The compounds poly[di-μ4-succinato-μ2-1,2-di-4-pyridylethane-dicopper(II)], [Cu2(C4H4O4)2(C12H12N2)]n, (I), and poly[di-μ4-succinato-μ2-1,3-di-4-pyridylpropane-dicopper(II)], [Cu2(C4H4O4)2(C13H14N2)]n, (II), exhibit polymeric structures with the dicopper units doubly bridged by bis-bidentate succinate groups and crosslinked by the separator bis(pyridyl) molecules. In (I), the molecule exhibits a centre of inversion located midway between the core Cu-dimer atoms and another that relates half of the bis(pyridyl)ethane ligand to the other half. Compound (II) has a similar molecular packing but with a doubled lattice constant and noncentrosymmetric core units. An antiferromagnetic interaction due to the dinuclear copper units was deduced from magnetic subsceptibility measurements, and spin triplet signals were detected in the electron paramagnetic resonance spectra for both compounds.
Supporting information
CCDC references: 760066; 760067
A combined solution of (CuSO4).5H2O (0.125 mmol, 31 mg) and succinic acid
(0.125 mmol, 15 mg) in H2O (25 ml), 1,2-di-4-pyridylethane (0.125 mmol, 23 mg) in H2O (25 ml) and urea (0.437 mmol, 26 mg) in H2O (25 ml) was
prepared. After approximately a month, small green crystals of (I) were
obtained, suitable for X-ray crystallographic study. By the same procedure
with 1,3-di-4-pyridylpropane, crystals of compound (II) were also obtained.
Temperature-dependent magnetic susceptibility data were collected in the
6.5–300 K range using a Quantum Design PPMS 6000 magnetometer in a field of 5
kOe. The χm.T values decrease with decreasing temperature in the
manner characteristic of paddle-wheel dinuclear copper groups. The observed
χm.T data were fitted to the Bleaney–Bowers equation for a dimer
with S1 = S2 = 1/2, modified by the inclusion of a fraction
of monomeric impurity (O'Connor, 1982): χm(2Cu) =
2{[Cex(1-ρ)/(1
+ 3 ex)] + Cρ/4 + Nα}, where C = Ng2β2/kT, x = 2 J/kT,
2 J = separation between singlet and triplet states, [T is the temperature, k
is the Boltzmann constant?], ρ = fraction of monomeric impurity and Nα is
the temperature-independent paramagnetism (TIP). The antiferromagnetic
parameters are 2 J = -366 and -336 cm-1 for (I) and (II), respectively. The
powder EPR spectra of (I) and (II), recorded on a Bruker ESP 300 spectrometer
at Q band and room temperature, show the five signals of the triplet
state (S = 1) for D ≠ 0 and E ≈ 0. The spectra
were interpreted according to the Wasserman, Snyder and Yager equations
(Bencini & Gatteschi, 1990). The values gparallel =
2.26/2.26,
gperpendicular = 2.07/2.06 and D = 0.36/0.37 cm-1 for
(I)/(II) were thereby obtained.
The space group for both compounds (I) and (II) is P21/c but the
lattice constants cannot be compared directly. The relation between the cell
parameters is given by aI = 1/2cII, bI = bII and cI = aII +
1/2cII. The diffraction pattern of (II) shows a pseudo body-centred symmetry
(h + k + l = 2n) which, combined with the genuine
conditions for P21/c, gives pseudo-conditions for
I2/a (standard C2/c).
For both compounds, the H-atom coordinates were calculated with C—H = 0.98 Å and constrained, with Uiso(H) = 1.2Ueq(C). The atomic
displacement parameters of the pyridyl rings indicate some orientational
disorder, with a large component of the thermal ellipsoid perpendicular to the
plane of the ring.
Data collection: CrysAlis CCD (Oxford Diffraction, 2007) for (I); X-AREA (Stoe & Cie, 2006) for (II). Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for (I); X-AREA (Stoe & Cie, 2006) for (II). Data reduction: CrysAlis RED (Oxford Diffraction, 2007) for (I); X-RED32 (Stoe & Cie, 2006) for (II). For both compounds, program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: JANA2006 (Petříček et al., 2006); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: JANA2006 (Petříček et al., 2006).
(I) poly[di-µ
4-succinato-µ
2-1,2-di-4-pyridylethane-dicopper(II)]
top
Crystal data top
[Cu2(C4H4O4)2(C12H12N2)] | F(000) = 552 |
Mr = 271.7 | Dx = 1.803 (1) Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 852 reflections |
a = 11.342 (2) Å | θ = 2.7–32.5° |
b = 6.4613 (10) Å | µ = 2.18 mm−1 |
c = 15.269 (4) Å | T = 295 K |
β = 116.55 (3)° | Plate, green |
V = 1000.9 (4) Å3 | 0.16 × 0.16 × 0.02 mm |
Z = 4 | |
Data collection top
Make? Model? CCD diffractometer | 2885 independent reflections |
Radiation source: X-ray tube | 1225 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.093 |
Detector resolution: 8.3504 pixels mm-1 | θmax = 30.0°, θmin = 2.8° |
ω–scans | h = −15→15 |
Absorption correction: integration (JANA2006; Petříček et al., 2006) | k = −9→9 |
Tmin = 0.763, Tmax = 0.960 | l = −19→21 |
10503 measured reflections | |
Refinement top
Refinement on F | 0 constraints |
R[F2 > 2σ(F2)] = 0.058 | H-atom parameters constrained |
wR(F2) = 0.068 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0004F2) |
S = 0.99 | (Δ/σ)max = 0.050 |
2885 reflections | Δρmax = 1.83 e Å−3 |
145 parameters | Δρmin = −0.97 e Å−3 |
0 restraints | |
Crystal data top
[Cu2(C4H4O4)2(C12H12N2)] | V = 1000.9 (4) Å3 |
Mr = 271.7 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 11.342 (2) Å | µ = 2.18 mm−1 |
b = 6.4613 (10) Å | T = 295 K |
c = 15.269 (4) Å | 0.16 × 0.16 × 0.02 mm |
β = 116.55 (3)° | |
Data collection top
Make? Model? CCD diffractometer | 2885 independent reflections |
Absorption correction: integration (JANA2006; Petříček et al., 2006) | 1225 reflections with I > 2σ(I) |
Tmin = 0.763, Tmax = 0.960 | Rint = 0.093 |
10503 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.058 | 0 restraints |
wR(F2) = 0.068 | H-atom parameters constrained |
S = 0.99 | Δρmax = 1.83 e Å−3 |
2885 reflections | Δρmin = −0.97 e Å−3 |
145 parameters | |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.11891 (8) | 0.96724 (10) | 0.57384 (4) | 0.0306 (3) | |
O1 | 0.1287 (5) | 0.7716 (6) | 0.4796 (3) | 0.044 (2) | |
O2 | −0.0709 (4) | 0.8189 (6) | 0.3561 (2) | 0.038 (2) | |
O4 | 0.1921 (5) | 0.1807 (6) | 0.5215 (2) | 0.041 (2) | |
O3 | −0.0079 (5) | 0.2322 (6) | 0.3975 (2) | 0.040 (2) | |
N | 0.2913 (5) | 0.8234 (7) | 0.6964 (3) | 0.037 (3) | |
C1 | 0.2759 (5) | 0.6208 (5) | 0.7079 (3) | 0.046 (4) | |
C2 | 0.3480 (5) | 0.5129 (7) | 0.7918 (3) | 0.051 (4) | |
C3 | 0.4470 (4) | 0.6124 (4) | 0.8707 (4) | 0.056 (4) | |
C4 | 0.4674 (5) | 0.8205 (6) | 0.8593 (3) | 0.058 (4) | |
C5 | 0.3884 (5) | 0.9144 (7) | 0.7723 (3) | 0.047 (4) | |
C6 | 0.5272 (4) | 0.4949 (6) | 0.9653 (2) | 0.077 (3) | |
C7 | 0.03924 (9) | 0.73493 (5) | 0.39513 (6) | 0.030 (3) | |
C8 | 0.0729 (4) | 0.5824 (6) | 0.33461 (19) | 0.038 (3) | |
C9 | 0.16814 (9) | 0.41667 (5) | 0.39428 (4) | 0.040 (3) | |
C10 | 0.11519 (9) | 0.26539 (8) | 0.443045 (7) | 0.035 (4) | |
H1 | 0.208593 | 0.545486 | 0.652312 | 0.0549* | |
H2 | 0.329897 | 0.365936 | 0.796254 | 0.0617* | |
H4 | 0.536943 | 0.898338 | 0.912351 | 0.0693* | |
H5 | 0.404963 | 1.060965 | 0.765436 | 0.0565* | |
H6A | 0.53552 | 0.34987 | 0.950241 | 0.0927* | |
H6B | 0.617697 | 0.547881 | 0.996004 | 0.0927* | |
H8A | −0.008101 | 0.517982 | 0.285867 | 0.0456* | |
H8B | 0.109137 | 0.656966 | 0.296179 | 0.0456* | |
H9A | 0.19944 | 0.34115 | 0.35304 | 0.0481* | |
H9B | 0.24855 | 0.48112 | 0.44380 | 0.0481* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0350 (5) | 0.0290 (4) | 0.0260 (3) | 0.0021 (4) | 0.0119 (3) | 0.0028 (3) |
O1 | 0.053 (4) | 0.040 (2) | 0.035 (2) | 0.008 (2) | 0.016 (2) | −0.0031 (18) |
O2 | 0.049 (4) | 0.034 (2) | 0.033 (2) | −0.001 (2) | 0.020 (2) | −0.0051 (16) |
O4 | 0.040 (4) | 0.040 (3) | 0.041 (2) | 0.001 (2) | 0.018 (2) | 0.0073 (17) |
O3 | 0.043 (4) | 0.034 (2) | 0.041 (2) | 0.013 (2) | 0.016 (3) | 0.0118 (17) |
N | 0.044 (5) | 0.032 (3) | 0.032 (2) | 0.005 (3) | 0.013 (3) | 0.006 (2) |
C1 | 0.036 (6) | 0.042 (4) | 0.047 (3) | 0.013 (4) | 0.008 (4) | 0.000 (3) |
C2 | 0.045 (7) | 0.035 (4) | 0.071 (4) | 0.009 (4) | 0.024 (4) | 0.021 (3) |
C3 | 0.038 (6) | 0.087 (5) | 0.048 (4) | 0.019 (5) | 0.024 (4) | 0.029 (4) |
C4 | 0.050 (7) | 0.074 (5) | 0.032 (3) | 0.000 (5) | 0.003 (4) | 0.006 (3) |
C5 | 0.044 (6) | 0.047 (4) | 0.049 (3) | −0.001 (4) | 0.019 (4) | 0.001 (3) |
C6 | 0.055 (5) | 0.120 (3) | 0.053 (3) | 0.021 (3) | 0.020 (3) | 0.045 (2) |
C7 | 0.047 (5) | 0.014 (4) | 0.033 (3) | 0.008 (3) | 0.020 (3) | 0.008 (2) |
C8 | 0.057 (5) | 0.035 (3) | 0.031 (3) | 0.004 (3) | 0.028 (4) | 0.005 (2) |
C9 | 0.051 (5) | 0.040 (4) | 0.041 (3) | 0.002 (3) | 0.031 (3) | −0.002 (3) |
C10 | 0.036 (6) | 0.029 (7) | 0.047 (4) | 0.016 (6) | 0.025 (4) | −0.004 (4) |
Geometric parameters (Å, º) top
Cu1—Cu1i | 2.665 (2) | C2—H2 | 0.980 |
Cu1—O1 | 1.955 (4) | C3—C4 | 1.388 (5) |
Cu1—O2i | 1.967 (4) | C3—C6 | 1.522 (5) |
Cu1—O4ii | 1.955 (5) | C4—C5 | 1.368 (6) |
Cu1—O3iii | 1.983 (5) | C4—H4 | 0.980 |
Cu1—N | 2.218 (4) | C5—H5 | 0.980 |
O1—C7 | 1.257 (3) | C6—C6iv | 1.445 (7) |
O2—C7 | 1.243 (4) | C6—H6A | 0.980 |
O4—C10 | 1.250 (3) | C6—H6B | 0.980 |
O3—C10 | 1.269 (5) | C7—C8 | 1.512 (4) |
N—C1 | 1.342 (6) | C8—C9 | 1.504 (4) |
N—C5 | 1.327 (6) | C8—H8A | 0.980 |
C1—C2 | 1.364 (6) | C8—H8B | 0.980 |
C1—H1 | 0.980 | C9—C10 | 1.5067 (11) |
C2—C3 | 1.384 (5) | | |
| | | |
O1—Cu1—O2i | 167.08 (15) | C2—C1—H1 | 118.0 |
O1—Cu1—O4ii | 88.93 (19) | C1—C2—H2 | 120.0 |
O1—Cu1—O3iii | 89.57 (19) | C3—C2—H2 | 120.0 |
O2i—Cu1—O4ii | 89.86 (19) | C3—C4—H4 | 121.0 |
O2i—Cu1—O3iii | 88.83 (19) | C5—C4—H4 | 121.0 |
O4ii—Cu1—O3iii | 167.50 (15) | C4—C5—H5 | 117.0 |
O1—C7—O2 | 125.9 (3) | C7—C8—C9 | 113.75 (18) |
O4—C10—O3 | 125.2 (3) | C7—C8—H8A | 109.0 |
C1—N—C5 | 115.1 (4) | C7—C8—H8B | 109.0 |
C1—C2—C3 | 119.5 (4) | C10—C9—H9A | 109.0 |
C2—C3—C4 | 117.2 (4) | C10—C9—H9B | 109.0 |
C2—C3—C6 | 120.2 (3) | C8—C9—H9A | 109.0 |
C4—C3—C6 | 122.7 (3) | C8—C9—H9B | 109.0 |
C3—C4—C5 | 118.6 (4) | C3—C6—C6iv | 113.8 (2) |
C7—C8—C9 | 113.75 (18) | C3—C6—H6A | 109.0 |
C8—C9—C10 | 115.1 (2) | C3—C6—H6B | 109.0 |
C3—C6—C6iv | 113.8 (4) | C6iv—C6—H6A | 109.0 |
N—C1—H1 | 118.0 | C6iv—C6—H6B | 109.0 |
| | | |
C7—C8—C9—C10 | 67.6 (3) | | |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, y+1, z; (iii) −x, −y+1, −z+1; (iv) −x+1, −y+1, −z+2. |
(II) poly[di-µ
4-succinato-µ
2-1,3-di-4-pyridylpropane-dicopper(II)]
top
Crystal data top
[Cu2(C4H4O4)2(C13H14N2)] | F(000) = 1136 |
Mr = 557.5 | Dx = 1.717 (1) Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71069 Å |
Hall symbol: -P 2ybc | Cell parameters from 532 reflections |
a = 15.563 (1) Å | θ = 3.1–22.5° |
b = 6.4472 (7) Å | µ = 2.03 mm−1 |
c = 24.100 (2) Å | T = 295 K |
β = 116.913 (9)° | Prismatic, green |
V = 2156.2 (4) Å3 | 0.29 × 0.08 × 0.02 mm |
Z = 4 | |
Data collection top
Stoe IPDS image-plate diffractometer | 5101 independent reflections |
Radiation source: fine focus sealed tube | 1931 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.110 |
ω scans | θmax = 28.0°, θmin = 2.7° |
Absorption correction: gaussian (JANA2006; Petříček et al., 2006) | h = −20→20 |
Tmin = 0.789, Tmax = 0.960 | k = −8→8 |
25854 measured reflections | l = −31→31 |
Refinement top
Refinement on F | 0 constraints |
R[F2 > 2σ(F2)] = 0.056 | H-atom parameters constrained |
wR(F2) = 0.054 | Weighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0001F2) |
S = 1.30 | (Δ/σ)max = 0.039 |
5101 reflections | Δρmax = 0.54 e Å−3 |
248 parameters | Δρmin = −0.85 e Å−3 |
0 restraints | |
Crystal data top
[Cu2(C4H4O4)2(C13H14N2)] | V = 2156.2 (4) Å3 |
Mr = 557.5 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 15.563 (1) Å | µ = 2.03 mm−1 |
b = 6.4472 (7) Å | T = 295 K |
c = 24.100 (2) Å | 0.29 × 0.08 × 0.02 mm |
β = 116.913 (9)° | |
Data collection top
Stoe IPDS image-plate diffractometer | 5101 independent reflections |
Absorption correction: gaussian (JANA2006; Petříček et al., 2006) | 1931 reflections with I > 2σ(I) |
Tmin = 0.789, Tmax = 0.960 | Rint = 0.110 |
25854 measured reflections | |
Refinement top
R[F2 > 2σ(F2)] = 0.056 | 0 restraints |
wR(F2) = 0.054 | H-atom parameters constrained |
S = 1.30 | Δρmax = 0.54 e Å−3 |
5101 reflections | Δρmin = −0.85 e Å−3 |
248 parameters | |
Special details top
Refinement. Refinement of F against ALL reflections. The conventional
R-factors R are based on F, with F set to zero for
negative F2. The threshold expression of I > σ(I) is
used only for calculating R-factors(gt) etc. and is not relevant
to the choice of reflections for refinement. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
Cu1 | 0.17678 (9) | 0.20595 (16) | 0.19667 (6) | 0.0246 (6) | |
Cu2 | 0.32283 (9) | 0.27343 (17) | 0.30679 (6) | 0.0231 (5) | |
O1 | 0.1087 (5) | 0.4238 (10) | 0.2184 (3) | 0.030 (4) | |
O2 | 0.2302 (6) | 0.4674 (10) | 0.3137 (4) | 0.036 (4) | |
O3 | 0.1449 (6) | 1.0085 (10) | 0.2468 (4) | 0.034 (4) | |
O4 | 0.2722 (6) | 1.0525 (11) | 0.3417 (3) | 0.031 (3) | |
O5 | 0.2278 (6) | 0.4183 (10) | 0.1618 (4) | 0.035 (4) | |
O6 | 0.3488 (5) | 0.4771 (11) | 0.2551 (3) | 0.037 (3) | |
O7 | 0.2671 (6) | 1.0048 (11) | 0.1916 (4) | 0.037 (4) | |
O8 | 0.3919 (6) | 1.0638 (10) | 0.2833 (3) | 0.035 (4) | |
N1 | 1.0553 (5) | 0.4178 (12) | 0.6148 (3) | 0.026 (4) | |
N2 | 0.4451 (5) | 0.3947 (12) | 0.3883 (3) | 0.028 (4) | |
C1 | 0.1457 (5) | 0.5050 (10) | 0.27044 (11) | 0.024 (5) | |
C2 | 0.0857 (5) | 0.6562 (9) | 0.2864 (2) | 0.038 (4) | |
C3 | 0.1493 (5) | 0.8239 (10) | 0.33420 (12) | 0.029 (6) | |
C4 | 0.1902 (5) | 0.9729 (10) | 0.30296 (16) | 0.020 (5) | |
C5 | 0.35289 (6) | 0.97821 (6) | 0.23136 (2) | 0.029 (5) | |
C6 | 0.41242 (6) | 0.82608 (6) | 0.21495 (4) | 0.032 (4) | |
C7 | 0.35388 (6) | 0.65488 (5) | 0.17277 (4) | 0.031 (4) | |
C8 | 0.30150 (6) | 0.50731 (5) | 0.19612 (2) | 0.029 (5) | |
C9 | 0.99225 (4) | 0.30834 (3) | 0.57125 (3) | 0.052 (5) | |
C10 | 0.906190 (19) | 0.39072 (5) | 0.522389 (17) | 0.049 (3) | |
C11 | 0.88685 (5) | 0.59386 (6) | 0.51985 (3) | 0.040 (4) | |
C12 | 0.9586 (5) | 0.7155 (8) | 0.5693 (3) | 0.055 (6) | |
C13 | 1.0379 (5) | 0.6173 (7) | 0.6133 (4) | 0.052 (5) | |
C14 | 0.8014 (3) | 0.7055 (5) | 0.4687 (2) | 0.034 (5) | |
C15 | 0.7450 (4) | 0.8301 (8) | 0.4960 (3) | 0.044 (6) | |
C16 | 0.6955 (5) | 0.6951 (7) | 0.5232 (4) | 0.049 (5) | |
C17 | 0.6075 (4) | 0.5938 (8) | 0.4796 (3) | 0.028 (4) | |
C18 | 0.6097 (4) | 0.3878 (6) | 0.4663 (3) | 0.037 (4) | |
C19 | 0.52906 (7) | 0.29295 (7) | 0.42123 (5) | 0.033 (5) | |
C20 | 0.4420 (4) | 0.5969 (8) | 0.4009 (3) | 0.038 (4) | |
C21 | 0.5215 (5) | 0.6972 (7) | 0.4459 (3) | 0.038 (4) | |
H2A | 0.038887 | 0.724419 | 0.248349 | 0.0461* | |
H2B | 0.048574 | 0.580051 | 0.30354 | 0.0461* | |
H3A | 0.109952 | 0.901427 | 0.349367 | 0.035* | |
H3B | 0.202335 | 0.755957 | 0.369449 | 0.035* | |
H6A | 0.463076 | 0.766618 | 0.253198 | 0.0385* | |
H6B | 0.44658 | 0.900914 | 0.195509 | 0.0385* | |
H7A | 0.394043 | 0.575244 | 0.158728 | 0.037* | |
H7B | 0.308042 | 0.713348 | 0.132683 | 0.037* | |
H9 | 1.003661 | 0.158814 | 0.57139 | 0.0619* | |
H10 | 0.860787 | 0.297759 | 0.490369 | 0.0583* | |
H12 | 0.950666 | 0.865683 | 0.571343 | 0.0655* | |
H13 | 1.085826 | 0.702886 | 0.646552 | 0.0625* | |
H14A | 0.824469 | 0.799544 | 0.446426 | 0.0409* | |
H14B | 0.758513 | 0.60379 | 0.438801 | 0.0409* | |
H15A | 0.788812 | 0.925286 | 0.527984 | 0.0532* | |
H15B | 0.697261 | 0.918154 | 0.463531 | 0.0532* | |
H16A | 0.682812 | 0.775293 | 0.553289 | 0.0586* | |
H16B | 0.740854 | 0.590835 | 0.550358 | 0.0586* | |
H18 | 0.668929 | 0.307646 | 0.488934 | 0.0449* | |
H19 | 0.532666 | 0.145476 | 0.412647 | 0.0391* | |
H20 | 0.38213 | 0.674753 | 0.377827 | 0.0457* | |
H21 | 0.516872 | 0.844721 | 0.453981 | 0.0458* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
Cu1 | 0.0210 (8) | 0.0213 (6) | 0.0303 (7) | −0.0041 (6) | 0.0107 (6) | −0.0056 (5) |
Cu2 | 0.0191 (8) | 0.0227 (6) | 0.0269 (6) | −0.0034 (6) | 0.0100 (6) | −0.0047 (5) |
O1 | 0.025 (5) | 0.028 (4) | 0.034 (4) | 0.003 (3) | 0.010 (4) | −0.007 (3) |
O2 | 0.037 (6) | 0.032 (4) | 0.043 (5) | 0.005 (3) | 0.022 (4) | −0.006 (3) |
O3 | 0.035 (6) | 0.026 (4) | 0.039 (4) | −0.006 (3) | 0.016 (4) | 0.003 (3) |
O4 | 0.025 (5) | 0.032 (4) | 0.031 (4) | −0.009 (3) | 0.010 (4) | −0.004 (3) |
O5 | 0.039 (5) | 0.035 (4) | 0.031 (4) | −0.014 (3) | 0.018 (4) | −0.003 (3) |
O6 | 0.028 (5) | 0.035 (4) | 0.036 (4) | −0.019 (3) | 0.006 (4) | −0.006 (3) |
O7 | 0.019 (6) | 0.039 (4) | 0.047 (5) | 0.003 (4) | 0.008 (4) | −0.012 (3) |
O8 | 0.028 (6) | 0.035 (4) | 0.038 (4) | 0.003 (3) | 0.010 (4) | −0.013 (3) |
N1 | 0.022 (6) | 0.025 (5) | 0.023 (4) | −0.005 (4) | 0.003 (4) | 0.005 (3) |
N2 | 0.033 (6) | 0.025 (5) | 0.030 (5) | −0.003 (4) | 0.018 (5) | −0.001 (3) |
C1 | 0.024 (7) | 0.025 (6) | 0.032 (6) | −0.006 (4) | 0.021 (6) | 0.000 (4) |
C2 | 0.035 (6) | 0.025 (5) | 0.071 (5) | −0.008 (4) | 0.038 (5) | −0.019 (4) |
C3 | 0.044 (8) | 0.016 (5) | 0.046 (8) | 0.001 (4) | 0.037 (7) | 0.000 (4) |
C4 | 0.016 (7) | 0.017 (5) | 0.028 (6) | −0.008 (4) | 0.009 (6) | −0.015 (4) |
C5 | 0.027 (7) | 0.014 (5) | 0.055 (8) | −0.006 (5) | 0.027 (7) | −0.005 (5) |
C6 | 0.033 (6) | 0.018 (5) | 0.057 (5) | −0.008 (4) | 0.031 (5) | −0.012 (4) |
C7 | 0.043 (7) | 0.017 (5) | 0.039 (5) | −0.005 (4) | 0.024 (5) | −0.003 (4) |
C8 | 0.045 (7) | 0.020 (5) | 0.036 (7) | 0.013 (5) | 0.031 (6) | 0.001 (5) |
C9 | 0.035 (7) | 0.021 (9) | 0.088 (4) | 0.000 (6) | 0.018 (4) | 0.004 (5) |
C10 | 0.040 (5) | 0.030 (4) | 0.068 (4) | −0.008 (7) | 0.017 (4) | −0.017 (6) |
C11 | 0.040 (6) | 0.056 (6) | 0.028 (4) | 0.000 (5) | 0.018 (4) | 0.007 (4) |
C12 | 0.042 (8) | 0.030 (5) | 0.080 (7) | 0.009 (5) | 0.018 (7) | 0.007 (5) |
C13 | 0.036 (8) | 0.036 (6) | 0.047 (6) | −0.006 (5) | −0.014 (6) | 0.005 (5) |
C14 | 0.027 (7) | 0.043 (8) | 0.028 (6) | 0.008 (5) | 0.008 (6) | 0.014 (5) |
C15 | 0.027 (11) | 0.036 (5) | 0.050 (7) | −0.012 (6) | 0.000 (7) | 0.013 (5) |
C16 | 0.042 (9) | 0.077 (6) | 0.013 (5) | −0.018 (5) | −0.001 (6) | −0.007 (4) |
C17 | 0.013 (5) | 0.042 (5) | 0.025 (5) | −0.003 (4) | 0.004 (4) | −0.014 (4) |
C18 | 0.018 (6) | 0.045 (6) | 0.039 (5) | −0.007 (4) | 0.003 (5) | 0.001 (4) |
C19 | 0.015 (7) | 0.030 (7) | 0.048 (6) | 0.005 (5) | 0.010 (5) | 0.001 (5) |
C20 | 0.025 (6) | 0.028 (5) | 0.044 (5) | 0.003 (4) | 0.001 (5) | −0.005 (4) |
C21 | 0.036 (7) | 0.019 (5) | 0.048 (5) | −0.003 (4) | 0.009 (5) | −0.005 (4) |
Geometric parameters (Å, º) top
Cu1—Cu2 | 2.6336 (17) | C12—C13 | 1.365 (8) |
Cu1—O1 | 1.968 (9) | C14—C15 | 1.540 (9) |
Cu1—O3i | 1.967 (9) | C15—C16 | 1.495 (11) |
Cu1—O5 | 1.953 (9) | C16—C17 | 1.451 (8) |
Cu1—O7i | 1.957 (9) | C17—C18 | 1.370 (7) |
Cu2—O2 | 1.971 (9) | C17—C21 | 1.382 (8) |
Cu2—O4i | 1.989 (9) | C18—C19 | 1.376 (5) |
Cu2—O6 | 1.974 (9) | C20—C21 | 1.382 (7) |
Cu2—O8i | 1.963 (9) | C2—H2A | 0.980 |
O1—C1 | 1.234 (8) | C2—H2B | 0.980 |
O2—C1 | 1.279 (9) | C3—H3A | 0.980 |
O3—C4 | 1.232 (8) | C3—H3B | 0.980 |
O4—C4 | 1.299 (9) | C6—H6A | 0.9800 |
O5—C8 | 1.212 (7) | C6—H6B | 0.9800 |
O6—C8 | 1.285 (7) | C7—H7A | 0.9800 |
O7—C5 | 1.254 (7) | C7—H7B | 0.9800 |
O8—C5 | 1.246 (7) | C9—H9 | 0.9800 |
N1—C9 | 1.277 (6) | C10—H10 | 0.9800 |
N1—C13 | 1.312 (9) | C12—H12 | 0.980 |
N2—C19 | 1.352 (7) | C13—H13 | 0.980 |
N2—C20 | 1.345 (9) | C14—H14A | 0.980 |
C1—C2 | 1.515 (10) | C14—H14B | 0.980 |
C2—C3 | 1.563 (7) | C15—H15A | 0.980 |
C3—C4 | 1.526 (10) | C15—H15B | 0.980 |
C5—C6 | 1.5194 (12) | C16—H16A | 0.980 |
C6—C7 | 1.4977 (8) | C16—H16B | 0.980 |
C7—C8 | 1.5171 (12) | C19—H19 | 0.9800 |
C9—C10 | 1.4265 (6) | C20—H20 | 0.980 |
C10—C11 | 1.3390 (6) | C18—H18 | 0.980 |
C11—C12 | 1.442 (6) | C21—H21 | 0.980 |
C11—C14 | 1.524 (4) | | |
| | | |
O1—Cu1—O3i | 89.0 (4) | C10—C11—C12 | 114.9 (2) |
O1—Cu1—O5 | 89.3 (4) | C10—C11—C14 | 126.51 (14) |
O1—Cu1—O7i | 168.1 (3) | C12—C11—C14 | 118.5 (3) |
O3i—Cu1—O5 | 169.3 (3) | C11—C12—C13 | 118.7 (4) |
O3i—Cu1—O7i | 89.9 (4) | N1—C13—C12 | 125.4 (5) |
O5—Cu1—O7i | 89.6 (4) | C11—C14—C15 | 111.0 (4) |
O2—Cu2—O4i | 88.5 (4) | C14—C15—C16 | 113.0 (4) |
O2—Cu2—O6 | 89.9 (4) | C15—C16—C17 | 116.7 (6) |
O2—Cu2—O8i | 167.9 (3) | C16—C17—C18 | 119.4 (5) |
O4i—Cu2—O6 | 167.6 (3) | C16—C17—C21 | 123.6 (5) |
O4i—Cu2—O8i | 90.1 (4) | C18—C17—C21 | 116.7 (5) |
O6—Cu2—O8i | 88.9 (4) | C17—C18—C19 | 120.4 (4) |
Cu1—O1—C1 | 120.9 (6) | N2—C19—C18 | 122.8 (4) |
Cu2—O2—C1 | 125.0 (6) | N2—C20—C21 | 121.4 (5) |
Cu1ii—O3—C4 | 128.1 (6) | C17—C21—C20 | 121.3 (5) |
Cu2ii—O4—C4 | 115.3 (5) | C1—C2—H2A | 109.0 |
Cu1—O5—C8 | 118.8 (5) | C1—C2—H2B | 109.0 |
Cu2—O6—C8 | 128.3 (5) | C2—C3—H3A | 109.0 |
Cu1ii—O7—C5 | 126.1 (5) | C2—C3—H3B | 109.0 |
Cu2ii—O8—C5 | 120.9 (5) | C4—C3—H3A | 109.0 |
C9—N1—C13 | 116.6 (5) | C4—C3—H3B | 109.0 |
C19—N2—C20 | 117.5 (5) | C6—C7—H7A | 109.0 |
O1—C1—O2 | 125.6 (8) | C6—C7—H7B | 109.0 |
O1—C1—C2 | 118.2 (6) | C8—C7—H7A | 109.0 |
O2—C1—C2 | 116.2 (5) | C8—C7—H7B | 109.0 |
C1—C2—C3 | 112.0 (6) | C10—C9—H9 | 118.0 |
C2—C3—C4 | 109.8 (4) | C11—C10—H10 | 119.0 |
O3—C4—O4 | 127.2 (8) | C11—C12—H12 | 120.0 |
O3—C4—C3 | 120.0 (7) | C12—C13—H13 | 117.0 |
O4—C4—C3 | 112.8 (5) | C11—C14—H14A | 109.0 |
O7—C5—O8 | 125.0 (6) | C11—C14—H14B | 109.0 |
O7—C5—C6 | 116.9 (4) | C14—C15—H15A | 109.0 |
O8—C5—C6 | 118.1 (4) | C14—C15—H15B | 109.0 |
C5—C6—C7 | 113.40 (7) | C15—C16—H16A | 109.0 |
C6—C7—C8 | 118.31 (8) | C15—C16—H16B | 109.0 |
O5—C8—O6 | 125.0 (5) | C17—C18—H18 | 119.0 |
O5—C8—C7 | 123.0 (4) | C18—C19—H19 | 119.0 |
O6—C8—C7 | 111.7 (4) | C21—C20—H20 | 119.0 |
N1—C9—C10 | 123.9 (3) | C20—C21—H21 | 119.0 |
C9—C10—C11 | 120.63 (3) | | |
| | | |
C1—C2—C3—C4 | 70.6 (6) | C5—C6—C7—C8 | −62.47 (4) |
Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z. |
Experimental details
| (I) | (II) |
Crystal data |
Chemical formula | [Cu2(C4H4O4)2(C12H12N2)] | [Cu2(C4H4O4)2(C13H14N2)] |
Mr | 271.7 | 557.5 |
Crystal system, space group | Monoclinic, P21/c | Monoclinic, P21/c |
Temperature (K) | 295 | 295 |
a, b, c (Å) | 11.342 (2), 6.4613 (10), 15.269 (4) | 15.563 (1), 6.4472 (7), 24.100 (2) |
β (°) | 116.55 (3) | 116.913 (9) |
V (Å3) | 1000.9 (4) | 2156.2 (4) |
Z | 4 | 4 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 2.18 | 2.03 |
Crystal size (mm) | 0.16 × 0.16 × 0.02 | 0.29 × 0.08 × 0.02 |
|
Data collection |
Diffractometer | Make? Model? CCD diffractometer | Stoe IPDS image-plate diffractometer |
Absorption correction | Integration (JANA2006; Petříček et al., 2006) | Gaussian (JANA2006; Petříček et al., 2006) |
Tmin, Tmax | 0.763, 0.960 | 0.789, 0.960 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 10503, 2885, 1225 | 25854, 5101, 1931 |
Rint | 0.093 | 0.110 |
(sin θ/λ)max (Å−1) | 0.703 | 0.661 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.058, 0.068, 0.99 | 0.056, 0.054, 1.30 |
No. of reflections | 2885 | 5101 |
No. of parameters | 145 | 248 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 1.83, −0.97 | 0.54, −0.85 |
Selected geometric parameters (Å, º) for (I) topCu1—Cu1i | 2.665 (2) | Cu1—O4ii | 1.955 (5) |
Cu1—O1 | 1.955 (4) | Cu1—O3iii | 1.983 (5) |
Cu1—O2i | 1.967 (4) | Cu1—N | 2.218 (4) |
| | | |
O1—Cu1—O2i | 167.08 (15) | O2i—Cu1—O4ii | 89.86 (19) |
O1—Cu1—O4ii | 88.93 (19) | O2i—Cu1—O3iii | 88.83 (19) |
O1—Cu1—O3iii | 89.57 (19) | O4ii—Cu1—O3iii | 167.50 (15) |
Symmetry codes: (i) −x, −y+2, −z+1; (ii) x, y+1, z; (iii) −x, −y+1, −z+1. |
Selected geometric parameters (Å, º) for (II) topCu1—Cu2 | 2.6336 (17) | Cu2—O2 | 1.971 (9) |
Cu1—O1 | 1.968 (9) | Cu2—O4i | 1.989 (9) |
Cu1—O3i | 1.967 (9) | Cu2—O6 | 1.974 (9) |
Cu1—O5 | 1.953 (9) | Cu2—O8i | 1.963 (9) |
Cu1—O7i | 1.957 (9) | | |
| | | |
O1—Cu1—O3i | 89.0 (4) | O2—Cu2—O4i | 88.5 (4) |
O1—Cu1—O5 | 89.3 (4) | O2—Cu2—O6 | 89.9 (4) |
O1—Cu1—O7i | 168.1 (3) | O2—Cu2—O8i | 167.9 (3) |
O3i—Cu1—O5 | 169.3 (3) | O4i—Cu2—O6 | 167.6 (3) |
O3i—Cu1—O7i | 89.9 (4) | O4i—Cu2—O8i | 90.1 (4) |
O5—Cu1—O7i | 89.6 (4) | O6—Cu2—O8i | 88.9 (4) |
Symmetry code: (i) x, y−1, z. |
Metal–organic coordination polymers are of great current interest and spacer ligands are frequently used to form new extended framework structures. Dimetal units can be combined with the bidentate organic ligands 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as flexible organic spacers to give rise to a large variety of structures (Batsanov et al., 1996; Suen et al., 2006; Carballo et al., 2007). The resultant structures combining dimetal units of Cu2(OAc)4 with two different N,N'-bidentate ligands, 1,2-di-4-pyridylethane and 1,4-di-4-pyridylbuta-1,3-diyne, have been reported as one-dimensional polymer chains containing a bridging nitrogenated ligand and Cu2(OAc)4 dimeric units (Goforth et al., 2005). Besides the observed polymorphism due to the crystallization conditions, π–π interactions between the pyridyl rings play an important role in the resultant packing of the polymeric chains (Hu et al., 2005).
During investigations of the magnetic properties of compounds based on copper(II) succinate complexes, two new compounds were synthesized with 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as bidentate ligands. Our goal was centred on the structural frameworks resulting from the interaction of the succinate chains with N,N'-bidentate spacer ligands. The structure of the binuclear unit was reported by O'Connor & Maslen (1966) for the copper succinate dihydrate, [Cu(C4H4O4)].2H2O. In that structure, ribbon-like chains of paddle-wheel dicopper units are doubly bridged through bis-bidentate succinate groups. Each succinate anion links two dimeric units in the chain and two linking succinate anions are located between each pair of dimeric copper groups. A water molecule is coordinated to each Cu atom in the apical position.
We have now synthesized two new compounds, (I) and (II), with 1,2-di-4-pyridylethane and 1,3-di-4-pyridylpropane as spacer ligands, respectively, and present their crystal structures here.
The structures of both compounds (I) and (II) can be described as ribbon-like chains of paddle-wheel dicopper units doubly bridged through bis-bidentate succinate groups in gauche conformations, with torsion angles C7—C8—C9—C10 = -67.6 (2)° in (I), and C1—C2—C3—C4 = 70.6 (6)° and C5—C6—C7—C8 = -62.47 (1)° in (II), similar to those found for [Cu(C4H4O4)].2H2O (O'Connor & Maslen, 1966). The molecular conformations are shown in Fig. 1 and the molecular packing, viewed along the [010] direction, in Fig. 2. The dimeric copper(II) units are coordinated through the two N atoms to the bidentate ligands in infinite chains. The –Cu–Cu–py(CH2)npy–Cu–Cu– chains run along the [101] direction in (I) and along the [201] direction in (II). The ligand molecules link the succinate chains to form two-dimensional sheets. In compound (I), the planes of successive pyridyl rings joined by the ethylene group are parallel. The pyridyl rings of parallel chains are symmetry-related by the twofold screw axis, and those at (x, y, z) and (1 - x, -1/2 + y, 3/2 - z) form a dihedral angle of 27.7 (3)° with a relative disposition far from eclipsed because of the shift of 1/2 b (the Cg···Cg distance between their centroids is 4.78 Å).
In compound (II), the pyridyl rings containing atoms N1 and N2 form a dihedral angle of 12.3 (3)° and exhibit two different interactions with the rings of parallel symmetry-related chains. For pairs of rings containing N1 at (x, y, z) and (2 - x, 1 - y, 1 - z), the Cg···Cg distance is 3.761 (3) Å (slip distance 1.29 Å), whereas for the rings containing N2 at (x, y, z) and (1 - x, 1 - y, 1 - z), these values are 3.631 (4) Å and 1.03 Å, respectively, which corresponds to a π–π interaction. In this way, the chains interact through these π–π stacking interactions between pyridyl ring pairs and a three-dimensional architecture is thereby established. Other such π–π interactions between pairs of aromatic rings have been described (Perlepes et al., 1992).
In both compounds, each CuII atom exhibits the same coordination, a square-pyramidal geometry. The geometry of the dinuclear unit is described in Tables 1 and 2 for compounds (I) and (II), respectively. The equatorial plane is formed by four O atoms of four succinate groups. The apical position is occupied by an N atom of a spacer ligand. The trigonality indices (Addison et al., 1984) deduced from the angle data [τ = 0.004 for (I), and 0.005 (Cu1) and 0.004 (Cu2) for (II)] indicate a square-pyramidal geometry. The CuII atoms are displaced from the basal plane toward the apical N atom by 0.218 Å in (I), and by 0.195 (Cu1) and 0.213 Å (Cu2) in (II). This coordination geometry is similar to that found for CuII succinate dihydrate (O'Connor & Maslen, 1966). The magnetic and electron paramgnetic resonance (EPR) results for [Cu(C4H4O4)].2H2O (Sharrok & Melnik, 1985) correspond to the antiferromagnetic interaction characteristic of dimeric units with four syn–syn bridging carboxylate groups. In compounds (I) and (II) we found similar results.
The magnetic and EPR results agree with those found for compounds containing a dimeric copper unit (Seco et al., 2002; Sapiña et al., 1994). The dominant magnetic interaction is the antiferromagnetism due to the presence of the dimeric units. A hypothetical interaction through the nitrogenated ligands is negligible, as was found for one-dimensional chains with 1,2-di-4-pyridylethane (Carballo et al., 2007).