 (4) | C5—H5A | 0.9700 |
Cd1—O2 | 2.457 (4) | C5—H5B | 0.9700 |
O1—C9 | 1.428 (7) | C6—H6A | 0.9700 |
O1—H1 | 0.78 (3) | C6—H6B | 0.9700 |
O2—C1 | 1.421 (8) | C7—C8 | 1.490 (7) |
O2—H2 | 0.77 (3) | C7—H7A | 0.9700 |
O3—C4 | 1.422 (7) | C7—H7B | 0.9700 |
O3—H3 | 0.81 (3) | C8—H8A | 0.9700 |
O4—C7 | 1.414 (6) | C8—H8B | 0.9700 |
O4—H4 | 0.82 (3) | C9—C10 | 1.526 (8) |
O5—C6 | 1.422 (6) | C9—H9A | 0.9700 |
O5—H5 | 0.86 (9) | C9—H9B | 0.9700 |
O6—C13 | 1.256 (6) | C10—H10A | 0.9700 |
O7—C12 | 1.246 (6) | C10—H10B | 0.9700 |
O8—C15 | 1.248 (6) | C11—C22B | 1.282 (6) |
O9—C14 | 1.253 (6) | C11—C22A | 1.437 (10) |
O10—H6 | 0.83 (3) | C11—H11A | 0.9700 |
O10—H7 | 0.83 (8) | C11—H11B | 0.9700 |
N1—C10 | 1.471 (7) | C11—H11C | 0.9701 |
N1—C8 | 1.473 (7) | C11—H11D | 0.9700 |
N1—C11 | 1.485 (7) | C12—C13 | 1.458 (7) |
N2—C2 | 1.472 (6) | C14—C15 | 1.451 (6) |
N2—C5 | 1.475 (7) | C22A—O22A | 1.426 (9) |
N2—C3 | 1.486 (6) | C22A—H11D | 1.1645 |
C1—C2 | 1.509 (8) | C22A—H22A | 0.9700 |
C1—H1A | 0.9700 | C22A—H22B | 0.9700 |
C1—H1B | 0.9700 | C22B—O22B | 1.3333 (5) |
C2—H2A | 0.9700 | C22B—H22C | 0.9700 |
C2—H2B | 0.9700 | C22B—H22D | 0.9700 |
C3—C4 | 1.494 (8) | ||
O1—Cd1—O3 | 166.28 (14) | O3—C4—H4B | 110.2 |
O1—Cd1—O4 | 104.74 (14) | C3—C4—H4B | 110.2 |
O3—Cd1—O4 | 81.38 (13) | H4A—C4—H4B | 108.5 |
O1—Cd1—N1 | 73.67 (15) | N2—C5—C6 | 112.4 (4) |
O3—Cd1—N1 | 96.99 (13) | N2—C5—H5A | 109.1 |
O4—Cd1—N1 | 72.97 (13) | C6—C5—H5A | 109.1 |
O1—Cd1—O5 | 78.40 (14) | N2—C5—H5B | 109.1 |
O3—Cd1—O5 | 115.27 (13) | C6—C5—H5B | 109.1 |
O4—Cd1—O5 | 73.66 (13) | H5A—C5—H5B | 107.9 |
N1—Cd1—O5 | 128.56 (13) | O5—C6—C5 | 110.1 (4) |
O1—Cd1—N2 | 112.22 (15) | O5—C6—H6A | 109.6 |
O3—Cd1—N2 | 72.78 (13) | C5—C6—H6A | 109.6 |
O4—Cd1—N2 | 123.19 (13) | O5—C6—H6B | 109.6 |
N1—Cd1—N2 | 157.68 (14) | C5—C6—H6B | 109.6 |
O5—Cd1—N2 | 73.42 (13) | H6A—C6—H6B | 108.2 |
O1—Cd1—O2 | 80.65 (15) | O4—C7—C8 | 107.8 (4) |
O3—Cd1—O2 | 89.51 (14) | O4—C7—H7A | 110.1 |
O4—Cd1—O2 | 159.51 (14) | C8—C7—H7A | 110.1 |
N1—Cd1—O2 | 90.13 (15) | O4—C7—H7B | 110.1 |
O5—Cd1—O2 | 126.77 (14) | C8—C7—H7B | 110.1 |
N2—Cd1—O2 | 70.41 (14) | H7A—C7—H7B | 108.5 |
C9—O1—Cd1 | 116.4 (3) | N1—C8—C7 | 113.8 (4) |
C9—O1—H1 | 112 (6) | N1—C8—H8A | 108.8 |
Cd1—O1—H1 | 115 (6) | C7—C8—H8A | 108.8 |
C1—O2—Cd1 | 115.9 (3) | N1—C8—H8B | 108.8 |
C1—O2—H2 | 107 (4) | C7—C8—H8B | 108.8 |
Cd1—O2—H2 | 121 (4) | H8A—C8—H8B | 107.7 |
C4—O3—Cd1 | 110.3 (3) | O1—C9—C10 | 111.9 (4) |
C4—O3—H3 | 107 (4) | O1—C9—H9A | 109.2 |
Cd1—O3—H3 | 125 (4) | C10—C9—H9A | 109.2 |
C7—O4—Cd1 | 114.3 (3) | O1—C9—H9B | 109.2 |
C7—O4—H4 | 113 (5) | C10—C9—H9B | 109.2 |
Cd1—O4—H4 | 113 (5) | H9A—C9—H9B | 107.9 |
C6—O5—Cd1 | 109.3 (3) | N1—C10—C9 | 112.6 (4) |
C6—O5—H5 | 106 (6) | N1—C10—H10A | 109.1 |
Cd1—O5—H5 | 103 (6) | C9—C10—H10A | 109.1 |
H6—O10—H7 | 111 (9) | N1—C10—H10B | 109.1 |
C10—N1—C8 | 110.9 (4) | C9—C10—H10B | 109.1 |
C10—N1—C11 | 111.2 (4) | H10A—C10—H10B | 107.8 |
C8—N1—C11 | 107.0 (4) | C22B—C11—N1 | 122.7 (5) |
C10—N1—Cd1 | 106.4 (3) | C22A—C11—N1 | 118.3 (6) |
C8—N1—Cd1 | 105.5 (3) | C22A—C11—H11A | 107.7 |
C11—N1—Cd1 | 115.7 (3) | N1—C11—H11A | 107.7 |
C2—N2—C5 | 109.2 (4) | C22B—C11—H11B | 128.3 |
C2—N2—C3 | 111.1 (4) | C22A—C11—H11B | 107.7 |
C5—N2—C3 | 110.6 (4) | N1—C11—H11B | 107.7 |
C2—N2—Cd1 | 107.8 (3) | H11A—C11—H11B | 107.1 |
C5—N2—Cd1 | 109.1 (3) | C22B—C11—H11C | 127.6 |
C3—N2—Cd1 | 109.0 (3) | C22A—C11—H11C | 136.4 |
O2—C1—C2 | 110.9 (5) | N1—C11—H11C | 101.9 |
O2—C1—H1A | 109.5 | N1—C11—H11D | 101.6 |
C2—C1—H1A | 109.5 | H11A—C11—H11D | 150.5 |
O2—C1—H1B | 109.5 | H11C—C11—H11D | 104.7 |
C2—C1—H1B | 109.5 | O7—C12—C13 | 135.2 (5) |
H1A—C1—H1B | 108.1 | O6—C13—C12 | 134.9 (5) |
N2—C2—C1 | 113.0 (4) | O9—C14—C15 | 135.0 (4) |
N2—C2—H2A | 109.0 | O8—C15—C14 | 135.6 (5) |
C1—C2—H2A | 109.0 | O22A—C22A—C11 | 113.4 (7) |
N2—C2—H2B | 109.0 | O22A—C22A—H11D | 154.0 |
C1—C2—H2B | 109.0 | O22A—C22A—H22A | 108.9 |
H2A—C2—H2B | 107.8 | C11—C22A—H22A | 108.9 |
N2—C3—C4 | 112.3 (4) | O22A—C22A—H22B | 108.9 |
N2—C3—H3A | 109.1 | C11—C22A—H22B | 108.9 |
C4—C3—H3A | 109.1 | H22A—C22A—H22B | 107.7 |
N2—C3—H3B | 109.1 | C11—C22B—O22B | 102.0 (3) |
C4—C3—H3B | 109.1 | C11—C22B—H22C | 111.4 |
H3A—C3—H3B | 107.9 | O22B—C22B—H22C | 111.4 |
O3—C4—C3 | 107.5 (4) | C11—C22B—H22D | 111.4 |
O3—C4—H4A | 110.2 | O22B—C22B—H22D | 111.4 |
C3—C4—H4A | 110.2 | H22C—C22B—H22D | 109.2 |
O3—Cd1—O1—C9 | −43.3 (8) | O5—Cd1—N2—C2 | 110.2 (3) |
O4—Cd1—O1—C9 | 71.8 (4) | O2—Cd1—N2—C2 | −30.0 (3) |
N1—Cd1—O1—C9 | 4.9 (4) | O1—Cd1—N2—C5 | −77.9 (4) |
O5—Cd1—O1—C9 | 141.2 (4) | O3—Cd1—N2—C5 | 115.7 (4) |
N2—Cd1—O1—C9 | −152.3 (4) | O4—Cd1—N2—C5 | 48.7 (4) |
O2—Cd1—O1—C9 | −88.0 (4) | N1—Cd1—N2—C5 | −179.1 (4) |
O1—Cd1—O2—C1 | −110.7 (4) | O5—Cd1—N2—C5 | −8.2 (3) |
O3—Cd1—O2—C1 | 78.9 (4) | O2—Cd1—N2—C5 | −148.5 (4) |
O4—Cd1—O2—C1 | 142.1 (4) | O1—Cd1—N2—C3 | 161.3 (3) |
N1—Cd1—O2—C1 | 175.9 (4) | O3—Cd1—N2—C3 | −5.1 (3) |
O5—Cd1—O2—C1 | −42.8 (4) | O4—Cd1—N2—C3 | −72.1 (4) |
N2—Cd1—O2—C1 | 7.1 (4) | N1—Cd1—N2—C3 | 60.1 (5) |
O1—Cd1—O3—C4 | −139.1 (6) | O5—Cd1—N2—C3 | −129.1 (4) |
O4—Cd1—O3—C4 | 103.3 (4) | O2—Cd1—N2—C3 | 90.7 (3) |
N1—Cd1—O3—C4 | 174.8 (4) | Cd1—O2—C1—C2 | 17.1 (6) |
O5—Cd1—O3—C4 | 36.0 (4) | C5—N2—C2—C1 | 170.9 (5) |
N2—Cd1—O3—C4 | −25.6 (3) | C3—N2—C2—C1 | −66.9 (6) |
O2—Cd1—O3—C4 | −95.2 (4) | Cd1—N2—C2—C1 | 52.5 (5) |
O1—Cd1—O4—C7 | −75.0 (3) | O2—C1—C2—N2 | −47.1 (7) |
O3—Cd1—O4—C7 | 92.5 (3) | C2—N2—C3—C4 | 153.2 (5) |
N1—Cd1—O4—C7 | −7.6 (3) | C5—N2—C3—C4 | −85.4 (6) |
O5—Cd1—O4—C7 | −147.9 (3) | Cd1—N2—C3—C4 | 34.6 (5) |
N2—Cd1—O4—C7 | 155.3 (3) | Cd1—O3—C4—C3 | 52.0 (5) |
O2—Cd1—O4—C7 | 28.0 (6) | N2—C3—C4—O3 | −59.1 (6) |
O1—Cd1—O5—C6 | 96.5 (4) | C2—N2—C5—C6 | −81.3 (5) |
O3—Cd1—O5—C6 | −82.3 (4) | C3—N2—C5—C6 | 156.2 (5) |
O4—Cd1—O5—C6 | −154.2 (4) | Cd1—N2—C5—C6 | 36.3 (5) |
N1—Cd1—O5—C6 | 154.5 (3) | Cd1—O5—C6—C5 | 47.7 (5) |
N2—Cd1—O5—C6 | −21.1 (3) | N2—C5—C6—O5 | −58.5 (6) |
O2—Cd1—O5—C6 | 27.6 (4) | Cd1—O4—C7—C8 | 34.4 (5) |
O1—Cd1—N1—C10 | −27.2 (3) | C10—N1—C8—C7 | 164.2 (4) |
O3—Cd1—N1—C10 | 142.5 (3) | C11—N1—C8—C7 | −74.4 (6) |
O4—Cd1—N1—C10 | −138.8 (3) | Cd1—N1—C8—C7 | 49.3 (5) |
O5—Cd1—N1—C10 | −87.1 (4) | O4—C7—C8—N1 | −57.9 (6) |
N2—Cd1—N1—C10 | 81.7 (5) | Cd1—O1—C9—C10 | 18.2 (6) |
O2—Cd1—N1—C10 | 53.0 (3) | C8—N1—C10—C9 | −67.2 (6) |
O1—Cd1—N1—C8 | 90.7 (3) | C11—N1—C10—C9 | 173.9 (5) |
O3—Cd1—N1—C8 | −99.6 (3) | Cd1—N1—C10—C9 | 47.1 (5) |
O4—Cd1—N1—C8 | −20.9 (3) | O1—C9—C10—N1 | −45.1 (7) |
O5—Cd1—N1—C8 | 30.8 (4) | C10—N1—C11—C22B | −13.5 (8) |
N2—Cd1—N1—C8 | −160.4 (4) | C8—N1—C11—C22B | −134.7 (5) |
O2—Cd1—N1—C8 | 170.9 (3) | Cd1—N1—C11—C22B | 108.1 (5) |
O1—Cd1—N1—C11 | −151.2 (4) | C10—N1—C11—C22A | −59.4 (8) |
O3—Cd1—N1—C11 | 18.5 (4) | C8—N1—C11—C22A | 179.4 (6) |
O4—Cd1—N1—C11 | 97.2 (4) | Cd1—N1—C11—C22A | 62.2 (7) |
O5—Cd1—N1—C11 | 148.9 (3) | O7—C12—C13—O6 | −0.2 (12) |
N2—Cd1—N1—C11 | −42.4 (6) | O9—C14—C15—O8 | 0.0 (11) |
O2—Cd1—N1—C11 | −71.0 (4) | C22B—C11—C22A—O22A | −23.0 (4) |
O1—Cd1—N2—C2 | 40.6 (3) | N1—C11—C22A—O22A | 85.2 (8) |
O3—Cd1—N2—C2 | −125.8 (3) | C22A—C11—C22B—O22B | −67.6 (6) |
O4—Cd1—N2—C2 | 167.2 (3) | N1—C11—C22B—O22B | −163.8 (5) |
N1—Cd1—N2—C2 | −60.6 (5) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H7···O8i | 0.83 (8) | 2.03 (6) | 2.770 (5) | 148 (10) |
O10—H6···O6 | 0.83 (3) | 1.92 (3) | 2.749 (6) | 171 (7) |
O3—H3···O9 | 0.81 (3) | 1.88 (3) | 2.685 (5) | 179 (6) |
O4—H4···O8ii | 0.82 (3) | 1.86 (3) | 2.662 (5) | 168 (7) |
O5—H5···O10iii | 0.86 (9) | 1.85 (4) | 2.690 (6) | 164 (9) |
O1—H1···O7iv | 0.78 (3) | 1.83 (7) | 2.614 (6) | 177 (8) |
O2—H2···O6 | 0.77 (3) | 1.89 (3) | 2.658 (6) | 176 (6) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x, y+1, z; (iv) −x, −y, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C6H15NO3)2](C4O4)·H2O |
Mr | 539.83 |
Crystal system, space group | Triclinic, P1 |
Temperature (K) | 293 |
a, b, c (Å) | 9.135 (5), 10.972 (5), 11.968 (5) |
α, β, γ (°) | 71.537 (5), 70.118 (5), 86.582 (5) |
V (Å3) | 1068.4 (9) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 1.08 |
Crystal size (mm) | 0.4 × 0.3 × 0.2 |
Data collection | |
Diffractometer | Stoe IPDS-II diffractometer |
Absorption correction | Integration X-RED32 (Stoe & Cie, 2002) |
Tmin, Tmax | 0.480, 0.819 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4123, 4123, 3368 |
Rint | 0.000 |
(sin θ/λ)max (Å−1) | 0.614 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.044, 0.118, 0.97 |
No. of reflections | 4123 |
No. of parameters | 277 |
No. of restraints | 192 |
H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 1.17, −2.53 |
Computer programs: X-AREA (Stoe & Cie, 2001), X-AREA, X-RED32 (Stoe & Cie, 2001), SIR97 (Altomare et al., 1999), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996), WinGX (Farrugia, 1999).
Cd1—O1 | 2.310 (4) | O6—C13 | 1.256 (6) |
Cd1—O3 | 2.363 (4) | O7—C12 | 1.246 (6) |
Cd1—O4 | 2.379 (4) | O8—C15 | 1.248 (6) |
Cd1—N1 | 2.390 (4) | O9—C14 | 1.253 (6) |
Cd1—O5 | 2.399 (4) | C12—C13 | 1.458 (7) |
Cd1—N2 | 2.404 (4) | C14—C15 | 1.451 (6) |
Cd1—O2 | 2.457 (4) | ||
O1—Cd1—O3 | 166.28 (14) | O3—Cd1—N2 | 72.78 (13) |
O1—Cd1—O4 | 104.74 (14) | O4—Cd1—N2 | 123.19 (13) |
O3—Cd1—O4 | 81.38 (13) | N1—Cd1—N2 | 157.68 (14) |
O1—Cd1—N1 | 73.67 (15) | O5—Cd1—N2 | 73.42 (13) |
O3—Cd1—N1 | 96.99 (13) | O1—Cd1—O2 | 80.65 (15) |
O4—Cd1—N1 | 72.97 (13) | O3—Cd1—O2 | 89.51 (14) |
O1—Cd1—O5 | 78.40 (14) | O4—Cd1—O2 | 159.51 (14) |
O3—Cd1—O5 | 115.27 (13) | N1—Cd1—O2 | 90.13 (15) |
O4—Cd1—O5 | 73.66 (13) | O5—Cd1—O2 | 126.77 (14) |
N1—Cd1—O5 | 128.56 (13) | N2—Cd1—O2 | 70.41 (14) |
O1—Cd1—N2 | 112.22 (15) | ||
O7—C12—C13—O6 | −0.2 (12) | O9—C14—C15—O8 | 0.0 (11) |
D—H···A | D—H | H···A | D···A | D—H···A |
O10—H7···O8i | 0.83 (8) | 2.03 (6) | 2.770 (5) | 148 (10) |
O10—H6···O6 | 0.83 (3) | 1.92 (3) | 2.749 (6) | 171 (7) |
O3—H3···O9 | 0.81 (3) | 1.88 (3) | 2.685 (5) | 179 (6) |
O4—H4···O8ii | 0.82 (3) | 1.86 (3) | 2.662 (5) | 168 (7) |
O5—H5···O10iii | 0.86 (9) | 1.85 (4) | 2.690 (6) | 164 (9) |
O1—H1···O7iv | 0.78 (3) | 1.83 (7) | 2.614 (6) | 177 (8) |
O2—H2···O6 | 0.77 (3) | 1.89 (3) | 2.658 (6) | 176 (6) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) −x+1, −y+1, −z+2; (iii) x, y+1, z; (iv) −x, −y, −z+1. |
Supramolecular structures containing metal ions have attracted many workers from a variety of scientific disciplines for different kinds of applications, such as zeolite-like materials (Venkataraman et al., 1995), catalysts (Fujita et al., 1994) and magnetic materials (Kahn, 1993). In order to understand the properties of supramolecular architectures, detailed structural information is required. In this context, we have synthesized bis(triethanolamine) cadmium(II) squarate monohydrate. Squaric acid was selected because of its utility in building cocrystals (Bouma et al., 1999; Bertollasi et al., 2001; Bulut et al., 2003). The triethanolamine (TEA) molecule is also used as a ligand since it contains four donor atoms – three hydroxy O atoms and one amine N atom. The TEA ligand usually acts as an N,O,O'-tridentate ligand in transition metal complexes (Sen & Dotson, 1970; Icbudak et al., 1995; Ucar et al., 2004). Although such behaviour is not common, TEA may also act as an N,O,O',O''-tetradentate ligand when geometrical demands enforce high coordination numbers or the metal ions have large ionic radii (Naiini et al., 1995; Naiini et al., 1996; Topcu et al., 2002; Starynowicz & Gatner, 2003). Coordination number seven is rare because of increased ligand–ligand repulsion, weaker bonds and, usually, reduced CF (crystal field) stabilization in comparison to those of octahedral complexes. Seven-coordination is most commonly found in discrete complexes of second- and third-row transition metals, such as lanthanides and actinides (Arndt et al., 2002; Han et al., 1999). The three known coordination geometries for coordination number seven are (i) pentagonal bipyramidal, (ii) capped octahedral with a seventh ligand added to a rectangular face and (iii) capped trigonal prismatic with a seventh ligand added to a rectangular face. These geometries are considered to have approximately equal a priori probabilities (Park et al., 1970). The third coordination geometry is observed in the title complex.
An ORTEPIII (Burnet & Johnson., 1996) view of (I) and its atom-labelling scheme are shown in Fig. 1. The crystal structure contains a complex [Cd(TEA)2]2+ cation and an uncoordinated squarate anion, C4O42−. The structure of the complex cation reveals a heptacoordinated CdII ion with a coordination polyhedron best described as a distorted monocapped trigonal prism with approximate C2v symmetry. In the complex cation, in which the CdII ion is coordinated by two TEA ligands and is seven coordinate, both tri- and tetradentate TEA molecules are present. The coordination modes of the two TEA molecules are different. One molecule coordinates to CdII with all donor atoms, behaving as an N,O,O',O''-tetradentate ligand, while the other coordinates through two hydroxy O atoms and the amine group, acting as an N,O,O'-tridentate ligand and leaving the other hydroxy group free. The C and O atoms of the free hydroxy group, C22 and O22, are disordered over two positions, with occupancies of 0.7 for O22a/C22a and 0.3 for O22b/C22b.
In the monocapped trigonal prism, the triangles O1/O4/O5 and O2/O3/N2 form the bases; these planes are nearly parallel to one another, with a dihedral angle of 6.08 (3)°. The rectangular faces [O3/O4/N2/O5 (plane 1), O1/O2/O3/O4 (plane 2) and O1/O2/N2/O5 (plane 3)] are almost planar, with r.m.s. deviations of 0.0679, 0.0884 and 0.1223 Å, and the maximum deviations from these planes are 0.071 (2) Å for atom N2, 0.092 (2) Å for atom O3 and 0.131 (2) Å for atom N2, respectively. The dihedral angles between these least-squares planes are 77.07 (11)° between planes 1 and 3, 51.14 (9)° between planes 2 and 3, and 51.86 (11)° between planes 1 and 2. The dihedral angles between the rectangular face (plane 1) and the nearly parallel triangular bases are 86.03 (12) and 82.51 (13)°. In the monocapped trigonal prism, atom N1 is located at the axial position, while atoms N2 and O5 are in pseudo-axial positions. When the capping atom N1 (additional ligand) is added on top of a face of the trigonal prism, a slight distortion occurs. The Cd—O bond distances are in the range 2.310 (4)–2.457 (4) Å, while the Cd—N bond distances are 2.389 (4) and 2.404 (4) Å. It was seen that, in the tetradentate and tridentate TEA ligands, the Cd—O and Cd—N bond distances are different, so the two TEA ligands are not equivalent. All the O—Cd—O angles deviate significantly from 90 and 180°. The central CdII ion is located 0.2498 (16) Å below the least-squares plane (O1/O2/O3/O4). These values are comparable to those observed for another CdII TEA complex (Andac et al., 2001; Naiini et al., 1995). The values also indicate that the coordination geometry around the CdII ion is irregular, presumably as a result of the steric constraints arising from the shape of the polydentate ligands.
The uncoordinated squarate anions are almost coplanar and play an important role in the supramolecular architecture. The O—C bond distances are in the range of 1.246 (6)–1.256 (6) Å in the squarate anion, while the unique C—C bond distances are 1.451 (6) and 1.463 (7) Å. These bond lengths accord with the fact that the squarate anion, C4O42−, which possesses a pronounced degree of delocalization, is considered to be aromatic. Each squarate anion is surrounded by four [Cd(TEA)2]2+ cations. As shown in Fig. 2, the squarate O atoms participate in hydrogen bonds with the hydroxy H atoms (O atoms lie on the equatorial plane) of the TEA ligands. The lattice water molecules link the complex cation to the squarate ion through hydrogen-bonding interactions (see table 2 for details). In the extended structure (Fig. 2), there is also a weak C—H···π interaction between atoms C5 and H5B of the tetradentate TEA ligand and a squarate anion. For the C—H···Cg contact (Cg is the center of the squarate ion containing atoms C14 and C15), the distance between the squarate centroid and the nearest methylene H atom is 2.99 Å. The perpendicular distance between atom H5B and the center of the squarate ion is 2.862 Å and the C—H···Cg angle is 143.61°. An extensive network of hydrogen bonds and C—H···π intermolecular interactions embeds the complex in an infinite three-dimensional lattice.