Download citation
Download citation
link to html
In the complex diaqua­tetra­nitrato[5-(pyridinium-4-yl)-10,15,20-tri-4-pyridylporphyrin]lanthanum(III) 1,2-dichloro­benzene tri­solvate, [La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2, the lan­thanum ion is coordinated to one of the peripheral pyridyl substituents of the porphyrin entity. Units of the complex are inter­linked to one another in three dimensions by a network of O—H...N, O—H...O and N—H...O hydrogen bonds between the water ligands, nitrate ions, and pyridyl and pyridinium groups of adjacent species. This is the first structural report of an exocyclic complex of the tetra­pyridylporphyrin ligand with any lanthanide ion and its self-assembly into a three-dimensional architecture sustained by hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109034532/fa3203sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109034532/fa3203Isup2.hkl
Contains datablock I

CCDC reference: 755969

Comment top

The tetrapyridylporphyrin (TPyP) and tetra(carboxyphenyl)porphyrin (TCPP) ligands have been utilized extensively as building blocks in the design of framework solids (Goldberg, 2008, 2005, 2000, and references therein). Of particular interest is the coordination polymerization of these scaffolds through the exocyclic nodes of the metal ions, which often results in the formation of open but robust architectures (Suslick et al., 2005). The use of lanthanide ions to this end is rather rare. Only recently have hybrid organic–inorganic networks composed of TCPPs and various lanthanide ions been reported (George et al., 2006; Lipstman et al., 2007; Muniappan et al., 2007). The metal ions are oxophilic and coordinate readily to the peripheral carboxyphenyl functions, an interaction which is facilitated by deprotonation of the latter and ion pairing between the component species. Although a few coordination polymers and complexes of some lanthanide ions with bipyridyls are known (Sharma & Rogers, 1999, and references therein), analogous compounds with the TPyP unit have not been obtained thus far. This can be attributed to the relatively low affinity of the lanthanides for coordination by neutral N-pyridyl groups and the need to incorporate additional counterions into the lattice. A number of double-decker-type compounds in which lanthanide ions are sandwiched between, and coordinated by, the central tetrapyrrole rings of two TPyPs (Ikeda et al., 2000; Magnera et al., 1997), or between one TPyP and one phthalocyanine ring (Bian et al., 2003; Sun et al., 2003), have also been described.

In the above context we report here on the first complex of the TPyP entity with a lanthanum ion, where the coordination takes place on the porphyrin periphery between the metal ion and one of the pyridyl substituents of TPyP. The reaction between TPyP and lanthanum trinitrate hexahydrate is associated with protonation of another pyridyl group (at N34) and formation of the TPyPH+–La(NO3)4(H2O)2- complex, which crystallizes as the title o-dichlorobenzene trisolvate, (I). Similar behaviour of LaIII ions complexed with four (rather than three) bidentate anions has been observed before (Sharma & Rogers, 1999).

The molecular structure of (I) is shown in Fig. 1. The lanthanum cation is 11-coordinate, where in addition to the nitrate ions it binds to one pyridyl and two water ligands (Table 1). A large excess of the lanthanum salt was used in the reaction mixture, anticipating simultaneous coordination of the metal ions to the four pyridyl corners of the porphyrin. Instead, such coordination occurred only at one out of the four sites. In the resulting complex, the H atoms of the two water ligands and the NH34 pyridylium group, along with the O atoms of the four nitrate ions, constitute complementary divergent molecular-recognition sites for supramolecular associations. All five of the potential H-atom donors are utitilized in intermolecular hydrogen bonding.

The supramolecular organization of (I) can be best described in a modular way. The La(NO3)4(H2O)2 ion is associated in four equatorial directions with four different TPyPs. This involves a direct La—Npy coordination, two O—H(water)···Npy hydrogen bonds from the two water ligands to porphyrin units, and an additional Npy—H+···Owater hydrogen bond in the fourth direction (Table 2). As a result, the molecular units assemble into undulating two-dimensional supramolecular square-grid-type layers (Fig. 2). The mean plane of the layers, which are stacked along the c axis, is parallel to (201). Additional hydrogen bonds operate between the La(NO3)4(H2O)2 connecting nodes of subsequent layers in the stack. The two water ligands donate their H atoms to the nitrate groups of the layer above, while two of the nitrate groups act as acceptors in hydrogen bonds with the water ligands from the layer below (Table 2). The crystal structure (Fig. 3) consists of alternating zones of the porphyrin moieties (centred at y = 0 and 1/2), and the La(NO3)4(H2O)2 connectors (centred at y = 1/4 and 3/4) aligned perpendicular to the b axis. Molecules of the o-dichlorobenzene solvent are enclathrated within the interstitial voids. They are positioned at the interface between porphyrin ligands of neighbouring layers, as well as between adjacent pillars of the metallic bridges in any given zone (Fig. 3). The supramolecular framework is held together by the inorganic pillars in a similar way to that observed in the coordination polymers of TCPP with solvated lanthanide ions (Lipstman et al., 2007; Muniappan et al., 2007).

In summary, this study confirms earlier observations (Sharma & Rogers, 1999) that lanthanide ions can be utilized in the formation of networked architectures involving not only coordination forces but also hydrogen bonds. It also indicates for the first time that, in addition to the TCPP building blocks, the TPyP moieties may also coordinate to lanthanides. In the former case, charge balance is achieved by deprotonation of the carboxylic acid groups. In structures with pyridyl porphyrins, the hydrogen-bonding sites of suitable counterions and water ligands located in the coordination environment of the metal centres provide additional/alternative means for supramolecular aggregation. This is well demonstrated by the three-dimensional supramolecular architecture of (I).

Experimental top

All reactants and solvents were obtained commercially and used without any further purification. TPyP (0.015 mmol) and lanthanum(III) nitrate hexahydrate (0.100 mmol) were dissolved in a 1:1 mixture of o-dichlorobenzene and ethanol (15 ml). The resulting solution was refluxed for 2 h. After filtration, the solute was allowed to evaporate slowly. X-ray quality red crystals of (I) were obtained after five weeks.

Refinement top

H atoms bound to C atoms were located in calculated positions and constrained to ride on their parent atoms, with C—H = 0.95 Å and with Uiso(H) = 1.2Ueq(C). Inspection of the contoured representation of the difference electron density indicated that the two N(pyrrole)-bound H atoms were disordered between the four pyrrole sites. They were then also located in calculated positions and constrained to ride on their parent atoms, with N—H = 0.88 Å and with Uiso(H) = 1.2Ueq(N). The H atoms of the two water ligands where either located in a difference Fourier map (atom O49) or in calculated positions to optimize the hydrogen bonding (atom O50). All O—H bond lengths were constrained at 0.83 Å but not refined, with Uiso(H) = 1.5Ueq(O). Finally, the H atom on the pyridyl group at N34 was located in a difference Fourier map as the highest residual peak. Its atomic coordinates were included in the final refinement with Uiso(H) = 1.2Ueq(N). One of the o-dichlorobenzene solvent species could not be modelled reliably by discrete atoms, though it was clearly identified in the difference Fourier map. Its contribution was subtracted from the diffraction pattern by the Squeeze method, using the PLATON software (Spek, 2003). In the unit cell, the sites accessible by these solvent species are centred at (0, 0, 0) and (0, 1/2, 0), each of the created voids being characterized by a volume of 444 Å3 with residual electron density of 165 e. The other two o-dichlorobenzene molecules of the asymmetric unit included in the structural model appear to be characterized by partial orientational disorder as well.

Computing details top

Data collection: COLLECT (Nonius, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: DENZO (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR97 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level at ca 110 K. H atoms have been omitted. The porphyrin ring exhibits a slightly saddled conformation.
[Figure 2] Fig. 2. The two-dimensional square-grid network motif observed in (I). Note that every La(NO3)4(H2O)2 connecting node is associated with four neighbouring porphyrin units, either via coordination or hydrogen bonds (denoted by dashed lines). H atoms have been omitted. The La and water O atoms are shown as small spheres.
[Figure 3] Fig. 3. The crystal packing of (I), showing (edge-on) the stacked arrangement of the undulating layers depicted in Fig. 2. Note the interlayer hydrogen-bonding interactions (dashed lines) from the water ligands of one layer to the nitrate anions of adjacent layers. Asterisks (*) indicate the approximate locations of the o-dichlorobenzene solvent molecules. H atoms have been omitted, and the La and water O atoms are shown as small spheres.
diaquatetranitrato[5-(pyridinium-4-yl)-10,15,20-tri-4- pyridylporphyrin]lanthanum(III) 1,2-dichlorobenzene trisolvate top
Crystal data top
[La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2F(000) = 2984
Mr = 1483.65Dx = 1.616 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 17.1527 (3) ÅCell parameters from 10292 reflections
b = 28.5415 (6) Åθ = 1.4–25.0°
c = 13.5331 (2) ŵ = 1.04 mm1
β = 112.984 (1)°T = 110 K
V = 6099.34 (19) Å3Prism, red
Z = 40.25 × 0.20 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
10767 independent reflections
Radiation source: fine-focus sealed tube6137 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 12.8 pixels mm-1θmax = 25.0°, θmin = 2.2°
ϕ and ω scansh = 2018
Absorption correction: multi-scan
(Blessing, 1995)
k = 330
Tmin = 0.798, Tmax = 0.911l = 016
36533 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.063Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.94 w = 1/[σ2(Fo2) + (0.0704P)2]
where P = (Fo2 + 2Fc2)/3
10767 reflections(Δ/σ)max = 0.001
748 parametersΔρmax = 0.83 e Å3
0 restraintsΔρmin = 0.77 e Å3
Crystal data top
[La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2V = 6099.34 (19) Å3
Mr = 1483.65Z = 4
Monoclinic, P21/cMo Kα radiation
a = 17.1527 (3) ŵ = 1.04 mm1
b = 28.5415 (6) ÅT = 110 K
c = 13.5331 (2) Å0.25 × 0.20 × 0.10 mm
β = 112.984 (1)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
10767 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
6137 reflections with I > 2σ(I)
Tmin = 0.798, Tmax = 0.911Rint = 0.091
36533 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0630 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 0.94Δρmax = 0.83 e Å3
10767 reflectionsΔρmin = 0.77 e Å3
748 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The asymmetric unit contains an additional molecule of the dichlorobenzene solvent. It is severely disordered, about the center of inversion at 0,0,0, and couldn't be modeled by discrete atoms. Its contribution was thus subtracted from the diffraction data by the Squeeze method, using the PLATON software (Spek, 2003). Correspondingly the analyzed crystal diffracted poorly at τ > 25°. Final structure factor calculations contain only 2 molecules of the solvent. The other two molecules of the dichlorobenzene solvate also reveal wide-amplitude ADP's.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
La10.96484 (2)0.756793 (13)0.32933 (3)0.02382 (13)
C10.6931 (4)0.9992 (2)0.2023 (5)0.0315 (17)
C20.7806 (4)0.9892 (2)0.1356 (5)0.0302 (16)
H20.82821.00830.12660.036*
C30.7811 (4)0.9475 (2)0.0887 (5)0.0318 (16)
H30.82940.93110.04120.038*
C40.6927 (4)0.9325 (2)0.1251 (5)0.0263 (15)
C50.6669 (4)0.8901 (2)0.0909 (5)0.0304 (16)
C60.5843 (4)0.8735 (2)0.1270 (5)0.0274 (15)
C70.5562 (4)0.8323 (2)0.0911 (5)0.0290 (16)
H70.59130.81050.04000.035*
C80.4699 (4)0.8295 (2)0.1427 (5)0.0311 (16)
H80.43490.80520.13490.037*
C90.4420 (4)0.8699 (2)0.2109 (5)0.0269 (16)
C100.3577 (4)0.8822 (2)0.2744 (5)0.0263 (15)
C110.3310 (4)0.9235 (2)0.3345 (5)0.0298 (16)
C120.2440 (4)0.9352 (2)0.3940 (5)0.0332 (17)
H120.19590.91710.39970.040*
C130.2437 (4)0.9773 (2)0.4408 (5)0.0358 (18)
H130.19540.99470.48470.043*
C140.3310 (4)0.9905 (2)0.4107 (5)0.0305 (16)
C150.3563 (4)1.0312 (2)0.4475 (5)0.0278 (16)
C160.4414 (4)1.0450 (2)0.4221 (5)0.0283 (16)
C170.4694 (5)1.0875 (2)0.4535 (6)0.0403 (18)
H170.43391.11050.50050.048*
C180.5541 (5)1.0898 (2)0.4057 (5)0.0368 (18)
H180.58901.11410.41370.044*
C190.5827 (4)1.0485 (2)0.3400 (5)0.0310 (16)
C200.6649 (4)1.0385 (2)0.2702 (5)0.0249 (15)
N210.6414 (3)0.96361 (18)0.1954 (4)0.0272 (13)
H210.58610.96160.22970.033*0.50
N220.5131 (3)0.89485 (18)0.2010 (4)0.0257 (12)
H220.51330.92070.23640.031*0.50
N230.3832 (3)0.95724 (18)0.3455 (4)0.0283 (13)
H230.43890.95750.31670.034*0.50
N240.5112 (3)1.02204 (18)0.3552 (4)0.0251 (13)
H240.51110.99450.32590.030*0.50
C250.7346 (4)0.8620 (2)0.0057 (5)0.0245 (15)
C260.7812 (4)0.8812 (2)0.0936 (5)0.0312 (16)
H260.77190.91280.10840.037*
C270.8415 (4)0.8545 (2)0.1713 (5)0.0306 (16)
H270.87410.86900.23790.037*
N280.8567 (3)0.80923 (18)0.1582 (4)0.0229 (12)
C290.8109 (4)0.7906 (2)0.0612 (5)0.0257 (15)
H290.82070.75870.04920.031*
C300.7503 (4)0.8151 (2)0.0220 (5)0.0292 (16)
H300.72000.80020.08900.035*
C310.2919 (4)0.8492 (2)0.2720 (5)0.0298 (16)
C320.2894 (4)0.8034 (2)0.3048 (5)0.0330 (17)
H320.33010.79230.33070.040*
C330.2273 (4)0.7732 (2)0.2999 (5)0.0328 (17)
H330.22740.74120.31890.039*
N340.1678 (4)0.7892 (2)0.2685 (4)0.0337 (14)
H340.124 (4)0.769 (2)0.265 (5)0.040*
C350.1678 (4)0.8342 (3)0.2368 (5)0.0390 (18)
H350.12400.84490.21610.047*
C360.2308 (4)0.8643 (3)0.2345 (5)0.0349 (17)
H360.23290.89520.20760.042*
C370.2895 (4)1.0649 (2)0.5100 (5)0.0276 (15)
C380.2398 (4)1.0856 (2)0.4621 (5)0.0395 (19)
H380.24821.07820.39030.047*
C390.1777 (5)1.1173 (3)0.5209 (6)0.045 (2)
H390.14261.13020.48820.054*
N400.1641 (3)1.13114 (19)0.6231 (4)0.0343 (14)
C410.2127 (5)1.1116 (3)0.6668 (5)0.0403 (19)
H410.20441.12030.73790.048*
C420.2747 (5)1.0794 (2)0.6147 (6)0.0393 (18)
H420.30801.06670.65020.047*
C430.7291 (4)1.0756 (2)0.2613 (5)0.0277 (15)
C440.7486 (4)1.0882 (2)0.3487 (5)0.0387 (19)
H440.72171.07280.41570.046*
C450.8079 (5)1.1235 (3)0.3372 (6)0.047 (2)
H450.82041.13160.39760.057*
N460.8480 (3)1.14660 (18)0.2450 (4)0.0330 (14)
C470.8298 (4)1.1342 (2)0.1615 (5)0.0318 (17)
H470.85771.15030.09560.038*
C480.7730 (4)1.0995 (2)0.1648 (5)0.0309 (16)
H480.76371.09170.10210.037*
O490.9432 (3)0.70262 (14)0.1751 (3)0.0306 (11)
H49A0.92110.67820.18330.046*
H49B0.96010.70280.12590.046*
O501.0480 (3)0.78081 (14)0.2141 (3)0.0258 (10)
H50A1.02240.78260.14860.039*
H50B1.07980.80350.22410.039*
N511.1563 (4)0.7302 (2)0.4536 (4)0.0349 (15)
O521.1402 (3)0.77285 (19)0.4364 (4)0.0444 (13)
O531.0945 (3)0.70162 (17)0.4164 (4)0.0397 (12)
O541.2283 (3)0.71593 (18)0.5071 (4)0.0482 (13)
N550.9465 (3)0.6708 (2)0.4579 (4)0.0302 (13)
O560.9616 (3)0.71280 (15)0.4953 (3)0.0289 (10)
O570.9306 (3)0.66620 (15)0.3602 (3)0.0325 (11)
O580.9498 (3)0.63734 (16)0.5159 (4)0.0363 (12)
N590.7864 (4)0.7722 (2)0.3193 (5)0.0384 (15)
O600.8031 (3)0.73672 (16)0.2765 (4)0.0347 (11)
O610.8476 (3)0.79993 (17)0.3710 (3)0.0384 (12)
O620.7142 (3)0.78075 (19)0.3121 (5)0.0586 (15)
N631.0287 (4)0.8411 (2)0.4778 (5)0.0372 (15)
O641.0108 (3)0.84371 (16)0.3791 (3)0.0338 (11)
O651.0160 (3)0.80242 (16)0.5148 (3)0.0356 (12)
O661.0573 (3)0.87437 (19)0.5371 (4)0.0550 (15)
Cl10.42251 (15)0.70342 (8)0.22617 (16)0.0626 (6)
Cl20.35825 (13)0.71216 (8)0.03930 (17)0.0607 (6)
C670.4937 (5)0.7063 (2)0.0949 (6)0.0441 (19)
C680.5817 (6)0.7047 (3)0.0686 (10)0.069 (3)
H680.60290.70310.12370.082*
C690.6377 (6)0.7054 (3)0.0394 (10)0.077 (3)
H690.69710.70450.05790.092*
C700.6070 (7)0.7076 (3)0.1164 (9)0.078 (3)
H700.64620.70740.18910.093*
C710.5237 (6)0.7100 (3)0.0968 (7)0.066 (3)
H710.50470.71170.15390.079*
C720.4654 (5)0.7098 (3)0.0120 (7)0.048 (2)
Cl30.36970 (14)0.84834 (9)0.03135 (17)0.0676 (7)
Cl40.35418 (17)0.95703 (9)0.00892 (19)0.0787 (8)
C730.4599 (6)0.8831 (4)0.0853 (6)0.057 (2)
C740.5388 (7)0.8645 (4)0.1437 (7)0.078 (3)
H740.54470.83150.15270.094*
C750.6076 (6)0.8918 (5)0.1880 (6)0.088 (4)
H750.66060.87810.23040.105*
C760.6010 (6)0.9427 (4)0.1711 (7)0.068 (3)
H760.64900.96270.19960.081*
C770.5230 (7)0.9595 (4)0.1131 (7)0.073 (3)
H770.51690.99240.10190.087*
C780.4517 (5)0.9322 (4)0.0690 (6)0.067 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
La10.0243 (2)0.0265 (2)0.02030 (19)0.00187 (19)0.00833 (16)0.00041 (18)
C10.040 (5)0.024 (4)0.039 (4)0.005 (3)0.024 (4)0.006 (3)
C20.015 (4)0.041 (5)0.028 (4)0.007 (3)0.002 (3)0.001 (3)
C30.026 (4)0.033 (4)0.034 (4)0.007 (3)0.010 (3)0.000 (3)
C40.025 (4)0.024 (4)0.027 (4)0.002 (3)0.006 (3)0.002 (3)
C50.028 (4)0.031 (4)0.027 (4)0.003 (3)0.006 (3)0.001 (3)
C60.025 (4)0.024 (4)0.031 (4)0.003 (3)0.008 (3)0.005 (3)
C70.028 (4)0.024 (4)0.034 (4)0.000 (3)0.011 (3)0.005 (3)
C80.035 (4)0.018 (4)0.033 (4)0.005 (3)0.005 (4)0.006 (3)
C90.022 (4)0.029 (4)0.025 (3)0.007 (3)0.005 (3)0.003 (3)
C100.025 (4)0.023 (4)0.027 (4)0.002 (3)0.006 (3)0.002 (3)
C110.023 (4)0.035 (4)0.031 (4)0.007 (3)0.009 (3)0.001 (3)
C120.026 (4)0.043 (5)0.027 (4)0.008 (3)0.007 (3)0.009 (3)
C130.032 (4)0.040 (5)0.036 (4)0.008 (4)0.014 (4)0.004 (3)
C140.033 (4)0.032 (4)0.025 (4)0.007 (3)0.010 (3)0.003 (3)
C150.031 (4)0.022 (4)0.027 (4)0.004 (3)0.008 (3)0.001 (3)
C160.029 (4)0.022 (4)0.029 (4)0.006 (3)0.007 (3)0.001 (3)
C170.035 (5)0.028 (5)0.046 (4)0.000 (4)0.003 (4)0.005 (3)
C180.046 (5)0.021 (4)0.039 (4)0.005 (3)0.012 (4)0.007 (3)
C190.033 (4)0.024 (4)0.036 (4)0.011 (3)0.013 (4)0.005 (3)
C200.022 (4)0.019 (4)0.032 (4)0.006 (3)0.009 (3)0.003 (3)
N210.019 (3)0.027 (3)0.030 (3)0.003 (3)0.004 (3)0.006 (3)
N220.016 (3)0.029 (3)0.023 (3)0.001 (3)0.002 (2)0.009 (2)
N230.024 (3)0.028 (3)0.026 (3)0.003 (3)0.003 (3)0.006 (3)
N240.023 (3)0.024 (3)0.024 (3)0.001 (3)0.004 (3)0.001 (2)
C250.027 (4)0.022 (4)0.025 (4)0.008 (3)0.011 (3)0.001 (3)
C260.025 (4)0.024 (4)0.043 (4)0.006 (3)0.011 (4)0.004 (3)
C270.031 (4)0.027 (4)0.031 (4)0.001 (3)0.009 (3)0.002 (3)
N280.019 (3)0.022 (3)0.025 (3)0.002 (2)0.006 (3)0.004 (2)
C290.020 (4)0.028 (4)0.027 (4)0.001 (3)0.007 (3)0.002 (3)
C300.027 (4)0.031 (4)0.032 (4)0.003 (3)0.013 (3)0.003 (3)
C310.021 (4)0.033 (5)0.024 (4)0.002 (3)0.003 (3)0.010 (3)
C320.031 (4)0.029 (4)0.034 (4)0.013 (3)0.008 (3)0.000 (3)
C330.026 (4)0.034 (4)0.028 (4)0.004 (3)0.001 (3)0.001 (3)
N340.035 (4)0.038 (4)0.027 (3)0.010 (3)0.012 (3)0.005 (3)
C350.035 (5)0.046 (5)0.038 (4)0.004 (4)0.016 (4)0.003 (4)
C360.033 (4)0.033 (4)0.033 (4)0.006 (4)0.007 (4)0.007 (3)
C370.024 (4)0.025 (4)0.025 (4)0.003 (3)0.000 (3)0.004 (3)
C380.043 (5)0.044 (5)0.024 (4)0.020 (4)0.006 (4)0.001 (3)
C390.053 (5)0.043 (5)0.040 (5)0.008 (4)0.019 (4)0.005 (4)
N400.036 (4)0.032 (4)0.029 (3)0.008 (3)0.006 (3)0.001 (3)
C410.049 (5)0.041 (5)0.028 (4)0.014 (4)0.012 (4)0.001 (3)
C420.048 (5)0.030 (4)0.043 (4)0.008 (4)0.021 (4)0.007 (4)
C430.027 (4)0.024 (4)0.030 (4)0.002 (3)0.008 (3)0.005 (3)
C440.044 (5)0.043 (5)0.030 (4)0.021 (4)0.017 (4)0.010 (3)
C450.054 (5)0.059 (6)0.037 (4)0.015 (4)0.027 (4)0.005 (4)
N460.038 (4)0.024 (3)0.037 (3)0.008 (3)0.015 (3)0.000 (3)
C470.031 (4)0.028 (4)0.031 (4)0.006 (3)0.007 (3)0.007 (3)
C480.030 (4)0.036 (4)0.026 (4)0.001 (3)0.010 (3)0.001 (3)
O490.046 (3)0.026 (3)0.029 (2)0.009 (2)0.024 (2)0.000 (2)
O500.033 (3)0.024 (3)0.022 (2)0.005 (2)0.013 (2)0.0026 (19)
N510.035 (4)0.051 (5)0.022 (3)0.004 (4)0.014 (3)0.003 (3)
O520.043 (3)0.040 (3)0.040 (3)0.007 (3)0.004 (3)0.002 (2)
O530.032 (3)0.041 (3)0.042 (3)0.002 (3)0.011 (2)0.001 (2)
O540.030 (3)0.056 (4)0.052 (3)0.008 (3)0.009 (3)0.003 (3)
N550.027 (3)0.032 (4)0.035 (4)0.001 (3)0.017 (3)0.002 (3)
O560.035 (3)0.019 (3)0.033 (3)0.007 (2)0.014 (2)0.003 (2)
O570.038 (3)0.034 (3)0.021 (3)0.006 (2)0.007 (2)0.002 (2)
O580.048 (3)0.029 (3)0.039 (3)0.002 (2)0.023 (3)0.010 (2)
N590.030 (4)0.051 (5)0.036 (4)0.004 (3)0.015 (3)0.004 (3)
O600.030 (3)0.031 (3)0.045 (3)0.005 (2)0.016 (2)0.005 (2)
O610.032 (3)0.050 (3)0.031 (3)0.004 (3)0.010 (2)0.004 (2)
O620.036 (3)0.062 (4)0.085 (4)0.002 (3)0.032 (3)0.004 (3)
N630.032 (4)0.036 (4)0.035 (4)0.017 (3)0.003 (3)0.006 (3)
O640.040 (3)0.038 (3)0.018 (2)0.002 (2)0.005 (2)0.003 (2)
O650.049 (3)0.034 (3)0.028 (3)0.013 (2)0.019 (2)0.000 (2)
O660.069 (4)0.044 (4)0.035 (3)0.018 (3)0.001 (3)0.001 (3)
Cl10.0807 (16)0.0606 (15)0.0488 (12)0.0157 (12)0.0278 (12)0.0055 (11)
Cl20.0495 (13)0.0745 (16)0.0646 (14)0.0119 (12)0.0293 (12)0.0017 (12)
C670.048 (5)0.027 (4)0.057 (5)0.000 (4)0.021 (4)0.008 (4)
C680.075 (7)0.019 (5)0.142 (10)0.001 (5)0.075 (7)0.012 (5)
C690.027 (5)0.042 (6)0.122 (9)0.007 (4)0.012 (6)0.007 (6)
C700.049 (7)0.070 (8)0.089 (8)0.005 (5)0.000 (6)0.014 (6)
C710.080 (8)0.049 (6)0.053 (6)0.000 (5)0.009 (5)0.012 (4)
C720.056 (5)0.031 (5)0.062 (5)0.001 (4)0.028 (5)0.005 (4)
Cl30.0657 (15)0.0862 (18)0.0505 (13)0.0324 (13)0.0221 (12)0.0113 (12)
Cl40.0864 (19)0.092 (2)0.0657 (15)0.0231 (15)0.0380 (15)0.0161 (14)
C730.061 (7)0.076 (7)0.033 (5)0.032 (5)0.017 (5)0.007 (5)
C740.083 (8)0.115 (9)0.036 (5)0.055 (7)0.024 (6)0.019 (5)
C750.056 (7)0.180 (13)0.032 (5)0.045 (8)0.023 (5)0.028 (7)
C760.064 (7)0.107 (9)0.030 (5)0.023 (6)0.015 (5)0.029 (5)
C770.079 (8)0.108 (9)0.039 (5)0.041 (7)0.031 (6)0.022 (5)
C780.046 (6)0.129 (10)0.021 (4)0.025 (6)0.007 (4)0.015 (5)
Geometric parameters (Å, º) top
La1—O492.506 (4)C32—H320.9500
La1—O502.583 (4)C33—N341.330 (8)
La1—O562.593 (4)C33—H330.9500
La1—O612.601 (4)N34—C351.352 (9)
La1—O532.602 (5)N34—H340.96 (7)
La1—O642.611 (4)C35—C361.373 (9)
La1—O602.643 (4)C35—H350.9500
La1—O652.654 (4)C36—H360.9500
La1—O572.720 (4)C37—C381.388 (9)
La1—N282.773 (5)C37—C421.400 (9)
La1—O522.820 (5)C38—C391.387 (9)
La1—N593.043 (6)C38—H380.9500
C1—N211.375 (8)C39—N401.367 (8)
C1—C201.411 (9)C39—H390.9500
C1—C21.446 (9)N40—C411.319 (8)
C2—C31.345 (9)C41—C421.375 (9)
C2—H20.9500C41—H410.9500
C3—C41.464 (9)C42—H420.9500
C3—H30.9500C43—C441.396 (8)
C4—N211.348 (8)C43—C481.402 (9)
C4—C51.426 (9)C44—C451.397 (9)
C5—C61.389 (8)C44—H440.9500
C5—C251.508 (9)C45—N461.339 (8)
C6—N221.382 (8)C45—H450.9500
C6—C71.427 (9)N46—C471.333 (8)
C7—C81.370 (9)C47—C481.377 (9)
C7—H70.9500C47—H470.9500
C8—C91.436 (9)C48—H480.9500
C8—H80.9500O49—H49A0.8213
C9—N221.373 (7)O49—H49B0.8232
C9—C101.409 (8)O50—H50A0.8230
C10—C111.402 (9)O50—H50B0.8225
C10—C311.480 (9)N51—O541.232 (7)
C11—N231.363 (8)N51—O521.250 (7)
C11—C121.432 (9)N51—O531.274 (7)
C12—C131.356 (9)N55—O581.223 (6)
C12—H120.9500N55—O571.248 (6)
C13—C141.440 (9)N55—O561.288 (6)
C13—H130.9500N59—O621.228 (7)
C14—N231.365 (8)N59—O601.256 (7)
C14—C151.398 (9)N59—O611.282 (7)
C15—C161.419 (9)N63—O661.216 (7)
C15—C371.482 (9)N63—O641.251 (6)
C16—N241.355 (8)N63—O651.266 (7)
C16—C171.429 (9)Cl1—C671.720 (8)
C17—C181.341 (9)Cl2—C721.729 (8)
C17—H170.9500C67—C721.389 (10)
C18—C191.440 (9)C67—C681.411 (11)
C18—H180.9500C68—C691.401 (13)
C19—C201.386 (9)C68—H680.9500
C19—N241.386 (8)C69—C701.340 (13)
C20—C431.499 (8)C69—H690.9500
N21—H210.8800C70—C711.349 (12)
N22—H220.8800C70—H700.9500
N23—H230.8800C71—C721.421 (11)
N24—H240.8800C71—H710.9500
C25—C261.381 (8)Cl3—C731.740 (9)
C25—C301.401 (9)Cl4—C781.743 (10)
C26—C271.380 (9)C73—C741.380 (13)
C26—H260.9500C73—C781.415 (13)
C27—N281.344 (8)C74—C751.343 (12)
C27—H270.9500C74—H740.9500
N28—C291.348 (7)C75—C761.469 (14)
C29—C301.386 (8)C75—H750.9500
C29—H290.9500C76—C771.347 (12)
C30—H300.9500C76—H760.9500
C31—C321.377 (9)C77—C781.375 (11)
C31—C361.399 (9)C77—H770.9500
C32—C331.390 (9)
O49—La1—O5066.29 (13)C19—N24—H24125.2
O49—La1—O56112.12 (13)C26—C25—C30117.3 (6)
O50—La1—O56148.77 (13)C26—C25—C5120.9 (6)
O49—La1—O61126.68 (14)C30—C25—C5121.7 (6)
O50—La1—O61131.39 (13)C27—C26—C25119.9 (6)
O56—La1—O6176.20 (13)C27—C26—H26120.0
O49—La1—O5379.97 (14)C25—C26—H26120.0
O50—La1—O5381.84 (13)N28—C27—C26123.8 (6)
O56—La1—O5367.56 (13)N28—C27—H27118.1
O61—La1—O53141.73 (13)C26—C27—H27118.1
O49—La1—O64137.12 (13)C27—N28—C29116.0 (5)
O50—La1—O6473.81 (13)C27—N28—La1120.7 (4)
O56—La1—O64110.07 (13)C29—N28—La1123.1 (4)
O61—La1—O6471.06 (14)N28—C29—C30124.0 (6)
O53—La1—O64109.85 (15)N28—C29—H29118.0
O49—La1—O6080.95 (14)C30—C29—H29118.0
O50—La1—O60131.51 (13)C29—C30—C25118.9 (6)
O56—La1—O6075.77 (13)C29—C30—H30120.5
O61—La1—O6048.90 (14)C25—C30—H30120.5
O53—La1—O60127.79 (15)C32—C31—C36118.4 (6)
O64—La1—O60117.08 (14)C32—C31—C10121.8 (6)
O49—La1—O65167.68 (14)C36—C31—C10119.8 (6)
O50—La1—O65112.57 (13)C31—C32—C33120.1 (6)
O56—La1—O6561.93 (13)C31—C32—H32120.0
O61—La1—O6563.96 (14)C33—C32—H32120.0
O53—La1—O6587.72 (15)N34—C33—C32120.1 (7)
O64—La1—O6548.29 (13)N34—C33—H33120.0
O60—La1—O65106.67 (14)C32—C33—H33120.0
O49—La1—O5764.58 (12)C33—N34—C35121.4 (6)
O50—La1—O57123.25 (12)C33—N34—H34121 (4)
O56—La1—O5747.74 (12)C35—N34—H34117 (4)
O61—La1—O57100.67 (14)N34—C35—C36120.3 (6)
O53—La1—O5763.42 (14)N34—C35—H35119.9
O64—La1—O57157.72 (13)C36—C35—H35119.9
O60—La1—O5764.46 (14)C35—C36—C31119.6 (7)
O65—La1—O57109.43 (13)C35—C36—H36120.2
O49—La1—N2878.71 (14)C31—C36—H36120.2
O50—La1—N2872.51 (13)C38—C37—C42116.4 (6)
O56—La1—N28138.71 (13)C38—C37—C15119.3 (6)
O61—La1—N2866.67 (13)C42—C37—C15124.3 (6)
O53—La1—N28151.60 (13)C39—C38—C37118.9 (6)
O64—La1—N2874.86 (14)C39—C38—H38120.5
O60—La1—N2866.54 (14)C37—C38—H38120.5
O65—La1—N28113.04 (15)N40—C39—C38124.0 (6)
O57—La1—N28121.83 (14)N40—C39—H39118.0
O49—La1—O52108.02 (14)C38—C39—H39118.0
O50—La1—O5262.45 (13)C41—N40—C39116.2 (6)
O56—La1—O5290.74 (14)N40—C41—C42123.4 (6)
O61—La1—O52124.86 (15)N40—C41—H41118.3
O53—La1—O5246.68 (15)C42—C41—H41118.3
O64—La1—O5263.82 (15)C41—C42—C37121.0 (6)
O60—La1—O52166.03 (14)C41—C42—H42119.5
O65—La1—O5262.73 (14)C37—C42—H42119.5
O57—La1—O52109.05 (14)C44—C43—C48116.4 (6)
N28—La1—O52124.94 (15)C44—C43—C20121.7 (6)
O49—La1—N59103.50 (15)C48—C43—C20121.9 (5)
O50—La1—N59135.86 (14)C43—C44—C45119.8 (6)
O56—La1—N5975.36 (14)C43—C44—H44120.1
O61—La1—N5924.70 (14)C45—C44—H44120.1
O53—La1—N59140.82 (15)N46—C45—C44123.0 (6)
O64—La1—N5994.08 (16)N46—C45—H45118.5
O60—La1—N5924.22 (14)C44—C45—H45118.5
O65—La1—N5985.79 (15)C47—N46—C45117.0 (6)
O57—La1—N5982.58 (15)N46—C47—C48124.1 (6)
N28—La1—N5963.35 (14)N46—C47—H47117.9
O52—La1—N59148.42 (15)C48—C47—H47117.9
N21—C1—C20124.5 (6)C47—C48—C43119.7 (6)
N21—C1—C2110.5 (6)C47—C48—H48120.2
C20—C1—C2124.9 (6)C43—C48—H48120.2
C3—C2—C1106.5 (6)La1—O49—H49A109.7
C3—C2—H2126.8La1—O49—H49B133.3
C1—C2—H2126.8H49A—O49—H49B116.2
C2—C3—C4106.6 (6)La1—O50—H50A118.6
C2—C3—H3126.7La1—O50—H50B126.6
C4—C3—H3126.7H50A—O50—H50B99.7
N21—C4—C5126.0 (6)O54—N51—O52121.9 (6)
N21—C4—C3110.4 (5)O54—N51—O53120.6 (6)
C5—C4—C3123.5 (6)O52—N51—O53117.4 (6)
C6—C5—C4125.3 (6)N51—O52—La192.9 (4)
C6—C5—C25117.5 (6)N51—O53—La1102.9 (4)
C4—C5—C25117.1 (6)O58—N55—O57122.3 (6)
N22—C6—C5126.6 (6)O58—N55—O56121.5 (5)
N22—C6—C7106.8 (5)O57—N55—O56116.1 (5)
C5—C6—C7126.5 (6)N55—O56—La1100.4 (3)
C8—C7—C6108.4 (6)N55—O57—La195.3 (3)
C8—C7—H7125.8O62—N59—O60121.9 (6)
C6—C7—H7125.8O62—N59—O61120.5 (6)
C7—C8—C9107.7 (6)O60—N59—O61117.6 (5)
C7—C8—H8126.1O62—N59—La1176.4 (5)
C9—C8—H8126.1O60—N59—La159.7 (3)
N22—C9—C10126.2 (6)O61—N59—La158.0 (3)
N22—C9—C8107.0 (5)N59—O60—La196.0 (4)
C10—C9—C8126.8 (6)N59—O61—La197.3 (4)
C11—C10—C9126.1 (6)O66—N63—O64121.7 (6)
C11—C10—C31117.9 (6)O66—N63—O65120.5 (6)
C9—C10—C31115.9 (5)O64—N63—O65117.8 (5)
N23—C11—C10125.3 (6)O66—N63—La1177.4 (5)
N23—C11—C12111.0 (6)O64—N63—La157.9 (3)
C10—C11—C12123.7 (6)O65—N63—La160.0 (3)
C13—C12—C11106.4 (6)N63—O64—La198.2 (4)
C13—C12—H12126.8N63—O65—La195.7 (3)
C11—C12—H12126.8C72—C67—C68118.4 (8)
C12—C13—C14106.6 (6)C72—C67—Cl1120.5 (6)
C12—C13—H13126.7C68—C67—Cl1121.1 (7)
C14—C13—H13126.7C69—C68—C67119.6 (9)
N23—C14—C15126.2 (6)C69—C68—H68120.2
N23—C14—C13110.4 (6)C67—C68—H68120.2
C15—C14—C13123.3 (6)C70—C69—C68119.6 (9)
C14—C15—C16125.3 (6)C70—C69—H69120.2
C14—C15—C37117.7 (6)C68—C69—H69120.2
C16—C15—C37116.7 (6)C69—C70—C71123.8 (10)
N24—C16—C15125.7 (6)C69—C70—H70118.1
N24—C16—C17107.3 (6)C71—C70—H70118.1
C15—C16—C17126.7 (6)C70—C71—C72117.8 (9)
C18—C17—C16108.9 (6)C70—C71—H71121.1
C18—C17—H17125.6C72—C71—H71121.1
C16—C17—H17125.6C67—C72—C71120.8 (8)
C17—C18—C19107.6 (6)C67—C72—Cl2120.4 (6)
C17—C18—H18126.2C71—C72—Cl2118.8 (7)
C19—C18—H18126.2C74—C73—C78119.0 (8)
C20—C19—N24126.5 (6)C74—C73—Cl3122.2 (8)
C20—C19—C18126.8 (6)C78—C73—Cl3118.8 (8)
N24—C19—C18106.6 (6)C75—C74—C73121.8 (12)
C19—C20—C1127.3 (6)C75—C74—H74119.1
C19—C20—C43115.4 (6)C73—C74—H74119.1
C1—C20—C43117.1 (6)C74—C75—C76120.2 (11)
C4—N21—C1105.9 (5)C74—C75—H75119.9
C4—N21—H21127.0C76—C75—H75119.9
C1—N21—H21127.0C77—C76—C75116.2 (10)
C9—N22—C6110.0 (5)C77—C76—H76121.9
C9—N22—H22125.0C75—C76—H76121.9
C6—N22—H22125.0C76—C77—C78124.2 (11)
C11—N23—C14105.6 (5)C76—C77—H77117.9
C11—N23—H23127.2C78—C77—H77117.9
C14—N23—H23127.2C77—C78—C73118.5 (9)
C16—N24—C19109.5 (5)C77—C78—Cl4120.8 (10)
C16—N24—H24125.2C73—C78—Cl4120.6 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N34—H34···O50i0.96 (7)1.88 (7)2.810 (7)163 (6)
O49—H49A···N40ii0.821.922.652 (7)148
O49—H49B···O65iii0.822.082.899 (5)172
O50—H50A···O56iii0.821.932.751 (6)179
O50—H50B···N46iv0.821.842.658 (6)179
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+2, z.

Experimental details

Crystal data
Chemical formula[La(NO3)4(C40H27N8)(H2O)2]·3C6H4Cl2
Mr1483.65
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)17.1527 (3), 28.5415 (6), 13.5331 (2)
β (°) 112.984 (1)
V3)6099.34 (19)
Z4
Radiation typeMo Kα
µ (mm1)1.04
Crystal size (mm)0.25 × 0.20 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Tmin, Tmax0.798, 0.911
No. of measured, independent and
observed [I > 2σ(I)] reflections
36533, 10767, 6137
Rint0.091
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.063, 0.148, 0.94
No. of reflections10767
No. of parameters748
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.83, 0.77

Computer programs: COLLECT (Nonius, 1999), DENZO (Otwinowski & Minor, 1997), SIR97 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEPIII (Burnett & Johnson, 1996) and Mercury (Macrae et al., 2006).

Selected bond lengths (Å) top
La1—O492.506 (4)La1—O602.643 (4)
La1—O502.583 (4)La1—O652.654 (4)
La1—O562.593 (4)La1—O572.720 (4)
La1—O612.601 (4)La1—N282.773 (5)
La1—O532.602 (5)La1—O522.820 (5)
La1—O642.611 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N34—H34···O50i0.96 (7)1.88 (7)2.810 (7)163 (6)
O49—H49A···N40ii0.821.922.652 (7)148
O49—H49B···O65iii0.822.082.899 (5)172
O50—H50A···O56iii0.821.932.751 (6)179
O50—H50B···N46iv0.821.842.658 (6)179
Symmetry codes: (i) x1, y+3/2, z1/2; (ii) x+1, y1/2, z1/2; (iii) x, y+3/2, z1/2; (iv) x+2, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds