Download citation
Download citation
link to html
In Sr(BF4)2, which is isomorphous with the previously published Ca(BF4)2, the metal atom possesses a coordination number of 8 with a square-anti­prismatic environment. Each tetra­fluorido­borate anion is bonded to four metal centers. In the barium derivative, the metal center, with symmetry 2/m, is surrounded by 14 F atoms. The B atom and two of the three independent F atoms occupy special positions with symmetry m. Each anion is connected to five Ba atoms. This structure differs significantly from an earlier published structure of Ba(BF4)2 [published as Ba2(BF4)4; Lin, Cheng, Chen & Huang (1998). Jiegon Huaxue, 17, 245]. The radial distribution functions for the present Ba(BF4)2 and earlier Ba2(BF4)4 structures differ significantly.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107036864/fa3102sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107036864/fa3102Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107036864/fa3102IIsup3.hkl
Contains datablock II

Comment top

Sr(BF4)2 appears to be isomorphous with the previously reported compound Ca(BF4)2 (Jordan et al., 1975). In this structure, the metal atom possesses coordination number 8 with a square-antiprismatic coordination polyhedron. The Sr—F distances lie in the narrow range of 2.294 (5)–2.359 (4) Å compared with 2.33–2.401 Å in Ca(BF4)2. The metal center is bonded to eight BF4- units. In turn, each anion is connected to four Sr atoms. All four F atoms in each anion act as µ2 bridges between B and Sr atoms, resulting in very similar B—F bond lengths of 1.389 (9)–1.399 (9) Å [please check range of values].

Because of the much greater coordination ability of barium compared with strontium, the structure of Ba(BF4)2 appears to be more complicated. The Ba atom, located on special position 2a (2/m), possesses coordination number 14 (or 10 + 4). Ten Ba—F bond lengths lie in the range 2.690 (5)–2.886 (2) Å, and there are four longer Ba—F distances of 3.361 (5) Å. Each Ba atom is surrounded by ten BF4- anions. The coordination polyhedron of barium shares two edges and two rectangular planes with four other metal centers. The shortest Ba···Ba distances are 4.763 (2) Å for two Ba atoms with a shared plane and 5.014 (1) Å for a pair of metal atoms connected by a shared edge (Fig. 1).

The B atom and two of the three crystallographically independent F atoms of each BF4- unit lie on mirror planes (4i Wyckoff positions). Each tetrafluoridoborate anion is bonded to five Ba atoms. The B—F distances clearly correlate with the bridging function of each F atom. The shortest B—F distance [B1—F2 = 1.369 (9) Å] is associated with the µ2 bridging function of atom F2. Two B1—F3 bond lengths of 1.393 (5) Å correspond to the µ3 bridging function of atom F3, which forms a shared corner between two Ba atoms. The longest B—F distance [B1—F1 = 1.420 (9) Å] corresponds to the location of atom F1 on an edge shared by two barium polyhedra. The bridging functions of both cations and anions result in the formation of a three-dimensional network (Fig. 2).

The results obtained for Ba(BF4)2 differ strongly from those from a previously published structure of Ba(BF4)2 [published as Ba2(BF4)4 (Lin et al., 1998); space group P21/n, a = 8.339 (3) Å, b = 16.530 (7) Å, c = 10.212 (4) Å, β = 106.64 (3)°, V = 1349 (2) Å3], in which the Ba atom possesses the unusually low coordination number 9 and the Ba—F distances are in the range 2.69 (2)–2.91 (3) Å. The radial distribution functions for the Ba(BF4)2 and Ba2(BF4)4 structures are noticeably different.

Related literature top

For related literature, see: Jordan et al. (1975); Lin et al. (1998).

Experimental top

Sr(BF4)2 was prepared by the reaction between SrF2 (Alfa Aesar, 99.99%) and excess BF3 (Union Carbide, 99.5%) in anhydrous HF (Fluka, purum) as solvent. When the reaction was complete, the solvent and excess BF3 were removed on a vacuum line. Ba(BF4)2 was prepared in a similar way starting from BaF2 (Alfa Aesar, 99.99%). The bulk samples were characterized by Raman spectroscopy [793, 533, 353 cm-1 for Sr(BF4)2; 783, 536, 355 cm-1 for Ba(BF4)2] and X-ray powder diffraction. Samples for diffraction analysis were grown by crystallization of an M(BF4)2 (M = Sr and Ba) solution in anhydrous HF with a temperature gradient of 10 ° in an FEP crystallization vessel. Crystals were immersed in perfluoronated oil (ABCR, FO5960) in a dry box, selected under the microscope and transferred into the cold nitrogen stream of the diffractometer.

Refinement top

The highest peaks of residual density are 0.02 Å from atom Sr1 and 0.89 Å from atom Ba1.

Computing details top

For both compounds, data collection: CrystalClear (Rigaku Corporation, 1999); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1993) and TEXSAN (Molecular Structure Corporation, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: Diamond (Pennington, 1999); software used to prepare material for publication: WinGX (Version 1.70; Farrugia, 1999) and enCIFer (Version 1.2; Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The coordination surrounding the Ba atom (left) and the BF4- anion (right) in the structure of Ba(BF4)2. Large grey spheres represent Ba atoms, the tetrahedra are BF4- units, and B atoms are shown as small dark spheres.
[Figure 2] Fig. 2. The packing of the structure of Ba(BF4)2.
(I) Barium tetrafluoridoborate top
Crystal data top
Ba(BF4)2F(000) = 276
Mr = 310.96Dx = 3.724 Mg m3
Monoclinic, C2/mMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2yCell parameters from 51 reflections
a = 12.513 (9) Åθ = 3.5–28.7°
b = 5.0135 (13) ŵ = 7.27 mm1
c = 4.7628 (15) ÅT = 200 K
β = 111.854 (4)°Chunk, colourless
V = 277.3 (2) Å30.1 × 0.08 × 0.06 mm
Z = 2
Data collection top
Rigaku Mercury CCD
diffractometer
342 reflections with I > 2σ(I)
ω scansRint = 0.049
Absorption correction: multi-scan
(Blessing, 1995)
θmax = 28.6°, θmin = 3.5°
Tmin = 0.471, Tmax = 0.650h = 156
596 measured reflectionsk = 66
342 independent reflectionsl = 66
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.029Secondary atom site location: difference Fourier map
wR(F2) = 0.070 w = 1/[σ2(Fo2) + (0.0297P)2 + 0.5815P]
where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max < 0.001
342 reflectionsΔρmax = 1.14 e Å3
32 parametersΔρmin = 1.11 e Å3
Crystal data top
Ba(BF4)2V = 277.3 (2) Å3
Mr = 310.96Z = 2
Monoclinic, C2/mMo Kα radiation
a = 12.513 (9) ŵ = 7.27 mm1
b = 5.0135 (13) ÅT = 200 K
c = 4.7628 (15) Å0.1 × 0.08 × 0.06 mm
β = 111.854 (4)°
Data collection top
Rigaku Mercury CCD
diffractometer
342 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
342 reflections with I > 2σ(I)
Tmin = 0.471, Tmax = 0.650Rint = 0.049
596 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02932 parameters
wR(F2) = 0.0700 restraints
S = 1.19Δρmax = 1.14 e Å3
342 reflectionsΔρmin = 1.11 e Å3
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ba10.00000.00001.00000.0151 (2)
F10.1010 (4)0.50000.9273 (9)0.0152 (9)
F20.2704 (3)0.50000.8507 (10)0.0156 (9)
F30.1154 (3)0.2718 (7)0.5323 (7)0.0206 (7)
B10.1531 (7)0.50000.7084 (17)0.0118 (15)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0149 (3)0.0145 (4)0.0135 (3)0.0000.0026 (2)0.000
F10.0160 (19)0.017 (2)0.014 (2)0.0000.0076 (16)0.000
F20.0106 (19)0.017 (2)0.018 (2)0.0000.0038 (16)0.000
F30.0223 (15)0.0168 (16)0.0189 (15)0.0011 (13)0.0034 (12)0.0093 (13)
B10.016 (4)0.009 (4)0.008 (3)0.0000.003 (3)0.000
Geometric parameters (Å, º) top
Ba1—F2i2.690 (5)F1—B11.420 (9)
Ba1—F3ii2.765 (3)F2—B11.369 (9)
Ba1—F12.886 (2)F3—B11.393 (5)
Ba1—Ba1iii4.7628 (15)
F2i—Ba1—F3ii112.60 (10)F3vii—Ba1—F1115.82 (11)
F2iv—Ba1—F3ii67.40 (10)F1—Ba1—F1viii120.60 (15)
F3ii—Ba1—F3v59.07 (15)F1ix—Ba1—F1viii59.40 (15)
F3vi—Ba1—F3v120.93 (15)Ba1—F1—Ba1x120.60 (15)
F2i—Ba1—F163.85 (8)F2—B1—F3111.0 (4)
F2iv—Ba1—F1116.15 (8)F3—B1—F3xi110.4 (6)
F3ii—Ba1—F1114.89 (11)F2—B1—F1109.7 (6)
F3vi—Ba1—F165.11 (11)F3—B1—F1107.3 (4)
F3v—Ba1—F164.18 (11)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+1; (iii) x, y, z1; (iv) x1/2, y1/2, z; (v) x, y, z+1; (vi) x, y, z+1; (vii) x, y, z+1; (viii) x, y1, z; (ix) x, y, z+2; (x) x, y+1, z; (xi) x, y+1, z.
(II) Strontium tetrafluoridoborate top
Crystal data top
Sr(BF4)2F(000) = 960
Mr = 261.24Dx = 3.313 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2ac 2abCell parameters from 77 reflections
a = 9.121 (7) Åθ = 1.6–28.7°
b = 8.714 (6) ŵ = 10.41 mm1
c = 13.180 (9) ÅT = 200 K
V = 1047.6 (13) Å3Chunk, colourless
Z = 80.07 × 0.07 × 0.05 mm
Data collection top
Rigaku Mercury CCD (2 × 2 bin mode)
diffractometer
1253 independent reflections
Radiation source: fine-focus sealed tube1132 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.016
Detector resolution: 14.7059 pixels mm-1θmax = 28.7°, θmin = 3.1°
dtprofit.ref scansh = 1012
Absorption correction: multi-scan
(Blessing; 1995)
k = 1110
Tmin = 0.486, Tmax = 0.595l = 1714
4207 measured reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullPrimary atom site location: structure-invariant direct methods
R[F2 > 2σ(F2)] = 0.046Secondary atom site location: difference Fourier map
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0951P)2 + 10.4343P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
1253 reflectionsΔρmax = 2.11 e Å3
100 parametersΔρmin = 1.48 e Å3
Crystal data top
Sr(BF4)2V = 1047.6 (13) Å3
Mr = 261.24Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.121 (7) ŵ = 10.41 mm1
b = 8.714 (6) ÅT = 200 K
c = 13.180 (9) Å0.07 × 0.07 × 0.05 mm
Data collection top
Rigaku Mercury CCD (2 × 2 bin mode)
diffractometer
1253 independent reflections
Absorption correction: multi-scan
(Blessing; 1995)
1132 reflections with I > 2σ(I)
Tmin = 0.486, Tmax = 0.595Rint = 0.016
4207 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.153 w = 1/[σ2(Fo2) + (0.0951P)2 + 10.4343P]
where P = (Fo2 + 2Fc2)/3
S = 1.09Δρmax = 2.11 e Å3
1253 reflectionsΔρmin = 1.48 e Å3
100 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Sr11.03288 (5)0.78148 (6)0.60416 (3)0.0087 (2)
F110.8753 (5)0.5772 (5)0.6205 (3)0.0288 (9)
F120.6983 (5)0.3937 (5)0.6186 (3)0.0319 (10)
F130.6772 (5)0.5992 (5)0.5156 (3)0.0345 (10)
F140.8550 (5)0.4215 (5)0.4832 (3)0.0322 (10)
F210.9248 (6)0.7683 (5)0.4418 (3)0.0303 (9)
F220.7504 (5)0.7765 (5)0.3172 (3)0.0324 (10)
F230.9134 (6)0.9745 (5)0.3345 (3)0.0364 (10)
F240.9899 (5)0.7414 (6)0.2754 (4)0.0303 (10)
B10.7770 (8)0.4970 (9)0.5596 (6)0.0241 (14)
B20.8943 (9)0.8161 (10)0.3424 (6)0.0241 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Sr10.0082 (3)0.0086 (4)0.0092 (3)0.00038 (15)0.00023 (14)0.00025 (15)
F110.029 (2)0.029 (2)0.0282 (19)0.0052 (18)0.0043 (17)0.0008 (16)
F120.029 (2)0.034 (2)0.033 (2)0.0095 (19)0.0014 (17)0.0058 (18)
F130.035 (2)0.035 (2)0.034 (2)0.0085 (19)0.0038 (18)0.0020 (18)
F140.029 (2)0.031 (2)0.037 (2)0.0013 (18)0.0027 (18)0.0075 (18)
F210.032 (2)0.039 (3)0.021 (2)0.0011 (19)0.0001 (19)0.0017 (17)
F220.0226 (19)0.047 (3)0.027 (2)0.0050 (18)0.0010 (18)0.0036 (18)
F230.047 (3)0.029 (2)0.033 (2)0.004 (2)0.001 (2)0.0035 (18)
F240.029 (2)0.037 (2)0.025 (2)0.004 (2)0.0037 (19)0.0014 (19)
B10.021 (3)0.026 (3)0.025 (4)0.001 (3)0.004 (3)0.002 (3)
B20.024 (3)0.028 (4)0.020 (3)0.001 (3)0.003 (3)0.006 (3)
Geometric parameters (Å, º) top
Sr1—F22i2.294 (5)F11—B11.392 (9)
Sr1—F112.298 (5)F12—B11.389 (9)
Sr1—F24ii2.299 (5)F13—B11.399 (8)
Sr1—F13i2.303 (4)F14—B11.397 (9)
Sr1—F23iii2.327 (5)F21—B21.402 (9)
Sr1—F12iv2.333 (5)F22—B21.398 (9)
Sr1—F14v2.345 (4)F23—B21.395 (10)
Sr1—F212.359 (5)F24—B21.401 (9)
Sr1—Sr1iii4.733 (2)
F22i—Sr1—F11109.12 (17)F13i—Sr1—F2168.86 (17)
F22i—Sr1—F24ii71.64 (17)F23iii—Sr1—F21116.60 (16)
F11—Sr1—F24ii74.58 (16)F12iv—Sr1—F2173.53 (16)
F22i—Sr1—F13i85.11 (17)F14v—Sr1—F2172.55 (16)
F11—Sr1—F13i140.48 (16)B1—F11—Sr1137.5 (4)
F24ii—Sr1—F13i144.01 (17)B1—F12—Sr1vi133.8 (4)
F22i—Sr1—F23iii82.09 (17)B1—F13—Sr1vii160.6 (4)
F11—Sr1—F23iii143.80 (17)B1—F14—Sr1v158.6 (4)
F24ii—Sr1—F23iii76.93 (17)B2—F21—Sr1156.3 (5)
F13i—Sr1—F23iii72.86 (17)B2—F22—Sr1vii139.4 (4)
F22i—Sr1—F12iv146.84 (15)B2—F23—Sr1iii154.7 (4)
F11—Sr1—F12iv75.63 (18)B2—F24—Sr1viii139.9 (4)
F24ii—Sr1—F12iv78.57 (16)F12—B1—F11109.5 (6)
F13i—Sr1—F12iv112.55 (17)F12—B1—F14111.2 (6)
F23iii—Sr1—F12iv77.22 (18)F11—B1—F14108.9 (6)
F22i—Sr1—F14v71.26 (16)F12—B1—F13108.0 (6)
F11—Sr1—F14v74.61 (16)F11—B1—F13109.8 (6)
F24ii—Sr1—F14v119.42 (18)F14—B1—F13109.4 (6)
F13i—Sr1—F14v75.79 (16)F23—B2—F22110.1 (6)
F23iii—Sr1—F14v140.16 (17)F23—B2—F24109.6 (7)
F12iv—Sr1—F14v138.64 (16)F22—B2—F24108.7 (6)
F22i—Sr1—F21139.50 (17)F23—B2—F21109.8 (6)
F11—Sr1—F2177.64 (16)F22—B2—F21109.6 (6)
F24ii—Sr1—F21144.57 (17)F24—B2—F21109.1 (6)
Symmetry codes: (i) x+1/2, y+3/2, z+1; (ii) x, y+3/2, z+1/2; (iii) x+2, y+2, z+1; (iv) x+3/2, y+1/2, z; (v) x+2, y+1, z+1; (vi) x+3/2, y1/2, z; (vii) x1/2, y+3/2, z+1; (viii) x, y+3/2, z1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaBa(BF4)2Sr(BF4)2
Mr310.96261.24
Crystal system, space groupMonoclinic, C2/mOrthorhombic, Pbca
Temperature (K)200200
a, b, c (Å)12.513 (9), 5.0135 (13), 4.7628 (15)9.121 (7), 8.714 (6), 13.180 (9)
α, β, γ (°)90, 111.854 (4), 9090, 90, 90
V3)277.3 (2)1047.6 (13)
Z28
Radiation typeMo KαMo Kα
µ (mm1)7.2710.41
Crystal size (mm)0.1 × 0.08 × 0.060.07 × 0.07 × 0.05
Data collection
DiffractometerRigaku Mercury CCD
diffractometer
Rigaku Mercury CCD (2 × 2 bin mode)
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing; 1995)
Tmin, Tmax0.471, 0.6500.486, 0.595
No. of measured, independent and
observed [I > 2σ(I)] reflections
596, 342, 342 4207, 1253, 1132
Rint0.0490.016
(sin θ/λ)max1)0.6730.676
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.070, 1.19 0.046, 0.153, 1.09
No. of reflections3421253
No. of parameters32100
w = 1/[σ2(Fo2) + (0.0297P)2 + 0.5815P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0951P)2 + 10.4343P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)1.14, 1.112.11, 1.48

Computer programs: CrystalClear (Rigaku Corporation, 1999), CrystalClear, SIR92 (Altomare et al., 1993) and TEXSAN (Molecular Structure Corporation, 1999), SHELXL97 (Sheldrick, 1997), Diamond (Pennington, 1999), WinGX (Version 1.70; Farrugia, 1999) and enCIFer (Version 1.2; Allen et al., 2004).

Selected geometric parameters (Å, º) for (I) top
Ba1—F2i2.690 (5)F1—B11.420 (9)
Ba1—F3ii2.765 (3)F2—B11.369 (9)
Ba1—F12.886 (2)F3—B11.393 (5)
Ba1—Ba1iii4.7628 (15)
F2—B1—F3111.0 (4)F2—B1—F1109.7 (6)
F3—B1—F3iv110.4 (6)F3—B1—F1107.3 (4)
Symmetry codes: (i) x+1/2, y+1/2, z+2; (ii) x, y, z+1; (iii) x, y, z1; (iv) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds