Download citation
Download citation
link to html
The crystal structure of the title aluminium barium lanthanum ruthenium strontium oxide has been solved and refined using neutron powder diffraction to establish the parameters of the oxygen sublattice and then single-crystal X-ray diffraction data for the final refinement. The structure is a cubic modification of the perovskite ABO3 structure type. The refined composition is Ba0.167La0.548Sr1.118Ru0.377Al0.290O3.480, and with respect to the basic perovskite structure type it might be written as (Ba8La13.68Sr34.32)(Al13.92La12.64Ru18.08Sr19.36)O192-x, with x = 24.96. The metal atoms lie on special positions. The A-type sites are occupied by Ba, La and Sr. The Ba atoms are located in a regular cubocta­hedral environment, whereas the La and Sr atoms share the same positions with an irregular coordination of O atoms. The B-type sites are divided between two different Wyckoff positions occupied by Ru/Al and La/Sr. Only Al and Ru occupy sites close to the ideal perovskite positions, while La and Sr move away from these positions toward the (111) planes with high Al content. The structure contains isolated RuO6 octa­hedra, which form tetra­hedral substructural units.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110013879/fa3216sup1.cif
Contains datablocks global, I_XRD, I_NPD

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110013879/fa3216I_XRDsup2.hkl
Contains datablock I_XRD

rtv

Rietveld powder data file (CIF format) https://doi.org/10.1107/S0108270110013879/fa3216I_NPDsup3.rtv
Contains datablock I_NPD

Comment top

The crystal chemistry of ruthenium oxides is quite rich. Perovskite (Bouchard & Weiher, 1972; Shepard et al., 1997), belonging to both cubic and hexagonal types, Ruddlesden–Popper (Cava et al., 1995; Maeno et al., 1994) and pyrochlore structure types (Bouchard & Gillson, 1971; Kobayashi et al., 1995; Zhu et al., 1997) are found in this family. The characteristic common to all of them is the presence of RuO6 octahedra that form networks extending in one, two or three dimensions by corner- or edge-sharing. Additionally, compounds with isolated units of one, two or three octahedra have also been reported (Ebbinghaus, 2004; Darriet & Subramanian, 1995). This differing dimensionality, along with the fact that most of these compounds are metallic conductors, confer on them special interest as a medium for studying unusual physical properties. A good example is the compound Sr2RuO4 (Maeno et al., 1994), which is the first layered perovskite-related compound that shows superconductivity without the presence of copper. Moreover, this species has been found to belong to the rare group of compounds showing spin-triplet superconductivity (Ishida et al., 1998). Finally, hybrid rutheno-cuprate materials show concomitant superconductivity and ferromagnetism, which is one of the most intriguing combinations of physical properties in modern solid-state chemistry and physics.

The crystal structure of the title compound reported here is part of a broad study concerning the synthesis and crystal chemistry of ruthenates. These compounds adopt complex crystal structures and disorder is normal. La and Sr usually occupy the same crystallographic positions, and their different oxidation states (+3 and +2 for La and Sr, respectively) are accommodated by distortion of the anion sublattice. O atoms are thus forced to move away from their ideal positions and, furthermore, they might show partial occupancies in order to maintain charge neutrality. In this context, careful crystal structure determinations are hindered by the coexistence of O, a lighter atom, with much heavier atoms such as Ru, Ba, La or Sr. To overcome this problem, in this work the structure refinement was conducted using single-crystal X-ray and neutron powder diffraction data separately. The X-ray data provided basic information about the cationic substructure, while neutron powder diffraction data, because of the more substantial scattering length of O for neutrons in relation to those of the cations, was used to derive the relevant parameters of the O substructure. Details of the two-part refinement are given in the Experimental section, and the final plot for the refinement to the neutron powder diffraction data is shown in Fig. 1.

The cationic formula (stoichiometric fraction of each element, considering only the cations) derived from the refined structural model, Al0.12Ba0.07La0.22Ru0.15Sr0.45, agrees with the value obtained from microprobe analysis. Note that the percentages of the Ba and La cations must be compared with the sum obtained by energy-dispersive X-ray analysis. The composition derived from the refined model in wt% is Ba7.7La25.5Sr32.8(Al2.6Ru12.7)O18.7.

The crystal structure of the title compound can be derived from the cubic perovskite ABO3, where the A and B sites are occupied by the mixtures (Ba, La, Sr) and (Ru, Al, La, Sr), respectively. The distribution of the cations leads to a face-centred cubic superstructure with strongly distorted B-type cavities when these are occupied by Al, La or Sr. Projections of the structure down [100] and [211], together with the undistorted perovskite arrangement, are presented in Fig. 2.

The TRANSTRU tool of the Bilbao Crystallographic Server was used to generate the coordinates of the ideal perovskite comparable with those of the present structure (Aroyo, Perez-Mato et al., 2006; Aroyo, Kirov et al., 2006). This program transforms a high-symmetry parent structure to a low-symmetry space group basis, splitting all possible Wyckoff positions. In our case, the parent phase is the Pm3m structure of CaTiO4 and the low-symmetry space group is defined by the present space group F23 with a cell parameter four times that of perovskite. Comparing the structure so generated with the present one, it turns out that two of the split Wyckoff positions corresponding to A-type sites are vacant in the present structure. Using the compositional formula derived from the refined structural model, the cationic distribution in the ideal perovskite superstructure corresponds to the formula (Ba8La13.68Sr34.32)(Al13.92La12.64Ru18.08Sr19.36)O192 - x, with x = 24.96.

Only Ba (Ba1 and Ba2 in A sites) and most (88.9%) of the Ru (Ru1 in B sites) present well defined O coordination polyhedra (Fig. 3). Atoms Ba1 and Ba2 lie at the centres of regular cuboctahedra formed by 12 O atoms, and Ru1 is at the centre of a slightly distorted octahedron. The Ba—O and Ru1—O distances (Table 1) are in agreement with values reported in the literature [Standard reference?]. It is worth noting that the O atoms involved in these coordination shells (O1 and O2) fully occupy their positions. These two cations and their coordination polyhedra form a characteristic structural unit, shown in Fig. 3. The cuboctahedra around Ba share four (out of eight) of the triangular faces with four Ru1-centred octahedra arranged as symmetrically as possible. The arrangement of this structural unit defines a face-centred cubic substructure. The remaining A- and B-type positions are occupied by (La1/Sr1, La3/Sr3) and (Al1/Ru2, La2/Sr2, La4/Sr4), respectively. The average coordination around these cations (Fig. 4) is rather irregular and further complicated by the fact that some of the coordinating O atoms (O3, O4, O5 and O6) have partial occupancy. The La/Sr—O distances and polyhedron shapes vary among these sites. The average coordinations at all of these sites are depicted in Fig. 4(a)–(d). The La1/Sr1 site has a major Sr component (64.3%), with an average environment of 12 O atoms at distances shown in Table 1. However, only nine bonds are possible. Besides six bonds to atoms O1 and O2, other combinations involving one congener of atom O3 and either two of O4 or two of O5 are possible. The La2/Sr2 sites are almost equally occupied by La/Sr, with an average environment of 15 O sites. Only nine bonds actually exist (three O4···O6 and three O5···O6 vectors are too short for simultaneous occupation). At the La3/Sr3 site the Sr occupancy is major (78.9%) and incompatible occupancy arises between O4···O6 and O5···O6. Two polyhedra, involving congeners of O1, O2 and of either (O4 + O5) or O6, are possible. At the La4/Sr4 site the presence of La is half that of Sr; this site exhibits the clearest coordination polyhedra. The average environment has nine O atoms but only six bonds may coexist.

Atoms Ru2 and Al1 share the same crystallographic position. In the 12-coordinated polyhedron shown in Fig. 4(e), only two environments are possible. One is defined by atoms O3 and O6, which most probably occurs when the site is occupied by Ru. These O atoms define a strongly distorted octahedron with short but almost equal Ru2—O3 and Ru2—O6 distances. This seeming anomaly in the apparent distances could be explained, on the one hand, as a possible consequence of the inaccuracy of the Rietveld method used to determine the positions and site-occupation factors of the O atoms, and on the other hand as a result of the presence of O4 and O5 average sites too close to O3 and O6. Another possible environment around Al1/Ru2 would consist of either three congeners of O4 or three of O5. The short distance between them excludes the simultaneous presence of both types of atoms. In both cases, a triangular environment around Al1/Ru2 is formed, with a distance of 0.77 Å from the Al1/Ru2 position to the average plane defined by the six O4 and O5 positions.

The experimental cation—O bond lengths can be tested with results from bond-valence analysis (Brown, 1992). Using bond-valence parameters from Brown & Altermatt (1985) for Al, Ba, La and Sr, and from Dusarrat et al. (1996) for Ru, atomic valences of 1.95 (1), 2.33 (2) and 5.05 (6) are found for atoms Ba1, Ba2 and Ru1, respectively. The values for Ba1 and Ru1 are close to the expected valences of 2 and 5, but the high value for Ba2 indicates residual bond strain at this site. The bond-valence calculations for the other cationic sites require proper application of the fractional occupancies corresponding to the different cation—O bonds. As an example, a calculation for La1 using bonds to O1(× 2), O2(× 4), O3(× 1) and O4(× 3) gives a bond-valence of 3.04.

Experimental top

The title compound was obtained unintentionally when attempting to synthesize La0.4Sr1.6Cu0.4Ru0.6O4 - x using BaCl2 as mineraliser. Stoichiometric amounts of dried La2O3, SrCO3, CuO and RuO2 were ground in an agate mortar. The resulting powder (1 g) was thoroughly ground with BaCl2 (0.8 g). The final mixture was heated in air in an alumina crucible. The temperature was increased from room temperature to 1523 K over 7 h and kept there for 36 h. The temperature was then decreased to 1173 K at a rate of 10 K h-1. After 5 h annealing at this temperature, the furnace was switched off.

The product, examined by optical microscopy, shows an apparent single phase of octahedrally shaped single crystals. The chemical composition obtained by electron microprobe microanalysis on a single-crystal corresponds to the cation proportions Al 12% (Ba 13% La 13%) Ru 14% Sr 46%, with a 3% estimated error and an average value for the Ba/La composition. Since these analyses were carried out on single crystals, impurities in the bulk sample are not reflected in the results. However, the sample used for powder diffraction does not correspond to a single phase. Indexing the neutron powder diffraction pattern using lattice parameters from the single-crystal diffraction data reveals the presence of a few unindexed peaks. The low intensities of these lines make the identification of the unknown phase difficult. The presence of the starting materials used in the synthesis was ruled out. The best match for the unindexed lines corresponds to a mixture of Ba3SrRu2O9 and Sr2RuO4. Proportions of 18% and 3%, respectively, of these compounds were determined during the final Rietveld analysis based on the neutron powder diffraction data.

For single-crystal X-ray diffraction, a crystal of octahedral shape was selected for measurement of a highly redundant data set. Neutron powder diffraction data were collected at the FRM2 (Forschungs-Neutronenquelle-Heinz Maier-Leibnitz) neutron source on the Spodi diffractometer. A vanadium sample container was used, filled with 4.5 g of the synthesized material.

Refinement top

The first refinement was based on single-crystal X-ray diffraction data. Reconstructed reciprocal space sections show cubic face-centred symmetry, with extinction rules compatible with space groups F23, Fm3, F432, F43m, Fm3m and F4132. Direct methods succeeded only with F23 and F43m, leading in both cases to the same structural model. Refinement in space group F23 permitted the determination of the main features of the cationic structure. The refinement was started with equal occupancies for the La/Sr atoms in the A sites of the perovskite superstructure, and similarly for Ru/Al/La/Sr at the B sites, and with only O1 and O2, which form the octahedra around the Ru atoms. To avoid unrealistic total occupation factors, i.e. >1, the sum of the occupancies at the A and B sites was kept equal to 1. Successive refinement cycles including variable La/Sr occupancies converged, and difference Fourier maps revealed the remaining O atoms. At this point, the B-type sites with Ru/Al and La/Sr were differentiated. These latter two types of cations have disordered coordination polyhedra, and attempts to refine the occupancies of their O atoms with X-ray data failed. To overcome this problem, the neutron powder diffraction data were included in a refinement in which all minimized functions for the data blocks were combined with no additional weighting. In this analysis two additional phases were included, Ba3SrRu2O9 (Zandbergen & Ijdo, 1984) and Sr2RuO4 (Walz & Lichtenberg, 1993), to fit the experimental powder diffraction diagram, refining only their scale factors. A charge neutrality restriction was included over the atoms of the main phase. The O occupancies and their isotropic displacement parameters were refined successfully, but the occupancies of the La/Sr sites changed to values far from their proportions as measured in the compositional analysis. This probably occurs because these atoms have less contrast with neutrons than with X-ray scattering. The final refinement was performed using only the single-crystal X-ray data, fixing the occupational parameters of atoms O3, O4, O5 and O6 to the values obtained in the combined refinement and restricting the occupancies in accordance with an electroneutrality condition. High residual electron density at the Al1 site and a negative displacement parameter were corrected by replacing some Al content with Ru. In the final refinement a refined Flack parameter (Flack, 1983) indicated an inversion twin. A final difference Fourier map shows the highest residual density values close to the Ba positions. Refinement in space group F43m also converges to similar R factors. Both structural models are similar, but atoms O4 and O5 in F23 merge into one atom in F43m. In F43m, the displacement parameter of this site becomes unusually large, which indicates that this atom represents an average of two different positions, corresponding to O4 and O5 in F23. This fact was used to select F23 instead of F43m. The final refinement plot for the neutron powder diffraction pattern is shown in Fig. 1. Residuals for the combined refinement are R = 0.069 and wR = 0.073 for the single-crystal data, and Rp = 0.047 and wRp = 0.062 for the neutron powder diffraction data.

Computing details top

Data collection: CrysAlis RED (Oxford Diffraction, 2007) for I_XRD; described by Hoelzel et al. (2007) for I_NPD. Cell refinement: CrysAlis RED (Oxford Diffraction, 2007) for I_XRD; JANA2006 (Petříček et al., 2006) for I_NPD. Data reduction: CrysAlis RED (Oxford Diffraction, 2007) for I_XRD; described by Hoelzel et al. (2007) for I_NPD. Program(s) used to solve structure: SIR97 (Altomare et al., 1999) for I_XRD; [Please provide missing details] for I_NPD. For both compounds, program(s) used to refine structure: JANA2006 (Petříček et al., 2006). Molecular graphics: DIAMOND (Brandenburg & Putz, 2005) and CrystalMaker (Palmer, 2005) for I_XRD; [Please provide missing details] for I_NPD. For both compounds, software used to prepare material for publication: JANA2006 (Petříček et al., 2006).

Figures top
[Figure 1] Fig. 1. Rietveld refinement plot with neutron diffraction data.
[Figure 2] Fig. 2. (a) and (c) Projections of the title structure. (b) and (d) Projections of the ideal perovskite. Viewing directions are (a) and (b) along [100], and (c) and (d) along [211]. The labels in (c) indicate the compositions of the AO3 and B layers.
[Figure 3] Fig. 3. Substructural units formed from four RuO6 octahedra enclosing the cuboctahedral cavity around (a) Ba1 and (b) Ba2.
[Figure 4] Fig. 4. Average coordination polyhedra around (a) La1/Sr1, (b) La2/Sr2, (c) La3/Sr3, (d) La4/Sr4 and (e) Al1/Ru2. In the electronic version of the journal, mixed colouring in the central atom represents the occupation fraction of La (green)/Sr and Ru (blue)/Al.
(I_XRD) aluminium barium lanthanum ruthenium strontium oxide top
Crystal data top
Al14Ba8La26.3Ru18Sr53.7O167Dx = 5.599 Mg m3
Mr = 14333.52Mo Kα radiation, λ = 0.71069 Å
Cubic, F23Cell parameters from 16440 reflections
Hall symbol: F 2 2 3θ = 2.5–32.5°
a = 16.197 (1) ŵ = 26.68 mm1
V = 4249.2 (5) Å3T = 295 K
Z = 1Octahedron, black
F(000) = 63040.14 × 0.13 × 0.09 mm
Data collection top
Goniometer Kuma KM4/Oxford Xcalibur, Sapphire2
diffractometer
1294 independent reflections
Radiation source: Enhance (Mo) X-ray Source1126 reflections with I > 3σ(I)
Graphite monochromatorRint = 0.042
Detector resolution: 8.3504 pixels mm-1θmax = 32.6°, θmin = 3.6°
ω scansh = 2324
Absorption correction: gaussian
[CrysAlis RED (Oxford Diffraction, 2007); numerical absorption correction based on Gaussian integration over a multifaceted crystal model]
k = 2323
Tmin = 0.102, Tmax = 0.181l = 2424
31971 measured reflections
Refinement top
Refinement on FWeighting scheme based on measured s.u.'s w = 1/(σ2(F) + 0.0025000002F2)
R[F2 > 2σ(F2)] = 0.043(Δ/σ)max = 0.048
wR(F2) = 0.090Δρmax = 3.45 e Å3
S = 1.51Δρmin = 4.05 e Å3
1294 reflectionsExtinction correction: B-C type 1 Lorentzian isotropic (Becker & Coppens, 1974)
65 parametersExtinction coefficient: 300 (200)
1 restraintAbsolute structure: Flack (1983), with 584 Friedel pairs
1 constraintAbsolute structure parameter: 0.51 (3)
Crystal data top
Al14Ba8La26.3Ru18Sr53.7O167Z = 1
Mr = 14333.52Mo Kα radiation
Cubic, F23µ = 26.68 mm1
a = 16.197 (1) ÅT = 295 K
V = 4249.2 (5) Å30.14 × 0.13 × 0.09 mm
Data collection top
Goniometer Kuma KM4/Oxford Xcalibur, Sapphire2
diffractometer
1294 independent reflections
Absorption correction: gaussian
[CrysAlis RED (Oxford Diffraction, 2007); numerical absorption correction based on Gaussian integration over a multifaceted crystal model]
1126 reflections with I > 3σ(I)
Tmin = 0.102, Tmax = 0.181Rint = 0.042
31971 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0431 restraint
wR(F2) = 0.090Δρmax = 3.45 e Å3
S = 1.51Δρmin = 4.05 e Å3
1294 reflectionsAbsolute structure: Flack (1983), with 584 Friedel pairs
65 parametersAbsolute structure parameter: 0.51 (3)
Special details top

Experimental. Single-crystal X-ray diffraction measured at home institution. Neutron powder diffraction measured at Spodi diffractometer at FRM II nuclear reactor in Garching, Germany

Refinement. Refinement of F against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.500.50.0539 (7)
Ba20.750.250.250.0089 (2)
Ru10.62614 (6)0.12614 (6)0.37386 (6)0.01077 (19)
Ru20.3726 (2)0.1274 (2)0.1274 (2)0.0092 (7)0.126 (11)
Al10.3726 (2)0.1274 (2)0.1274 (2)0.0092 (7)0.874 (11)
La10.750.02880 (10)0.250.0189 (4)0.36 (3)
Sr10.750.02880 (10)0.250.0189 (4)0.64 (3)
La20.59538 (7)0.09538 (7)0.09538 (7)0.0252 (3)0.474 (18)
Sr20.59538 (7)0.09538 (7)0.09538 (7)0.0252 (3)0.526 (18)
La30.500.27923 (10)0.0138 (4)0.211 (15)
Sr30.500.27923 (10)0.0138 (4)0.789 (15)
La40.34495 (6)0.15505 (6)0.34495 (6)0.0208 (3)0.321 (19)
Sr40.34495 (6)0.15505 (6)0.34495 (6)0.0208 (3)0.679 (19)
O10.6287 (5)0.0060 (6)0.3706 (5)0.018 (2)
O20.6237 (5)0.2484 (7)0.3762 (5)0.022 (2)
O30.292 (2)0.1097 (19)0.210 (2)0.031 (8)*0.32 (2)
O40.397 (5)0.184 (4)0.009 (5)0.03 (3)*0.38 (3)
O50.394 (5)0.009 (5)0.189 (4)0.07 (2)*0.25 (3)
O60.3573 (16)0.0478 (15)0.0447 (15)0.041 (6)*0.53 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.0539 (13)0.0539 (13)0.0539 (13)000
Ba20.0089 (3)0.0089 (3)0.0089 (3)000
Ru10.0108 (3)0.0108 (3)0.0108 (3)0.0042 (3)0.0042 (3)0.0042 (3)
Ru20.0092 (12)0.0092 (12)0.0092 (12)0.0042 (9)0.0042 (9)0.0042 (9)
Al10.0092 (12)0.0092 (12)0.0092 (12)0.0042 (9)0.0042 (9)0.0042 (9)
La10.0216 (7)0.0135 (7)0.0216 (7)00.0003 (7)0
Sr10.0216 (7)0.0135 (7)0.0216 (7)00.0003 (7)0
La20.0252 (6)0.0252 (6)0.0252 (6)0.0022 (5)0.0022 (5)0.0022 (5)
Sr20.0252 (6)0.0252 (6)0.0252 (6)0.0022 (5)0.0022 (5)0.0022 (5)
La30.0093 (7)0.0161 (7)0.0161 (7)000.0004 (6)
Sr30.0093 (7)0.0161 (7)0.0161 (7)000.0004 (6)
La40.0208 (6)0.0208 (6)0.0208 (6)0.0012 (4)0.0012 (4)0.0012 (4)
Sr40.0208 (6)0.0208 (6)0.0208 (6)0.0012 (4)0.0012 (4)0.0012 (4)
O10.022 (4)0.006 (4)0.026 (4)0.002 (3)0.003 (4)0.002 (3)
O20.020 (4)0.020 (4)0.024 (4)0.008 (4)0.015 (4)0.015 (4)
Geometric parameters (Å, º) top
Ba1—O12.958 (9)Sr1—O4xxv2.68 (8)
Ba1—O1i2.958 (9)Sr1—O5i2.61 (8)
Ba1—O1ii2.958 (9)Sr1—O5xxiii2.61 (8)
Ba1—O1iii2.958 (9)La2/Sr2—O2xiv2.613 (11)
Ba1—O1iv2.958 (9)La2—O2vii2.613 (11)
Ba1—O1v2.958 (9)La2—O2xx2.613 (11)
Ba1—O1vi2.958 (9)La2/Sr2—O4xxvi2.22 (8)
Ba1—O1vii2.958 (9)La2—O4xxi2.22 (8)
Ba1—O1viii2.958 (9)La2—O4xxiv2.22 (8)
Ba1—O1ix2.958 (9)La2/Sr2—O5i2.28 (8)
Ba1—O1x2.958 (9)La2—O5xxvii2.28 (8)
Ba1—O1xi2.958 (9)La2—O5xxii2.28 (8)
Ba2—O22.891 (8)La2/Sr2—O6i2.58 (2)
Ba2—O2xii2.891 (8)La2—O6xxvi2.52 (2)
Ba2—O2xiii2.891 (8)La2—O6xxvii2.58 (2)
Ba2—O2xiv2.891 (8)La2—O6xxi2.52 (2)
Ba2—O2xv2.891 (8)La2—O6xxii2.58 (2)
Ba2—O2xvi2.891 (8)La2—O6xxiv2.52 (2)
Ba2—O2xvii2.891 (8)Sr2—O2xiv2.613 (11)
Ba2—O2vii2.891 (8)Sr2—O2vii2.613 (11)
Ba2—O2xviii2.891 (8)Sr2—O2xx2.613 (11)
Ba2—O2xix2.891 (8)Sr2—O4xxvi2.22 (8)
Ba2—O2x2.891 (8)Sr2—O4xxi2.22 (8)
Ba2—O2xx2.891 (8)Sr2—O4xxiv2.22 (8)
Ru1—O11.948 (9)Sr2—O5i2.28 (8)
Ru1—O1vii1.948 (9)Sr2—O5xxvii2.28 (8)
Ru1—O1x1.948 (9)Sr2—O5xxii2.28 (8)
Ru1—O21.980 (12)Sr2—O6i2.58 (2)
Ru1—O2vii1.980 (12)Sr2—O6xxvi2.52 (2)
Ru1—O2x1.980 (12)Sr2—O6xxvii2.58 (2)
Ru2/Al1—O31.89 (4)Sr2—O6xxi2.52 (2)
Ru2—O3xxi1.89 (4)Sr2—O6xxii2.58 (2)
Ru2—O3xxii1.89 (4)Sr2—O6xxiv2.52 (2)
Ru2/Al1—O42.17 (8)La3/Sr3—O12.559 (9)
Ru2—O4xxi2.17 (8)La3—O1i2.559 (9)
Ru2—O4xxii2.17 (8)La3—O1ix2.573 (9)
Ru2/Al1—O52.18 (8)La3—O1x2.573 (9)
Ru2—O5xxi2.18 (8)La3/Sr3—O2v2.870 (8)
Ru2—O5xxii2.18 (8)La3—O2vii2.870 (8)
Ru2/Al1—O61.88 (2)La3/Sr3—O4xv2.27 (8)
Ru2—O6xxi1.88 (2)La3—O4xxi2.27 (8)
Ru2—O6xxii1.88 (2)La3/Sr3—O52.26 (8)
Al1—O31.89 (4)La3—O5i2.26 (8)
Al1—O3xxi1.89 (4)La3/Sr3—O6xxii2.45 (3)
Al1—O3xxii1.89 (4)La3—O6xxiv2.45 (3)
Al1—O42.17 (8)Sr3—O12.559 (9)
Al1—O4xxi2.17 (8)Sr3—O1i2.559 (9)
Al1—O4xxii2.17 (8)Sr3—O1ix2.573 (9)
Al1—O52.18 (8)Sr3—O1x2.573 (9)
Al1—O5xxi2.18 (8)Sr3—O2v2.870 (8)
Al1—O5xxii2.18 (8)Sr3—O2vii2.870 (8)
Al1—O61.88 (2)Sr3—O4xv2.27 (8)
Al1—O6xxi1.88 (2)Sr3—O4xxi2.27 (8)
Al1—O6xxii1.88 (2)Sr3—O52.26 (8)
La1/Sr1—O12.795 (9)Sr3—O5i2.26 (8)
La1—O1xiii2.795 (9)Sr3—O6xxii2.45 (3)
La1/Sr1—O2xv2.558 (8)Sr3—O6xxiv2.45 (3)
La1—O2vii2.558 (8)La4/Sr4—O1i2.675 (9)
La1—O2x2.559 (8)La4—O1iv2.675 (9)
La1—O2xx2.559 (8)La4—O1x2.675 (9)
La1/Sr1—O3i2.43 (3)La4/Sr4—O32.47 (4)
La1—O3xxiii2.43 (3)La4—O3xxviii2.50 (4)
La1/Sr1—O4xxiv2.68 (8)La4/Sr4—O3v2.47 (4)
La1—O4xxv2.68 (8)La4—O3xxix2.50 (4)
La1/Sr1—O5i2.61 (8)La4—O3xxii2.50 (4)
La1—O5xxiii2.61 (8)La4—O3xi2.47 (4)
Sr1—O12.795 (9)Sr4—O1i2.675 (9)
Sr1—O1xiii2.795 (9)Sr4—O1iv2.675 (9)
Sr1—O2xv2.558 (8)Sr4—O1x2.675 (9)
Sr1—O2vii2.558 (8)Sr4—O32.47 (4)
Sr1—O2x2.559 (8)Sr4—O3xxviii2.50 (4)
Sr1—O2xx2.559 (8)Sr4—O3v2.47 (4)
Sr1—O3i2.43 (3)Sr4—O3xxix2.50 (4)
Sr1—O3xxiii2.43 (3)Sr4—O3xxii2.50 (4)
Sr1—O4xxiv2.68 (8)Sr4—O3xi2.47 (4)
O1—Ba1—O1i89.8 (2)O2xiv—La2—O4xxvi59.7 (19)
O1—Ba1—O1ii176.3 (2)O2xiv—La2—O4xxi88 (2)
O1—Ba1—O1iii90.3 (2)O2xiv—La2—O4xxiv127.7 (19)
O1—Ba1—O1iv120.0 (2)O2xiv—La2—O5i126.2 (19)
O1—Ba1—O1v120.0 (2)O2xiv—La2—O5xxvii87 (2)
O1—Ba1—O1vi63.0 (2)O2xiv—La2—O5xxii58.3 (19)
O1—Ba1—O1vii56.9 (2)O2xiv—La2—O6i151.1 (6)
O1—Ba1—O1viii120.0 (2)O2xiv—La2—O6xxvi113.7 (6)
O1—Ba1—O1ix63.0 (2)O2xiv—La2—O6xxvii85.8 (6)
O1—Ba1—O1x56.9 (2)O2xiv—La2—O6xxi85.3 (6)
O1—Ba1—O1xi120.0 (2)O2xiv—La2—O6xxii114.5 (6)
O1i—Ba1—O1ii90.3 (2)O2xiv—La2—O6xxiv150.9 (6)
O1i—Ba1—O1iii176.3 (2)O2vii—La2—O2xx68.2 (3)
O1i—Ba1—O1iv63.0 (2)O2vii—La2—O4xxvi127.7 (19)
O1i—Ba1—O1v56.9 (2)O2vii—La2—O4xxi59.7 (19)
O1i—Ba1—O1vi120.0 (2)O2vii—La2—O4xxiv88 (2)
O1i—Ba1—O1vii120.0 (2)O2vii—La2—O5i58.3 (19)
O1i—Ba1—O1viii120.0 (2)O2vii—La2—O5xxvii126.2 (19)
O1i—Ba1—O1ix56.9 (2)O2vii—La2—O5xxii87 (2)
O1i—Ba1—O1x63.0 (2)O2vii—La2—O6i114.5 (6)
O1i—Ba1—O1xi120.0 (2)O2vii—La2—O6xxvi150.9 (6)
O1ii—Ba1—O1iii89.8 (2)O2vii—La2—O6xxvii151.1 (6)
O1ii—Ba1—O1iv56.9 (2)O2vii—La2—O6xxi113.7 (6)
O1ii—Ba1—O1v63.0 (2)O2vii—La2—O6xxii85.8 (6)
O1ii—Ba1—O1vi120.0 (2)O2vii—La2—O6xxiv85.3 (6)
O1ii—Ba1—O1vii120.0 (2)O2xx—La2—O4xxvi88 (2)
O1ii—Ba1—O1viii63.0 (2)O2xx—La2—O4xxi127.7 (19)
O1ii—Ba1—O1ix120.0 (2)O2xx—La2—O4xxiv59.7 (19)
O1ii—Ba1—O1x120.0 (2)O2xx—La2—O5i87 (2)
O1ii—Ba1—O1xi56.9 (2)O2xx—La2—O5xxvii58.3 (19)
O1iii—Ba1—O1iv120.0 (2)O2xx—La2—O5xxii126.2 (19)
O1iii—Ba1—O1v120.0 (2)O2xx—La2—O6i85.8 (6)
O1iii—Ba1—O1vi56.9 (2)O2xx—La2—O6xxvi85.3 (6)
O1iii—Ba1—O1vii63.0 (2)O2xx—La2—O6xxvii114.5 (6)
O1iii—Ba1—O1viii56.9 (2)O2xx—La2—O6xxi150.9 (6)
O1iii—Ba1—O1ix120.0 (2)O2xx—La2—O6xxii151.1 (6)
O1iii—Ba1—O1x120.0 (2)O2xx—La2—O6xxiv113.7 (6)
O1iii—Ba1—O1xi63.0 (2)O4xxvi—La2—O4xxi120 (3)
O1iv—Ba1—O1v89.8 (2)O4xxvi—La2—O4xxiv120 (3)
O1iv—Ba1—O1vi176.3 (2)O4xxvi—La2—O5i169 (3)
O1iv—Ba1—O1vii90.3 (2)O4xxvi—La2—O5xxvii50 (3)
O1iv—Ba1—O1viii120.0 (2)O4xxvi—La2—O5xxii70 (3)
O1iv—Ba1—O1ix120.0 (2)O4xxvi—La2—O6i109 (2)
O1iv—Ba1—O1x63.0 (2)O4xxvi—La2—O6xxvi60 (2)
O1iv—Ba1—O1xi56.9 (2)O4xxvi—La2—O6xxvii31 (2)
O1v—Ba1—O1vi90.3 (2)O4xxvi—La2—O6xxi67 (2)
O1v—Ba1—O1vii176.3 (2)O4xxvi—La2—O6xxii119 (2)
O1v—Ba1—O1viii63.0 (2)O4xxvi—La2—O6xxiv146 (2)
O1v—Ba1—O1ix56.9 (2)O4xxi—La2—O4xxiv120 (3)
O1v—Ba1—O1x120.0 (2)O4xxi—La2—O5i70 (3)
O1v—Ba1—O1xi120.0 (2)O4xxi—La2—O5xxvii169 (3)
O1vi—Ba1—O1vii89.8 (2)O4xxi—La2—O5xxii50 (3)
O1vi—Ba1—O1viii56.9 (2)O4xxi—La2—O6i119 (2)
O1vi—Ba1—O1ix63.0 (2)O4xxi—La2—O6xxvi146 (2)
O1vi—Ba1—O1x120.0 (2)O4xxi—La2—O6xxvii109 (2)
O1vi—Ba1—O1xi120.0 (2)O4xxi—La2—O6xxi60 (2)
O1vii—Ba1—O1viii120.0 (2)O4xxi—La2—O6xxii31 (2)
O1vii—Ba1—O1ix120.0 (2)O4xxi—La2—O6xxiv67 (2)
O1vii—Ba1—O1x56.9 (2)O4xxiv—La2—O5i50 (3)
O1vii—Ba1—O1xi63.0 (2)O4xxiv—La2—O5xxvii70 (3)
O1viii—Ba1—O1ix89.8 (2)O4xxiv—La2—O5xxii169 (3)
O1viii—Ba1—O1x176.3 (2)O4xxiv—La2—O6i31 (2)
O1viii—Ba1—O1xi90.3 (2)O4xxiv—La2—O6xxvi67 (2)
O1ix—Ba1—O1x90.3 (2)O4xxiv—La2—O6xxvii119 (2)
O1ix—Ba1—O1xi176.3 (2)O4xxiv—La2—O6xxi146 (2)
O1x—Ba1—O1xi89.8 (2)O4xxiv—La2—O6xxii109 (2)
O2—Ba2—O2xii90.0 (2)O4xxiv—La2—O6xxiv60 (2)
O2—Ba2—O2xiii178.9 (3)O5i—La2—O5xxvii120 (3)
O2—Ba2—O2xiv90.0 (2)O5i—La2—O5xxii120 (3)
O2—Ba2—O2xv120.0 (3)O5i—La2—O6i61 (2)
O2—Ba2—O2xvi120.0 (3)O5i—La2—O6xxvi110 (2)
O2—Ba2—O2xvii60.9 (3)O5i—La2—O6xxvii147 (2)
O2—Ba2—O2vii59.1 (3)O5i—La2—O6xxi120 (2)
O2—Ba2—O2xviii120.0 (3)O5i—La2—O6xxii69 (2)
O2—Ba2—O2xix60.9 (3)O5i—La2—O6xxiv32 (2)
O2—Ba2—O2x59.1 (3)O5xxvii—La2—O5xxii120 (3)
O2—Ba2—O2xx120.0 (3)O5xxvii—La2—O6i69 (2)
O2xii—Ba2—O2xiii90.0 (2)O5xxvii—La2—O6xxvi32 (2)
O2xii—Ba2—O2xiv178.9 (3)O5xxvii—La2—O6xxvii61 (2)
O2xii—Ba2—O2xv60.9 (3)O5xxvii—La2—O6xxi110 (2)
O2xii—Ba2—O2xvi59.1 (3)O5xxvii—La2—O6xxii147 (2)
O2xii—Ba2—O2xvii120.0 (3)O5xxvii—La2—O6xxiv120 (2)
O2xii—Ba2—O2vii120.0 (3)O5xxii—La2—O6i147 (2)
O2xii—Ba2—O2xviii120.0 (3)O5xxii—La2—O6xxvi120 (2)
O2xii—Ba2—O2xix59.1 (3)O5xxii—La2—O6xxvii69 (2)
O2xii—Ba2—O2x60.9 (3)O5xxii—La2—O6xxi32 (2)
O2xii—Ba2—O2xx120.0 (3)O5xxii—La2—O6xxii61 (2)
O2xiii—Ba2—O2xiv90.0 (2)O5xxii—La2—O6xxiv110 (2)
O2xiii—Ba2—O2xv59.1 (3)O6i—La2—O6xxvi49.2 (8)
O2xiii—Ba2—O2xvi60.9 (3)O6i—La2—O6xxvii94.4 (8)
O2xiii—Ba2—O2xvii120.0 (3)O6i—La2—O6xxi116.4 (8)
O2xiii—Ba2—O2vii120.0 (3)O6i—La2—O6xxii94.4 (8)
O2xiii—Ba2—O2xviii60.9 (3)O6i—La2—O6xxiv51.4 (8)
O2xiii—Ba2—O2xix120.0 (3)O6xxvi—La2—O6xxvii51.4 (8)
O2xiii—Ba2—O2x120.0 (3)O6xxvi—La2—O6xxi95.3 (8)
O2xiii—Ba2—O2xx59.1 (3)O6xxvi—La2—O6xxii116.4 (8)
O2xiv—Ba2—O2xv120.0 (3)O6xxvi—La2—O6xxiv95.3 (8)
O2xiv—Ba2—O2xvi120.0 (3)O6xxvii—La2—O6xxi49.2 (8)
O2xiv—Ba2—O2xvii59.1 (3)O6xxvii—La2—O6xxii94.4 (8)
O2xiv—Ba2—O2vii60.9 (3)O6xxvii—La2—O6xxiv116.4 (8)
O2xiv—Ba2—O2xviii59.1 (3)O6xxi—La2—O6xxii51.4 (8)
O2xiv—Ba2—O2xix120.0 (3)O6xxi—La2—O6xxiv95.3 (8)
O2xiv—Ba2—O2x120.0 (3)O6xxii—La2—O6xxiv49.2 (8)
O2xiv—Ba2—O2xx60.9 (3)O2xiv—Sr2—O2vii68.2 (3)
O2xv—Ba2—O2xvi90.0 (2)O2xiv—Sr2—O2xx68.2 (3)
O2xv—Ba2—O2xvii178.9 (3)O2xiv—Sr2—O4xxvi59.7 (19)
O2xv—Ba2—O2vii90.0 (2)O2xiv—Sr2—O4xxi88 (2)
O2xv—Ba2—O2xviii120.0 (3)O2xiv—Sr2—O4xxiv127.7 (19)
O2xv—Ba2—O2xix120.0 (3)O2xiv—Sr2—O5i126.2 (19)
O2xv—Ba2—O2x60.9 (3)O2xiv—Sr2—O5xxvii87 (2)
O2xv—Ba2—O2xx59.1 (3)O2xiv—Sr2—O5xxii58.3 (19)
O2xvi—Ba2—O2xvii90.0 (2)O2xiv—Sr2—O6i151.1 (6)
O2xvi—Ba2—O2vii178.9 (3)O2xiv—Sr2—O6xxvi113.7 (6)
O2xvi—Ba2—O2xviii60.9 (3)O2xiv—Sr2—O6xxvii85.8 (6)
O2xvi—Ba2—O2xix59.1 (3)O2xiv—Sr2—O6xxi85.3 (6)
O2xvi—Ba2—O2x120.0 (3)O2xiv—Sr2—O6xxii114.5 (6)
O2xvi—Ba2—O2xx120.0 (3)O2xiv—Sr2—O6xxiv150.9 (6)
O2xvii—Ba2—O2vii90.0 (2)O2vii—Sr2—O2xx68.2 (3)
O2xvii—Ba2—O2xviii59.1 (3)O2vii—Sr2—O4xxvi127.7 (19)
O2xvii—Ba2—O2xix60.9 (3)O2vii—Sr2—O4xxi59.7 (19)
O2xvii—Ba2—O2x120.0 (3)O2vii—Sr2—O4xxiv88 (2)
O2xvii—Ba2—O2xx120.0 (3)O2vii—Sr2—O5i58.3 (19)
O2vii—Ba2—O2xviii120.0 (3)O2vii—Sr2—O5xxvii126.2 (19)
O2vii—Ba2—O2xix120.0 (3)O2vii—Sr2—O5xxii87 (2)
O2vii—Ba2—O2x59.1 (3)O2vii—Sr2—O6i114.5 (6)
O2vii—Ba2—O2xx60.9 (3)O2vii—Sr2—O6xxvi150.9 (6)
O2xviii—Ba2—O2xix90.0 (2)O2vii—Sr2—O6xxvii151.1 (6)
O2xviii—Ba2—O2x178.9 (3)O2vii—Sr2—O6xxi113.7 (6)
O2xviii—Ba2—O2xx90.0 (2)O2vii—Sr2—O6xxii85.8 (6)
O2xix—Ba2—O2x90.0 (2)O2vii—Sr2—O6xxiv85.3 (6)
O2xix—Ba2—O2xx178.9 (3)O2xx—Sr2—O4xxvi88 (2)
O2x—Ba2—O2xx90.0 (2)O2xx—Sr2—O4xxi127.7 (19)
O1—Ru1—O1vii92.7 (4)O2xx—Sr2—O4xxiv59.7 (19)
O1—Ru1—O1x92.7 (4)O2xx—Sr2—O5i87 (2)
O1—Ru1—O2179.5 (4)O2xx—Sr2—O5xxvii58.3 (19)
O1—Ru1—O2vii87.4 (4)O2xx—Sr2—O5xxii126.2 (19)
O1—Ru1—O2x87.7 (4)O2xx—Sr2—O6i85.8 (6)
O1vii—Ru1—O1x92.7 (4)O2xx—Sr2—O6xxvi85.3 (6)
O1vii—Ru1—O287.7 (4)O2xx—Sr2—O6xxvii114.5 (6)
O1vii—Ru1—O2vii179.5 (4)O2xx—Sr2—O6xxi150.9 (6)
O1vii—Ru1—O2x87.4 (4)O2xx—Sr2—O6xxii151.1 (6)
O1x—Ru1—O287.4 (4)O2xx—Sr2—O6xxiv113.7 (6)
O1x—Ru1—O2vii87.7 (4)O4xxvi—Sr2—O4xxi120 (3)
O1x—Ru1—O2x179.5 (4)O4xxvi—Sr2—O4xxiv120 (3)
O2—Ru1—O2vii92.2 (3)O4xxvi—Sr2—O5i169 (3)
O2—Ru1—O2x92.2 (3)O4xxvi—Sr2—O5xxvii50 (3)
O2vii—Ru1—O2x92.2 (3)O4xxvi—Sr2—O5xxii70 (3)
O3—Ru2—O3xxi74.0 (14)O4xxvi—Sr2—O6i109 (2)
O3—Ru2—O3xxii74.0 (14)O4xxvi—Sr2—O6xxvi60 (2)
O3—Ru2—O4145 (2)O4xxvi—Sr2—O6xxvii31 (2)
O3—Ru2—O4xxi107 (2)O4xxvi—Sr2—O6xxi67 (2)
O3—Ru2—O4xxii73 (2)O4xxvi—Sr2—O6xxii119 (2)
O3—Ru2—O570 (2)O4xxvi—Sr2—O6xxiv146 (2)
O3—Ru2—O5xxi106 (2)O4xxi—Sr2—O4xxiv120 (3)
O3—Ru2—O5xxii142 (2)O4xxi—Sr2—O5i70 (3)
O3—Ru2—O6107.9 (13)O4xxi—Sr2—O5xxvii169 (3)
O3—Ru2—O6xxi178.0 (13)O4xxi—Sr2—O5xxii50 (3)
O3—Ru2—O6xxii105.9 (13)O4xxi—Sr2—O6i119 (2)
O3xxi—Ru2—O3xxii74.0 (14)O4xxi—Sr2—O6xxvi146 (2)
O3xxi—Ru2—O473 (2)O4xxi—Sr2—O6xxvii109 (2)
O3xxi—Ru2—O4xxi145 (2)O4xxi—Sr2—O6xxi60 (2)
O3xxi—Ru2—O4xxii107 (2)O4xxi—Sr2—O6xxii31 (2)
O3xxi—Ru2—O5142 (2)O4xxi—Sr2—O6xxiv67 (2)
O3xxi—Ru2—O5xxi70 (2)O4xxiv—Sr2—O5i50 (3)
O3xxi—Ru2—O5xxii106 (2)O4xxiv—Sr2—O5xxvii70 (3)
O3xxi—Ru2—O6105.9 (13)O4xxiv—Sr2—O5xxii169 (3)
O3xxi—Ru2—O6xxi107.9 (13)O4xxiv—Sr2—O6i31 (2)
O3xxi—Ru2—O6xxii178.0 (13)O4xxiv—Sr2—O6xxvi67 (2)
O3xxii—Ru2—O4107 (2)O4xxiv—Sr2—O6xxvii119 (2)
O3xxii—Ru2—O4xxi73 (2)O4xxiv—Sr2—O6xxi146 (2)
O3xxii—Ru2—O4xxii145 (2)O4xxiv—Sr2—O6xxii109 (2)
O3xxii—Ru2—O5106 (2)O4xxiv—Sr2—O6xxiv60 (2)
O3xxii—Ru2—O5xxi142 (2)O5i—Sr2—O5xxvii120 (3)
O3xxii—Ru2—O5xxii70 (2)O5i—Sr2—O5xxii120 (3)
O3xxii—Ru2—O6178.0 (13)O5i—Sr2—O6i61 (2)
O3xxii—Ru2—O6xxi105.9 (13)O5i—Sr2—O6xxvi110 (2)
O3xxii—Ru2—O6xxii107.9 (13)O5i—Sr2—O6xxvii147 (2)
O4—Ru2—O4xxi107 (3)O5i—Sr2—O6xxi120 (2)
O4—Ru2—O4xxii107 (3)O5i—Sr2—O6xxii69 (2)
O4—Ru2—O5138 (3)O5i—Sr2—O6xxiv32 (2)
O4—Ru2—O5xxi51 (3)O5xxvii—Sr2—O5xxii120 (3)
O4—Ru2—O5xxii60 (3)O5xxvii—Sr2—O6i69 (2)
O4—Ru2—O672 (2)O5xxvii—Sr2—O6xxvi32 (2)
O4—Ru2—O6xxi37 (2)O5xxvii—Sr2—O6xxvii61 (2)
O4—Ru2—O6xxii107 (2)O5xxvii—Sr2—O6xxi110 (2)
O4xxi—Ru2—O4xxii107 (3)O5xxvii—Sr2—O6xxii147 (2)
O4xxi—Ru2—O560 (3)O5xxvii—Sr2—O6xxiv120 (2)
O4xxi—Ru2—O5xxi138 (3)O5xxii—Sr2—O6i147 (2)
O4xxi—Ru2—O5xxii51 (3)O5xxii—Sr2—O6xxvi120 (2)
O4xxi—Ru2—O6107 (2)O5xxii—Sr2—O6xxvii69 (2)
O4xxi—Ru2—O6xxi72 (2)O5xxii—Sr2—O6xxi32 (2)
O4xxi—Ru2—O6xxii37 (2)O5xxii—Sr2—O6xxii61 (2)
O4xxii—Ru2—O551 (3)O5xxii—Sr2—O6xxiv110 (2)
O4xxii—Ru2—O5xxi60 (3)O6i—Sr2—O6xxvi49.2 (8)
O4xxii—Ru2—O5xxii138 (3)O6i—Sr2—O6xxvii94.4 (8)
O4xxii—Ru2—O637 (2)O6i—Sr2—O6xxi116.4 (8)
O4xxii—Ru2—O6xxi107 (2)O6i—Sr2—O6xxii94.4 (8)
O4xxii—Ru2—O6xxii72 (2)O6i—Sr2—O6xxiv51.4 (8)
O5—Ru2—O5xxi109 (3)O6xxvi—Sr2—O6xxvii51.4 (8)
O5—Ru2—O5xxii109 (3)O6xxvi—Sr2—O6xxi95.3 (8)
O5—Ru2—O675 (2)O6xxvi—Sr2—O6xxii116.4 (8)
O5—Ru2—O6xxi108 (2)O6xxvi—Sr2—O6xxiv95.3 (8)
O5—Ru2—O6xxii37 (2)O6xxvii—Sr2—O6xxi49.2 (8)
O5xxi—Ru2—O5xxii109 (3)O6xxvii—Sr2—O6xxii94.4 (8)
O5xxi—Ru2—O637 (2)O6xxvii—Sr2—O6xxiv116.4 (8)
O5xxi—Ru2—O6xxi75 (2)O6xxi—Sr2—O6xxii51.4 (8)
O5xxi—Ru2—O6xxii108 (2)O6xxi—Sr2—O6xxiv95.3 (8)
O5xxii—Ru2—O6108 (2)O6xxii—Sr2—O6xxiv49.2 (8)
O5xxii—Ru2—O6xxi37 (2)O1—La3—O1i109.3 (3)
O5xxii—Ru2—O6xxii75 (2)O1—La3—O1ix74.1 (3)
O6—Ru2—O6xxi72.2 (11)O1—La3—O1x66.7 (3)
O6—Ru2—O6xxii72.2 (11)O1—La3—O2v133.3 (3)
O6xxi—Ru2—O6xxii72.2 (11)O1—La3—O2vii59.6 (3)
O3—Al1—O3xxi74.0 (14)O1—La3—O4xv112 (2)
O3—Al1—O3xxii74.0 (14)O1—La3—O4xxi114 (2)
O3—Al1—O4145 (2)O1—La3—O5172 (2)
O3—Al1—O4xxi107 (2)O1—La3—O5i76.0 (19)
O3—Al1—O4xxii73 (2)O1—La3—O6xxii140.2 (6)
O3—Al1—O570 (2)O1—La3—O6xxiv106.0 (6)
O3—Al1—O5xxi106 (2)O1i—La3—O1ix66.7 (3)
O3—Al1—O5xxii142 (2)O1i—La3—O1x74.1 (3)
O3—Al1—O6107.9 (13)O1i—La3—O2v59.6 (3)
O3—Al1—O6xxi178.0 (13)O1i—La3—O2vii133.3 (3)
O3—Al1—O6xxii105.9 (13)O1i—La3—O4xv114 (2)
O3xxi—Al1—O3xxii74.0 (14)O1i—La3—O4xxi112 (2)
O3xxi—Al1—O473 (2)O1i—La3—O576.0 (19)
O3xxi—Al1—O4xxi145 (2)O1i—La3—O5i172 (2)
O3xxi—Al1—O4xxii107 (2)O1i—La3—O6xxii106.0 (6)
O3xxi—Al1—O5142 (2)O1i—La3—O6xxiv140.2 (6)
O3xxi—Al1—O5xxi70 (2)O1ix—La3—O1x109.2 (3)
O3xxi—Al1—O5xxii106 (2)O1ix—La3—O2v59.7 (3)
O3xxi—Al1—O6105.9 (13)O1ix—La3—O2vii133.2 (3)
O3xxi—Al1—O6xxi107.9 (13)O1ix—La3—O4xv78.4 (19)
O3xxi—Al1—O6xxii178.0 (13)O1ix—La3—O4xxi171 (2)
O3xxii—Al1—O4107 (2)O1ix—La3—O5114 (2)
O3xxii—Al1—O4xxi73 (2)O1ix—La3—O5i110 (2)
O3xxii—Al1—O4xxii145 (2)O1ix—La3—O6xxii138.7 (6)
O3xxii—Al1—O5106 (2)O1ix—La3—O6xxiv107.1 (6)
O3xxii—Al1—O5xxi142 (2)O1x—La3—O2v133.2 (3)
O3xxii—Al1—O5xxii70 (2)O1x—La3—O2vii59.7 (3)
O3xxii—Al1—O6178.0 (13)O1x—La3—O4xv171 (2)
O3xxii—Al1—O6xxi105.9 (13)O1x—La3—O4xxi78.4 (19)
O3xxii—Al1—O6xxii107.9 (13)O1x—La3—O5110 (2)
O4—Al1—O4xxi107 (3)O1x—La3—O5i114 (2)
O4—Al1—O4xxii107 (3)O1x—La3—O6xxii107.1 (6)
O4—Al1—O5138 (3)O1x—La3—O6xxiv138.7 (6)
O4—Al1—O5xxi51 (3)O2v—La3—O2vii162.1 (3)
O4—Al1—O5xxii60 (3)O2v—La3—O4xv55 (2)
O4—Al1—O672 (2)O2v—La3—O4xxi111 (2)
O4—Al1—O6xxi37 (2)O2v—La3—O554 (2)
O4—Al1—O6xxii107 (2)O2v—La3—O5i113 (2)
O4xxi—Al1—O4xxii107 (3)O2v—La3—O6xxii81.1 (6)
O4xxi—Al1—O560 (3)O2v—La3—O6xxiv82.8 (6)
O4xxi—Al1—O5xxi138 (3)O2vii—La3—O4xv111 (2)
O4xxi—Al1—O5xxii51 (3)O2vii—La3—O4xxi55 (2)
O4xxi—Al1—O6107 (2)O2vii—La3—O5113 (2)
O4xxi—Al1—O6xxi72 (2)O2vii—La3—O5i54 (2)
O4xxi—Al1—O6xxii37 (2)O2vii—La3—O6xxii82.8 (6)
O4xxii—Al1—O551 (3)O2vii—La3—O6xxiv81.1 (6)
O4xxii—Al1—O5xxi60 (3)O4xv—La3—O4xxi95 (3)
O4xxii—Al1—O5xxii138 (3)O4xv—La3—O570 (3)
O4xxii—Al1—O637 (2)O4xv—La3—O5i58 (3)
O4xxii—Al1—O6xxi107 (2)O4xv—La3—O6xxii68 (2)
O4xxii—Al1—O6xxii72 (2)O4xv—La3—O6xxiv32 (2)
O5—Al1—O5xxi109 (3)O4xxi—La3—O558 (3)
O5—Al1—O5xxii109 (3)O4xxi—La3—O5i70 (3)
O5—Al1—O675 (2)O4xxi—La3—O6xxii32 (2)
O5—Al1—O6xxi108 (2)O4xxi—La3—O6xxiv68 (2)
O5—Al1—O6xxii37 (2)O5—La3—O5i99 (3)
O5xxi—Al1—O5xxii109 (3)O5—La3—O6xxii33 (2)
O5xxi—Al1—O637 (2)O5—La3—O6xxiv71 (2)
O5xxi—Al1—O6xxi75 (2)O5i—La3—O6xxii71 (2)
O5xxi—Al1—O6xxii108 (2)O5i—La3—O6xxiv33 (2)
O5xxii—Al1—O6108 (2)O6xxii—La3—O6xxiv51.3 (8)
O5xxii—Al1—O6xxi37 (2)O1—Sr3—O1i109.3 (3)
O5xxii—Al1—O6xxii75 (2)O1—Sr3—O1ix74.1 (3)
O6—Al1—O6xxi72.2 (11)O1—Sr3—O1x66.7 (3)
O6—Al1—O6xxii72.2 (11)O1—Sr3—O2v133.3 (3)
O6xxi—Al1—O6xxii72.2 (11)O1—Sr3—O2vii59.6 (3)
O1—La1—O1xiii164.8 (3)O1—Sr3—O4xv112 (2)
O1—La1—O2xv130.4 (3)O1—Sr3—O4xxi114 (2)
O1—La1—O2vii60.7 (3)O1—Sr3—O5172 (2)
O1—La1—O2x60.9 (3)O1—Sr3—O5i76.0 (19)
O1—La1—O2xx130.2 (3)O1—Sr3—O6xxii140.2 (6)
O1—La1—O3i82.5 (9)O1—Sr3—O6xxiv106.0 (6)
O1—La1—O3xxiii83.4 (9)O1i—Sr3—O1ix66.7 (3)
O1—La1—O4xxiv108.3 (15)O1i—Sr3—O1x74.1 (3)
O1—La1—O4xxv68.0 (15)O1i—Sr3—O2v59.6 (3)
O1—La1—O5i66.8 (16)O1i—Sr3—O2vii133.3 (3)
O1—La1—O5xxiii109.4 (16)O1i—Sr3—O4xv114 (2)
O1xiii—La1—O2xv60.7 (3)O1i—Sr3—O4xxi112 (2)
O1xiii—La1—O2vii130.4 (3)O1i—Sr3—O576.0 (19)
O1xiii—La1—O2x130.2 (3)O1i—Sr3—O5i172 (2)
O1xiii—La1—O2xx60.9 (3)O1i—Sr3—O6xxii106.0 (6)
O1xiii—La1—O3i83.4 (9)O1i—Sr3—O6xxiv140.2 (6)
O1xiii—La1—O3xxiii82.5 (9)O1ix—Sr3—O1x109.2 (3)
O1xiii—La1—O4xxiv68.0 (15)O1ix—Sr3—O2v59.7 (3)
O1xiii—La1—O4xxv108.3 (15)O1ix—Sr3—O2vii133.2 (3)
O1xiii—La1—O5i109.4 (16)O1ix—Sr3—O4xv78.4 (19)
O1xiii—La1—O5xxiii66.8 (16)O1ix—Sr3—O4xxi171 (2)
O2xv—La1—O2vii106.1 (3)O1ix—Sr3—O5114 (2)
O2xv—La1—O2x69.8 (3)O1ix—Sr3—O5i110 (2)
O2xv—La1—O2xx67.8 (3)O1ix—Sr3—O6xxii138.7 (6)
O2xv—La1—O3i140.7 (9)O1ix—Sr3—O6xxiv107.1 (6)
O2xv—La1—O3xxiii109.5 (9)O1x—Sr3—O2v133.2 (3)
O2xv—La1—O4xxiv116.3 (16)O1x—Sr3—O2vii59.7 (3)
O2xv—La1—O4xxv80.1 (16)O1x—Sr3—O4xv171 (2)
O2xv—La1—O5i148.5 (17)O1x—Sr3—O4xxi78.4 (19)
O2xv—La1—O5xxiii55.4 (17)O1x—Sr3—O5110 (2)
O2vii—La1—O2x67.8 (3)O1x—Sr3—O5i114 (2)
O2vii—La1—O2xx69.8 (3)O1x—Sr3—O6xxii107.1 (6)
O2vii—La1—O3i109.5 (9)O1x—Sr3—O6xxiv138.7 (6)
O2vii—La1—O3xxiii140.7 (9)O2v—Sr3—O2vii162.1 (3)
O2vii—La1—O4xxiv80.1 (16)O2v—Sr3—O4xv55 (2)
O2vii—La1—O4xxv116.3 (16)O2v—Sr3—O4xxi111 (2)
O2vii—La1—O5i55.4 (17)O2v—Sr3—O554 (2)
O2vii—La1—O5xxiii148.5 (17)O2v—Sr3—O5i113 (2)
O2x—La1—O2xx106.1 (3)O2v—Sr3—O6xxii81.1 (6)
O2x—La1—O3i140.0 (9)O2v—Sr3—O6xxiv82.8 (6)
O2x—La1—O3xxiii110.0 (9)O2vii—Sr3—O4xv111 (2)
O2x—La1—O4xxiv147.4 (16)O2vii—Sr3—O4xxi55 (2)
O2x—La1—O4xxv55.2 (18)O2vii—Sr3—O5113 (2)
O2x—La1—O5i115.9 (17)O2vii—Sr3—O5i54 (2)
O2x—La1—O5xxiii81.3 (17)O2vii—Sr3—O6xxii82.8 (6)
O2xx—La1—O3i110.0 (9)O2vii—Sr3—O6xxiv81.1 (6)
O2xx—La1—O3xxiii140.0 (9)O4xv—Sr3—O4xxi95 (3)
O2xx—La1—O4xxiv55.2 (18)O4xv—Sr3—O570 (3)
O2xx—La1—O4xxv147.4 (16)O4xv—Sr3—O5i58 (3)
O2xx—La1—O5i81.3 (17)O4xv—Sr3—O6xxii68 (2)
O2xx—La1—O5xxiii115.9 (17)O4xv—Sr3—O6xxiv32 (2)
O3i—La1—O3xxiii45.6 (12)O4xxi—Sr3—O558 (3)
O3i—La1—O4xxiv56 (2)O4xxi—Sr3—O5i70 (3)
O3i—La1—O4xxv98 (2)O4xxi—Sr3—O6xxii32 (2)
O3i—La1—O5i55.3 (19)O4xxi—Sr3—O6xxiv68 (2)
O3i—La1—O5xxiii97.7 (19)O5—Sr3—O5i99 (3)
O3xxiii—La1—O4xxiv98 (2)O5—Sr3—O6xxii33 (2)
O3xxiii—La1—O4xxv56 (2)O5—Sr3—O6xxiv71 (2)
O3xxiii—La1—O5i97.7 (19)O5i—Sr3—O6xxii71 (2)
O3xxiii—La1—O5xxiii55.3 (19)O5i—Sr3—O6xxiv33 (2)
O4xxiv—La1—O4xxv154 (3)O6xxii—Sr3—O6xxiv51.3 (8)
O4xxiv—La1—O5i42 (2)O1i—La4—O1iv70.6 (3)
O4xxiv—La1—O5xxiii130 (2)O1i—La4—O1x70.6 (3)
O4xxv—La1—O5i130 (2)O1i—La4—O384.5 (7)
O4xxv—La1—O5xxiii42 (2)O1i—La4—O3xxviii84.8 (7)
O5i—La1—O5xxiii153 (2)O1i—La4—O3v115.8 (9)
O1—Sr1—O1xiii164.8 (3)O1i—La4—O3xxix151.2 (8)
O1—Sr1—O2xv130.4 (3)O1i—La4—O3xxii115.8 (9)
O1—Sr1—O2vii60.7 (3)O1i—La4—O3xi150.9 (8)
O1—Sr1—O2x60.9 (3)O1iv—La4—O1x70.6 (3)
O1—Sr1—O2xx130.2 (3)O1iv—La4—O3150.9 (8)
O1—Sr1—O3i82.5 (9)O1iv—La4—O3xxviii115.8 (9)
O1—Sr1—O3xxiii83.4 (9)O1iv—La4—O3v84.5 (7)
O1—Sr1—O4xxiv108.3 (15)O1iv—La4—O3xxix84.8 (7)
O1—Sr1—O4xxv68.0 (15)O1iv—La4—O3xxii151.2 (8)
O1—Sr1—O5i66.8 (16)O1iv—La4—O3xi115.8 (9)
O1—Sr1—O5xxiii109.4 (16)O1x—La4—O3115.8 (9)
O1xiii—Sr1—O2xv60.7 (3)O1x—La4—O3xxviii151.2 (8)
O1xiii—Sr1—O2vii130.4 (3)O1x—La4—O3v150.9 (8)
O1xiii—Sr1—O2x130.2 (3)O1x—La4—O3xxix115.8 (9)
O1xiii—Sr1—O2xx60.9 (3)O1x—La4—O3xxii84.8 (7)
O1xiii—Sr1—O3i83.4 (9)O1x—La4—O3xi84.5 (7)
O1xiii—Sr1—O3xxiii82.5 (9)O3—La4—O3xxviii44.7 (12)
O1xiii—Sr1—O4xxiv68.0 (15)O3—La4—O3v93.4 (11)
O1xiii—Sr1—O4xxv108.3 (15)O3—La4—O3xxix113.7 (11)
O1xiii—Sr1—O5i109.4 (16)O3—La4—O3xxii54.4 (11)
O1xiii—Sr1—O5xxiii66.8 (16)O3—La4—O3xi93.4 (11)
O2xv—Sr1—O2vii106.1 (3)O3xxviii—La4—O3v54.4 (11)
O2xv—Sr1—O2x69.8 (3)O3xxviii—La4—O3xxix92.9 (11)
O2xv—Sr1—O2xx67.8 (3)O3xxviii—La4—O3xxii92.9 (11)
O2xv—Sr1—O3i140.7 (9)O3xxviii—La4—O3xi113.7 (11)
O2xv—Sr1—O3xxiii109.5 (9)O3v—La4—O3xxix44.7 (12)
O2xv—Sr1—O4xxiv116.3 (16)O3v—La4—O3xxii113.7 (11)
O2xv—Sr1—O4xxv80.1 (16)O3v—La4—O3xi93.4 (11)
O2xv—Sr1—O5i148.5 (17)O3xxix—La4—O3xxii92.9 (11)
O2xv—Sr1—O5xxiii55.4 (17)O3xxix—La4—O3xi54.4 (11)
O2vii—Sr1—O2x67.8 (3)O3xxii—La4—O3xi44.7 (12)
O2vii—Sr1—O2xx69.8 (3)O1i—Sr4—O1iv70.6 (3)
O2vii—Sr1—O3i109.5 (9)O1i—Sr4—O1x70.6 (3)
O2vii—Sr1—O3xxiii140.7 (9)O1i—Sr4—O384.5 (7)
O2vii—Sr1—O4xxiv80.1 (16)O1i—Sr4—O3xxviii84.8 (7)
O2vii—Sr1—O4xxv116.3 (16)O1i—Sr4—O3v115.8 (9)
O2vii—Sr1—O5i55.4 (17)O1i—Sr4—O3xxix151.2 (8)
O2vii—Sr1—O5xxiii148.5 (17)O1i—Sr4—O3xxii115.8 (9)
O2x—Sr1—O2xx106.1 (3)O1i—Sr4—O3xi150.9 (8)
O2x—Sr1—O3i140.0 (9)O1iv—Sr4—O1x70.6 (3)
O2x—Sr1—O3xxiii110.0 (9)O1iv—Sr4—O3150.9 (8)
O2x—Sr1—O4xxiv147.4 (16)O1iv—Sr4—O3xxviii115.8 (9)
O2x—Sr1—O4xxv55.2 (18)O1iv—Sr4—O3v84.5 (7)
O2x—Sr1—O5i115.9 (17)O1iv—Sr4—O3xxix84.8 (7)
O2x—Sr1—O5xxiii81.3 (17)O1iv—Sr4—O3xxii151.2 (8)
O2xx—Sr1—O3i110.0 (9)O1iv—Sr4—O3xi115.8 (9)
O2xx—Sr1—O3xxiii140.0 (9)O1x—Sr4—O3115.8 (9)
O2xx—Sr1—O4xxiv55.2 (18)O1x—Sr4—O3xxviii151.2 (8)
O2xx—Sr1—O4xxv147.4 (16)O1x—Sr4—O3v150.9 (8)
O2xx—Sr1—O5i81.3 (17)O1x—Sr4—O3xxix115.8 (9)
O2xx—Sr1—O5xxiii115.9 (17)O1x—Sr4—O3xxii84.8 (7)
O3i—Sr1—O3xxiii45.6 (12)O1x—Sr4—O3xi84.5 (7)
O3i—Sr1—O4xxiv56 (2)O3—Sr4—O3xxviii44.7 (12)
O3i—Sr1—O4xxv98 (2)O3—Sr4—O3v93.4 (11)
O3i—Sr1—O5i55.3 (19)O3—Sr4—O3xxix113.7 (11)
O3i—Sr1—O5xxiii97.7 (19)O3—Sr4—O3xxii54.4 (11)
O3xxiii—Sr1—O4xxiv98 (2)O3—Sr4—O3xi93.4 (11)
O3xxiii—Sr1—O4xxv56 (2)O3xxviii—Sr4—O3v54.4 (11)
O3xxiii—Sr1—O5i97.7 (19)O3xxviii—Sr4—O3xxix92.9 (11)
O3xxiii—Sr1—O5xxiii55.3 (19)O3xxviii—Sr4—O3xxii92.9 (11)
O4xxiv—Sr1—O4xxv154 (3)O3xxviii—Sr4—O3xi113.7 (11)
O4xxiv—Sr1—O5i42 (2)O3v—Sr4—O3xxix44.7 (12)
O4xxiv—Sr1—O5xxiii130 (2)O3v—Sr4—O3xxii113.7 (11)
O4xxv—Sr1—O5i130 (2)O3v—Sr4—O3xi93.4 (11)
O4xxv—Sr1—O5xxiii42 (2)O3xxix—Sr4—O3xxii92.9 (11)
O5i—Sr1—O5xxiii153 (2)O3xxix—Sr4—O3xi54.4 (11)
O2xiv—La2—O2vii68.2 (3)O3xxii—Sr4—O3xi44.7 (12)
O2xiv—La2—O2xx68.2 (3)
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z+1; (iii) x, y, z+1; (iv) z, x1/2, y+1/2; (v) z, x+1/2, y+1/2; (vi) z+1, x+1/2, y+1/2; (vii) z+1, x1/2, y+1/2; (viii) y+1/2, z1/2, x; (ix) y+1/2, z1/2, x+1; (x) y+1/2, z+1/2, x+1; (xi) y+1/2, z+1/2, x; (xii) x+3/2, y+1/2, z; (xiii) x+3/2, y, z+1/2; (xiv) x, y+1/2, z+1/2; (xv) z+1/2, x1/2, y; (xvi) z+1/2, x+1, y+1/2; (xvii) z+1, x+1, y; (xviii) y+1/2, z, x1/2; (xix) y+1, z, x+1; (xx) y+1, z+1/2, x1/2; (xxi) z+1/2, x+1/2, y; (xxii) y+1/2, z, x+1/2; (xxiii) x+1/2, y, z+1/2; (xxiv) y+1/2, z, x+1/2; (xxv) y+1, z, x; (xxvi) x+1, y, z; (xxvii) z+1/2, x+1/2, y; (xxviii) x+1/2, y, z+1/2; (xxix) z+1/2, x, y+1/2.
(I_NPD) aluminium barium lanthanum ruthenium strontium oxide top
Crystal data top
Al14Ba8La26.3Ru18Sr53.7O167Dx = 5.599 Mg m3
Mr = 14333.15Neutron radiation, λ = 1.548 Å
Cubic, F23µ = 0.01 mm1
Hall symbol: F 2 2 3T = 298 K
a = 16.197 (1) ÅParticle morphology: octahedral, SEM
V = 4249.2 (5) Å3black
Z = 1cylinder, 35 × 7 mm
F(000) = 6299Specimen preparation: Prepared at 298 K
Data collection top
Powder
diffractometer
Scan method: step
Radiation source: nuclear reactorAbsorption correction: for a cylinder mounted on the ϕ axis
JANA2006 (Petříček et al., 2006)
Ge(551) monochromatorTmin = 0.945, Tmax = 0.947
Specimen mounting: Vanadium can2θmin = 6.0°, 2θmax = 151.9°, 2θstep = 0.05°
Data collection mode: transmission
Refinement top
Rp = 0.05461 parameters
Rwp = 0.0601 restraint
Rexp = 0.0351 constraint
RBragg = 0.071Weighting scheme based on measured s.u.'s
χ2 = 21.623(Δ/σ)max = 0.049
3019 data pointsBackground function: Chebychev polynomial
Excluded region(s): 0.950 to 6.0 irregular bcgrPreferred orientation correction: none
Profile function: pseudo-Voigt
Crystal data top
Al14Ba8La26.3Ru18Sr53.7O167Z = 1
Mr = 14333.15Neutron radiation, λ = 1.548 Å
Cubic, F23µ = 0.01 mm1
a = 16.197 (1) ÅT = 298 K
V = 4249.2 (5) Å3cylinder, 35 × 7 mm
Data collection top
Powder
diffractometer
Absorption correction: for a cylinder mounted on the ϕ axis
JANA2006 (Petříček et al., 2006)
Specimen mounting: Vanadium canTmin = 0.945, Tmax = 0.947
Data collection mode: transmission2θmin = 6.0°, 2θmax = 151.9°, 2θstep = 0.05°
Scan method: step
Refinement top
Rp = 0.054χ2 = 21.623
Rwp = 0.0603019 data points
Rexp = 0.03561 parameters
RBragg = 0.0711 restraint
Special details top

Experimental. Neutron powder diffraction measured at Spodi diffractometer at FRM II nuclear reactor in Garching, Germany

Refinement. Rietveld method

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ba10.500.50.0539 (7)
Ba20.750.250.250.0018 (7)
Ru10.6258 (2)0.1258 (2)0.3742 (2)0.0109 (2)
Ru20.3714 (5)0.1286 (5)0.1286 (5)0.0050 (10)0.119 (10)
Al10.3714 (5)0.1286 (5)0.1286 (5)0.0050 (10)0.881 (10)
La10.750.0277 (2)0.250.0215 (9)0.49 (4)
Sr10.750.0277 (2)0.250.0215 (9)0.51 (4)
La20.59514 (16)0.09515 (16)0.09515 (16)0.0174 (8)0.22 (4)
Sr20.59514 (16)0.09515 (16)0.09515 (16)0.0174 (8)0.78 (4)
La30.500.2801 (2)0.0111 (9)0.144 (17)
Sr30.500.2801 (2)0.0111 (9)0.856 (17)
La40.34491 (15)0.15509 (15)0.34491 (15)0.0259 (9)0.50 (4)
Sr40.34491 (15)0.15509 (15)0.34491 (15)0.0259 (9)0.50 (4)
O10.6291 (5)0.0010 (5)0.3672 (5)0.0183*
O20.6297 (5)0.2425 (6)0.3723 (5)0.0216*
O30.290 (2)0.1158 (17)0.199 (2)0.0311*0.32 (2)
O40.3777 (16)0.1863 (14)0.0343 (14)0.0318*0.38 (3)
O50.367 (4)0.034 (3)0.168 (3)0.0713*0.25 (3)
O60.3504 (9)0.0448 (15)0.0505 (15)0.0411*0.53 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ba10.053 (2)0.053 (2)0.053 (2)000
Ba20.0018 (7)0.0018 (7)0.0018 (7)000
Ru10.0109 (4)0.0109 (4)0.0109 (4)0.0037 (4)0.0037 (4)0.0037 (4)
Ru20.0050 (17)0.0050 (17)0.0050 (17)0.0012 (16)0.0012 (16)0.0012 (16)
Al10.0050 (17)0.0050 (17)0.0050 (17)0.0012 (16)0.0012 (16)0.0012 (16)
La10.0246 (17)0.0166 (15)0.0235 (16)00.0006 (17)0
Sr10.0246 (17)0.0166 (15)0.0235 (16)00.0006 (17)0
La20.0174 (15)0.0174 (15)0.0174 (15)0.0014 (10)0.0014 (10)0.0014 (10)
Sr20.0174 (15)0.0174 (15)0.0174 (15)0.0014 (10)0.0014 (10)0.0014 (10)
La30.0051 (15)0.0148 (16)0.0134 (16)000.0008 (16)
Sr30.0051 (15)0.0148 (16)0.0134 (16)000.0008 (16)
La40.0259 (15)0.0259 (15)0.0259 (15)0.0013 (9)0.0013 (9)0.0013 (9)
Sr40.0259 (15)0.0259 (15)0.0259 (15)0.0013 (9)0.0013 (9)0.0013 (9)

Experimental details

(I_XRD)(I_NPD)
Crystal data
Chemical formulaAl14Ba8La26.3Ru18Sr53.7O167Al14Ba8La26.3Ru18Sr53.7O167
Mr14333.5214333.15
Crystal system, space groupCubic, F23Cubic, F23
Temperature (K)295298
a (Å)16.197 (1) 16.197 (1)
V3)4249.2 (5)4249.2 (5)
Z11
Radiation typeMo KαNeutron, λ = 1.548 Å
µ (mm1)26.680.01
Specimen shape, size (mm)0.14 × 0.13 × 0.09Cylinder, 35 × 7
Data collection
DiffractometerGoniometer Kuma KM4/Oxford Xcalibur, Sapphire2
diffractometer
Powder
diffractometer
Specimen mountingVanadium can
Data collection modeTransmission
Data collection methodω scansStep
Absorption correctionGaussian
[CrysAlis RED (Oxford Diffraction, 2007); numerical absorption correction based on Gaussian integration over a multifaceted crystal model]
Tmin, Tmax0.102, 0.181
No. of measured, independent and
observed [I > 3σ(I)] reflections
31971, 1294, 1126
Rint0.042
θ values (°)θmax = 32.6, θmin = 3.62θmin = 6.0 2θmax = 151.9 2θstep = 0.05
(sin θ/λ)max1)0.758
Refinement
R factors and goodness of fitR[F2 > 2σ(F2)] = 0.043, wR(F2) = 0.090, S = 1.51Rp = 0.054, Rwp = 0.060, Rexp = 0.035, RBragg = 0.071, χ2 = 21.623
No. of reflections/data points12943019
No. of parameters6561
No. of restraints11
Δρmax, Δρmin (e Å3)3.45, 4.05
Absolute structureFlack (1983), with 584 Friedel pairs
Absolute structure parameter0.51 (3)

Computer programs: CrysAlis RED (Oxford Diffraction, 2007), described by Hoelzel et al. (2007), JANA2006 (Petříček et al., 2006), SIR97 (Altomare et al., 1999), [Please provide missing details], DIAMOND (Brandenburg & Putz, 2005) and CrystalMaker (Palmer, 2005).

Selected bond lengths (Å) for (I_XRD) top
Ba1—O12.958 (9)La2/Sr2—O2iv2.613 (11)
Ba2—O22.891 (8)La2/Sr2—O4v2.22 (8)
Ru1—O11.948 (9)La2/Sr2—O5ii2.28 (8)
Ru1—O21.980 (12)La2/Sr2—O6ii2.58 (2)
Ru2/Al1—O31.89 (4)La3/Sr3—O12.559 (9)
Ru2/Al1—O42.17 (8)La3/Sr3—O2vi2.870 (8)
Ru2/Al1—O52.18 (8)La3/Sr3—O4i2.27 (8)
Ru2/Al1—O61.88 (2)La3/Sr3—O52.26 (8)
La1/Sr1—O12.795 (9)La3/Sr3—O6vii2.45 (3)
La1/Sr1—O2i2.558 (8)La4/Sr4—O1ii2.675 (9)
La1/Sr1—O3ii2.43 (3)La4/Sr4—O32.47 (4)
La1/Sr1—O4iii2.68 (8)La4/Sr4—O3vi2.47 (4)
La1/Sr1—O5ii2.61 (8)
Symmetry codes: (i) z+1/2, x1/2, y; (ii) x+1, y, z; (iii) y+1/2, z, x+1/2; (iv) x, y+1/2, z+1/2; (v) x+1, y, z; (vi) z, x+1/2, y+1/2; (vii) y+1/2, z, x+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds