


Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113025717/fa3323sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270113025717/fa3323Isup2.hkl |
CCDC reference: 961581
The growing demand for accurate and cost-effective air-quality analytical methods for environmental monitoring, automotive and medical/healthcare applications, as well as for domestic and industrial security, has led to the search for new materials and techniques to enhance the performance of viable gas sensors. Tin(IV) oxide is a wide-bandgap semiconductor employed in a variety of industrial applications, including solid state gas sensors, transparent conductors, and oxidation catalysts (Batzill et al., 2005). Semiconductor oxide gas sensors like SnO2 have been widely studied due to their range of conductance variability and response towards both oxidizing and reducing gases (Niranjan et al., 2003). Additives to SnO2 have been used for sensitizing and increasing the detection response to particular gases. The doping of SnO2 ceramics with copper has been studied extensively, resulting in considerably higher sensitivity and selectivity for hydrogen sulfide detection due to the copper cations, which help to promote the dissociation of H2S (Manorama et al., 1994; Galdikas et al., 1995; Devi et al., 1995; Rumyantseva et al., 1996, 1997). This type of sensor has been under constant development because of the toxic and corrosive nature of hydrogen sulfide. During the past several years, thin/thick films of CuO–SnO2 (Devi et al., 1995; Mangamma et al., 1998; Vasiliev et al., 1999) or Cu-doped SnO2 (Niranjan et al., 2003) have been prepared using different techniques, i.e. aerosol deposition (Akimov et al., 1994), liquid-phase co-precipitation (Zhou, 2003), thermal evaporation (Katti et al., 2003), and sol-gel methods (Baker et al., 2007).
The interest in materials that incorporate more than one type of metal atom has generated a need for single-source precursors (SSP) – molecules containing all of the necessary elements in the proper ratios and decomposable in a controlled manner under mild conditions to yield phase-pure compounds (Jones, 2002; Hubert-Pfalzgraf, 2004; Bloor et al., 2011). It has been established that heterometallic (main group transition metal) β-diketonates can be effectively used as single-source precursors for mixed-metal oxide materials (Zhang et al., 2009; Navulla et al., 2011). Recently, we have reported (Wei et al., 2011) the preparation of a unique homoleptic tetranuclear complex [Sn4(hfpt)2] (hfpt4- is the tetraanion of 1,1,1,5,5,5-hexafluoropentane-2,2,4,4-tetraol). This work revealed the great potential of tetraolate ligands, which are capable of bridging multiple metal atoms in the formation of polynuclear and heterometallic complexes. Moreover, a tetraolate compound was shown to exhibit clean low-temperature decomposition yielding phase-pure SnO2 oxide (Wei et al., 2011). Herein we report the synthesis and solid-state structure of a new tin-rich heteroleptic complex [Sn4(hfpt)2–Cu(hfac)2–Sn4(hfpt)2], (I), a prospective single-source precursor for copper-doped SnO2 films or nanoparticles (hfac- is the anion of 1,1,1,5,5,5-hexafluoropentane-2,4-dione).
All manipulations were carried out in a dry oxygen-free dinitrogen atmosphere by employing standard Schlenk-line and glove-box techniques. [Sn4(hfpt)2] (Wei et al., 2011) and [Cu(hfac)2] (Maverick et al., 2002) were prepared according to literature procedures.
For the synthesis of (I), a mixture of tin tetraolate [Sn4(hfpt)2] (0.120 g, 0.124 mmol) and copper β-diketonate [Cu(hfac)2] (0.030 g, 0.062 mmol) was refluxed for 30 min in hexanes (10 ml) to afford a blue solution. The reaction mixture was concentrated by the removal of hexanes (ca 8 ml) under vacuum, and the remaining solution was placed in the freezer (273 K, 3 d) to yield light-blue crystals of the title compound.
Crystal data, data collection and structure refinement details are summarized in Table 1. The CF3 groups of [Cu(hfac)2] were found to be rotationally disordered. This disorder was individually modelled in both cases with two orientations and relative occupancies of 1:1 for the two parts. The C—F bond lengths were restrained to 1.34 (1) Å. The geometries of the two disordered parts were restrained to be similar. The anisotropic displacement parameters of the disordered –CF3 groups in the direction of the bonds were restrained to be equal with a standard uncertainty of 0.01 Å2. They were also restrained to have the same Uij components with a standard uncertainty of 0.04 Å2. H atoms were included at calculated positions (methylene C—H = 0.97 Å and C3—H3 = 0.93 Å) and refined as riders, with Uiso(H) = 1.2Ueq(C).
The asymmetric unit of (I) consists of the whole [Sn4(hfpt)2] fragment and half of the [Cu(hfac)2] moiety with the Cu atom lying on an inversion center. The molecular structure is comprised of a planar β-diketonate unit sandwiched between two tetranuclear [Sn4(hfpt)2] units (Fig. 1). Each [Sn4(hfpt)2] unit consists of four metal atoms which make up a butterfly tetrahedron with two longer and two shorter Sn···Sn distances of 3.668 (9)/3.742 (1) and 4.953 (9)/4.966 (1) Å. Each of the Sn atoms is coordinated by two O atoms from each tetradentate tetraolate ligand maintaining a pyramidal coordination, as expected for Sn2+, which has a lone electron pair. For each tin centre three of the Sn—O bonds are shorter with the distances ranging from 2.083 (3) to 2.222 (3) Å, while one is longer [2.659 (3)—2.887 (3) Å] (Table 2). The same is observed in [Sn4(hfpt)2] itself (Wei et al., 2011) with three shorter bonds [2.126 (2)–2.200 (2) Å] and one longer with a distance of 2.750 (2) Å. There are several changes in the corresponding Sn—O distances in the [Sn4(hfpt)2] units of (I), most notably in the elongation by 0.14 Å in the Sn1—O3 bond [2.887 (3) Å] as opposed to 2.750 (2) Å for [Sn4(hfpt)2] itself. This can be attributed to the O3 atoms in (I) being involved in additional noncovalent interactions with Cu1.
The [Cu(hfac)2] unit of (I), which sits on an inversion centre, consists of two fluorinated chelating β-diketonate ligands with equatorial Cu—O distances of 1.924 (2) and 1.927 (3) Å, and cis-O—Cu—O angles of 92.28 (10) and 87.72 (10)°. There is a negligible change in (I) from the O—Cu—O angles of 93.24 and 86.76° in unsolvated [Cu(hfac)2]; however, a comparison of Cu—O distances reveals that one of the bonds is more than 0.01 Å shorter [1.914 (3) Å] in the unsolvated species. Elongation of Cu—O bonds is generally observed in CuII β-diketonates upon coordination of O-donor ligands (Xu et al., 2000; Maverick et al., 2002; Visintin et al., 2005; Pampaloni et al., 2005; Filyakova et al., 2009; Pointillart et al., 2010) in comparison with unsolvated species. In most cases, the effect is more pronounced than is observed in (I).
The two additional Cu···O interactions [Cu1···O3 = Cu1···O3A = 2.985 (3) Å; Fig. 1] at the axial positions of the planar β-diketonate unit in (I) provide an elongated octahedral coordination environment around the Cu atom. These axial contacts are significantly longer than those in the previously reported [Cu(hfac)2] complexes with O-donor ligands, which commonly span the range from 1.98 to 2.60 Å. The previously reported trinuclear complex [Bi(hfac)3–Cu(hfac)2–Bi(hfac)3] (Dikarev et al., 2005) also has a planar [Cu(hfac)2] unit, sandwiched between two Bi(hfac)3 units. This sandwich complex exhibits essentially the same equatorial Cu—O bond lengths of 1.926 (2) and 1.928 (2) Å as in (I) and a shorter intermolecular axial contact of an O atom of [Bi(hfac)3] and the Cu atom of [Cu(hfac)2] [2.588 (2) Å]. While the axial Cu1···O3 and Cu1···O3A contacts in (I) are longer in comparison to previously reported structures, they are still less than the sum of the van der Waals radii of Cu and O (3.42 Å; Bondi, 1964; Batsanov, 2011).
In addition to Cu···O interactions, intermolecular noncovalent Sn···O interactions between neighbouring [Sn4(hfpt)2] units are also observed in (I) [Sn4···O6(-x+2, -y+1, -z+1) = 3.467 (3) Å], leading to the formation of a one-dimensional zigzag chain shown in Fig. 2(a). These chains are further linked into a three-dimensional supramolecular structure through the additional rather long Sn···O interactions between neighbouring units [Sn2···O9(x, -y+3/2, z+1/2) = 3.624 (2) Å; Fig. 2b]. Similar intermolecular interactions are also found in the crystal packing of homoleptic [Sn4(hfpt)2], with intermolecular Sn···O contacts of 3.646 (2) Å. These noncovalent Sn···O interactions are all within the sum of the van der Waals radii of Sn and O atoms (3.81 Å; Bondi, 1964; Batsanov, 2011).
In summary, a new product, [Sn4(hfpt)2–Cu(hfac)2–Sn4(hfpt)2] (I), has been prepared by the direct reaction of the homometallic complexes [Sn4(hfpt)2] and [Cu(hfac)2]. The product represents an unusual tin-rich heteroleptic complex with Sn to Cu ratio of 8:1. This new single-source precursor should provide an attractive low-temperature preparative route to Cu-doped SnO2 thin films.
Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT (Bruker, 2003); program(s) used to solve structure: SHELXTL (Bruker, 2003); program(s) used to refine structure: SHELXTL (Bruker, 2003); molecular graphics: SHELXTL (Bruker, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2003).
[CuSn8(C5HF6O2)2(C5H2F6O4)4] | F(000) = 2206 |
Mr = 2387.61 | Dx = 2.706 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 8340 reflections |
a = 16.716 (4) Å | θ = 2.2–28.5° |
b = 12.535 (3) Å | µ = 3.88 mm−1 |
c = 15.232 (4) Å | T = 293 K |
β = 113.331 (3)° | Block, green |
V = 2930.6 (12) Å3 | 0.41 × 0.32 × 0.08 mm |
Z = 2 |
Bruker SMART APEX CCD area-detector diffractometer | 7021 independent reflections |
Radiation source: fine-focus sealed tube | 6002 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.032 |
0.30° ω scans | θmax = 28.7°, θmin = 2.1° |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | h = −22→22 |
Tmin = 0.299, Tmax = 0.746 | k = −16→16 |
22479 measured reflections | l = −19→19 |
Refinement on F2 | Secondary atom site location: difference Fourier map |
Least-squares matrix: full | Hydrogen site location: inferred from neighbouring sites |
R[F2 > 2σ(F2)] = 0.027 | H-atom parameters constrained |
wR(F2) = 0.071 | w = 1/[σ2(Fo2) + (0.034P)2 + 1.9804P] where P = (Fo2 + 2Fc2)/3 |
S = 1.04 | (Δ/σ)max = 0.001 |
7021 reflections | Δρmax = 0.69 e Å−3 |
485 parameters | Δρmin = −0.94 e Å−3 |
72 restraints | Extinction correction: SHELXTL (Bruker, 2003), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4 |
Primary atom site location: structure-invariant direct methods | Extinction coefficient: 0.00174 (9) |
[CuSn8(C5HF6O2)2(C5H2F6O4)4] | V = 2930.6 (12) Å3 |
Mr = 2387.61 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 16.716 (4) Å | µ = 3.88 mm−1 |
b = 12.535 (3) Å | T = 293 K |
c = 15.232 (4) Å | 0.41 × 0.32 × 0.08 mm |
β = 113.331 (3)° |
Bruker SMART APEX CCD area-detector diffractometer | 7021 independent reflections |
Absorption correction: multi-scan (SADABS; Bruker, 2003) | 6002 reflections with I > 2σ(I) |
Tmin = 0.299, Tmax = 0.746 | Rint = 0.032 |
22479 measured reflections |
R[F2 > 2σ(F2)] = 0.027 | 72 restraints |
wR(F2) = 0.071 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.69 e Å−3 |
7021 reflections | Δρmin = −0.94 e Å−3 |
485 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
Sn1 | 0.684173 (15) | 0.752594 (19) | 0.357845 (16) | 0.04280 (8) | |
Sn2 | 0.722793 (15) | 0.662221 (19) | 0.605542 (16) | 0.04115 (7) | |
Sn3 | 0.954002 (15) | 0.67365 (2) | 0.641146 (16) | 0.04504 (8) | |
Sn4 | 0.876168 (16) | 0.57890 (2) | 0.393423 (16) | 0.04587 (8) | |
Cu1 | 0.5000 | 0.5000 | 0.5000 | 0.0600 (2) | |
O1 | 0.4189 (2) | 0.51489 (19) | 0.36893 (18) | 0.0595 (7) | |
O2 | 0.50640 (18) | 0.65192 (18) | 0.51989 (17) | 0.0508 (6) | |
O3 | 0.65463 (16) | 0.5836 (2) | 0.47029 (17) | 0.0508 (6) | |
O4 | 0.74531 (15) | 0.59573 (18) | 0.39061 (16) | 0.0415 (5) | |
O5 | 0.83692 (15) | 0.57699 (19) | 0.60977 (17) | 0.0463 (5) | |
O6 | 0.90733 (17) | 0.4984 (2) | 0.52585 (18) | 0.0519 (6) | |
O7 | 0.73745 (15) | 0.78600 (19) | 0.50852 (15) | 0.0425 (5) | |
O8 | 0.86137 (16) | 0.7866 (2) | 0.64342 (15) | 0.0448 (5) | |
O9 | 0.80713 (16) | 0.7857 (2) | 0.36022 (16) | 0.0480 (6) | |
O10 | 0.91559 (16) | 0.71384 (19) | 0.49138 (15) | 0.0433 (5) | |
C2 | 0.3957 (3) | 0.6016 (3) | 0.3251 (3) | 0.0532 (9) | |
C3 | 0.4155 (3) | 0.7026 (3) | 0.3617 (3) | 0.0613 (11) | |
H3 | 0.3929 | 0.7608 | 0.3217 | 0.074* | |
C4 | 0.4681 (2) | 0.7197 (3) | 0.4563 (3) | 0.0473 (8) | |
C6 | 0.6297 (3) | 0.4715 (3) | 0.3372 (3) | 0.0556 (9) | |
C7 | 0.6988 (2) | 0.5251 (3) | 0.4263 (2) | 0.0437 (7) | |
C8 | 0.7584 (3) | 0.4395 (3) | 0.4904 (3) | 0.0525 (9) | |
H8A | 0.7700 | 0.3868 | 0.4504 | 0.063* | |
H8B | 0.7279 | 0.4038 | 0.5246 | 0.063* | |
C9 | 0.8454 (2) | 0.4811 (3) | 0.5633 (2) | 0.0464 (8) | |
C10 | 0.8811 (3) | 0.3966 (3) | 0.6434 (3) | 0.0609 (10) | |
C11 | 0.7772 (2) | 0.9429 (3) | 0.6031 (2) | 0.0485 (8) | |
C12 | 0.8116 (2) | 0.8473 (3) | 0.5646 (2) | 0.0404 (7) | |
C13 | 0.8619 (2) | 0.8907 (3) | 0.5078 (2) | 0.0440 (7) | |
H13A | 0.9175 | 0.9179 | 0.5524 | 0.053* | |
H13B | 0.8297 | 0.9503 | 0.4694 | 0.053* | |
C14 | 0.8789 (2) | 0.8101 (3) | 0.4421 (2) | 0.0421 (7) | |
C15 | 0.9473 (3) | 0.8577 (3) | 0.4085 (3) | 0.0527 (9) | |
C5 | 0.4868 (3) | 0.8347 (3) | 0.4919 (3) | 0.0619 (10) | |
F1 | 0.5674 (4) | 0.8541 (7) | 0.5307 (15) | 0.144 (6) | 0.50 |
F2 | 0.4566 (12) | 0.8491 (7) | 0.5598 (10) | 0.130 (3) | 0.50 |
F3 | 0.4440 (9) | 0.9050 (5) | 0.4284 (6) | 0.107 (4) | 0.50 |
F1X | 0.5362 (9) | 0.8432 (6) | 0.5809 (5) | 0.109 (4) | 0.50 |
F2X | 0.4195 (5) | 0.8884 (8) | 0.4777 (12) | 0.125 (4) | 0.50 |
F3X | 0.5277 (11) | 0.8858 (7) | 0.4437 (10) | 0.126 (3) | 0.50 |
C1 | 0.3392 (3) | 0.5887 (3) | 0.2185 (3) | 0.0715 (13) | |
F4 | 0.3318 (11) | 0.6725 (7) | 0.1638 (7) | 0.139 (6) | 0.50 |
F5 | 0.2645 (7) | 0.5429 (11) | 0.2013 (12) | 0.115 (5) | 0.50 |
F6 | 0.3768 (7) | 0.5174 (7) | 0.1811 (6) | 0.087 (3) | 0.50 |
F4X | 0.2867 (7) | 0.6736 (6) | 0.1878 (6) | 0.115 (4) | 0.50 |
F5X | 0.2821 (6) | 0.5123 (8) | 0.2061 (11) | 0.092 (4) | 0.50 |
F6X | 0.3824 (8) | 0.5681 (13) | 0.1669 (8) | 0.172 (8) | 0.50 |
F7 | 0.73584 (15) | 0.91254 (19) | 0.65804 (16) | 0.0609 (6) | |
F8 | 0.72132 (18) | 1.0016 (2) | 0.53164 (17) | 0.0718 (7) | |
F9 | 0.84192 (17) | 1.00768 (18) | 0.65598 (17) | 0.0658 (6) | |
F10 | 0.9220 (2) | 0.9522 (2) | 0.3658 (2) | 0.0784 (7) | |
F11 | 1.02471 (16) | 0.8712 (2) | 0.48021 (17) | 0.0709 (7) | |
F12 | 0.95949 (17) | 0.7935 (2) | 0.34485 (17) | 0.0706 (7) | |
F13 | 0.57335 (16) | 0.5415 (2) | 0.27939 (17) | 0.0723 (7) | |
F14 | 0.58367 (18) | 0.3982 (2) | 0.3600 (2) | 0.0819 (8) | |
F15 | 0.66715 (18) | 0.4213 (2) | 0.28552 (18) | 0.0726 (7) | |
F16 | 0.83044 (19) | 0.3855 (2) | 0.6919 (2) | 0.0823 (8) | |
F17 | 0.8861 (2) | 0.3013 (2) | 0.6074 (2) | 0.0930 (9) | |
F18 | 0.96074 (17) | 0.4219 (2) | 0.70774 (18) | 0.0748 (7) |
U11 | U22 | U33 | U12 | U13 | U23 | |
Sn1 | 0.03952 (13) | 0.04925 (14) | 0.03276 (12) | 0.00568 (10) | 0.00701 (9) | −0.00056 (9) |
Sn2 | 0.04109 (13) | 0.04987 (14) | 0.03410 (12) | 0.00357 (10) | 0.01661 (10) | −0.00235 (9) |
Sn3 | 0.03698 (13) | 0.06191 (16) | 0.03252 (12) | 0.01043 (10) | 0.00982 (9) | 0.00194 (9) |
Sn4 | 0.05030 (14) | 0.05373 (15) | 0.03582 (12) | 0.00782 (11) | 0.01946 (10) | −0.00474 (10) |
Cu1 | 0.0848 (5) | 0.0310 (3) | 0.0409 (3) | 0.0047 (3) | 0.0001 (3) | 0.0025 (2) |
O1 | 0.0807 (19) | 0.0349 (12) | 0.0444 (13) | −0.0015 (12) | 0.0051 (13) | 0.0065 (10) |
O2 | 0.0631 (16) | 0.0351 (12) | 0.0443 (13) | 0.0048 (11) | 0.0109 (12) | 0.0019 (10) |
O3 | 0.0436 (13) | 0.0633 (16) | 0.0426 (13) | 0.0050 (12) | 0.0140 (11) | −0.0115 (11) |
O4 | 0.0410 (12) | 0.0401 (12) | 0.0408 (12) | 0.0000 (10) | 0.0133 (10) | −0.0039 (9) |
O5 | 0.0454 (13) | 0.0481 (14) | 0.0417 (12) | 0.0102 (11) | 0.0132 (10) | −0.0012 (10) |
O6 | 0.0545 (15) | 0.0555 (15) | 0.0481 (14) | 0.0121 (12) | 0.0231 (12) | 0.0064 (11) |
O7 | 0.0438 (13) | 0.0474 (13) | 0.0359 (11) | −0.0003 (10) | 0.0152 (10) | −0.0051 (10) |
O8 | 0.0498 (14) | 0.0524 (14) | 0.0311 (11) | 0.0100 (11) | 0.0147 (10) | 0.0020 (10) |
O9 | 0.0501 (14) | 0.0617 (15) | 0.0314 (11) | −0.0015 (12) | 0.0153 (10) | −0.0010 (10) |
O10 | 0.0491 (13) | 0.0482 (13) | 0.0333 (11) | 0.0045 (11) | 0.0170 (10) | 0.0003 (9) |
C2 | 0.057 (2) | 0.0413 (19) | 0.049 (2) | −0.0028 (17) | 0.0085 (17) | 0.0079 (15) |
C3 | 0.071 (3) | 0.0374 (18) | 0.054 (2) | −0.0014 (18) | 0.0025 (19) | 0.0111 (16) |
C4 | 0.050 (2) | 0.0306 (16) | 0.057 (2) | 0.0018 (14) | 0.0162 (17) | 0.0021 (14) |
C6 | 0.058 (2) | 0.055 (2) | 0.052 (2) | −0.0130 (19) | 0.0208 (19) | −0.0135 (17) |
C7 | 0.0463 (19) | 0.0465 (18) | 0.0388 (17) | −0.0019 (15) | 0.0176 (14) | −0.0062 (14) |
C8 | 0.061 (2) | 0.0450 (19) | 0.055 (2) | 0.0008 (17) | 0.0269 (18) | −0.0022 (16) |
C9 | 0.053 (2) | 0.0447 (18) | 0.0436 (18) | 0.0124 (16) | 0.0221 (16) | 0.0039 (14) |
C10 | 0.070 (3) | 0.057 (2) | 0.061 (2) | 0.019 (2) | 0.033 (2) | 0.0127 (19) |
C11 | 0.053 (2) | 0.050 (2) | 0.0398 (18) | 0.0081 (17) | 0.0158 (16) | −0.0057 (15) |
C12 | 0.0425 (17) | 0.0437 (17) | 0.0315 (15) | 0.0045 (14) | 0.0109 (13) | −0.0039 (12) |
C13 | 0.0476 (19) | 0.0432 (18) | 0.0398 (17) | −0.0017 (15) | 0.0158 (15) | −0.0004 (14) |
C14 | 0.0447 (18) | 0.0479 (18) | 0.0350 (16) | 0.0016 (15) | 0.0170 (14) | 0.0029 (13) |
C15 | 0.054 (2) | 0.064 (2) | 0.0455 (19) | −0.0078 (18) | 0.0249 (17) | −0.0020 (17) |
C5 | 0.063 (3) | 0.041 (2) | 0.073 (3) | 0.0061 (18) | 0.017 (2) | −0.0038 (18) |
F1 | 0.046 (3) | 0.049 (4) | 0.287 (17) | −0.010 (3) | 0.014 (6) | −0.037 (9) |
F2 | 0.215 (12) | 0.076 (5) | 0.140 (8) | 0.022 (7) | 0.112 (9) | −0.016 (5) |
F3 | 0.161 (10) | 0.034 (3) | 0.083 (5) | 0.016 (5) | 0.003 (5) | 0.004 (3) |
F1X | 0.134 (8) | 0.054 (4) | 0.081 (5) | 0.007 (6) | −0.020 (5) | −0.027 (3) |
F2X | 0.067 (4) | 0.079 (7) | 0.203 (13) | 0.037 (4) | 0.024 (7) | −0.046 (7) |
F3X | 0.185 (10) | 0.055 (5) | 0.185 (10) | −0.044 (6) | 0.122 (9) | −0.028 (5) |
C1 | 0.082 (3) | 0.056 (2) | 0.052 (2) | −0.008 (2) | 0.000 (2) | 0.0107 (19) |
F4 | 0.265 (16) | 0.064 (4) | 0.047 (4) | −0.015 (6) | 0.019 (7) | 0.019 (3) |
F5 | 0.055 (4) | 0.205 (14) | 0.066 (6) | −0.015 (6) | 0.004 (4) | −0.001 (9) |
F6 | 0.110 (6) | 0.107 (5) | 0.038 (4) | 0.005 (4) | 0.023 (3) | −0.008 (3) |
F4X | 0.145 (8) | 0.071 (5) | 0.055 (5) | 0.010 (5) | −0.039 (5) | 0.019 (3) |
F5X | 0.102 (8) | 0.058 (3) | 0.068 (5) | −0.031 (4) | −0.018 (5) | 0.007 (3) |
F6X | 0.095 (6) | 0.37 (2) | 0.044 (4) | −0.058 (11) | 0.020 (4) | 0.041 (10) |
F7 | 0.0660 (14) | 0.0692 (15) | 0.0554 (13) | 0.0069 (11) | 0.0323 (11) | −0.0126 (11) |
F8 | 0.0825 (17) | 0.0670 (15) | 0.0581 (13) | 0.0329 (13) | 0.0194 (13) | 0.0014 (11) |
F9 | 0.0778 (16) | 0.0560 (13) | 0.0607 (14) | −0.0093 (12) | 0.0242 (12) | −0.0219 (11) |
F10 | 0.096 (2) | 0.0731 (16) | 0.0775 (17) | −0.0051 (15) | 0.0470 (16) | 0.0213 (14) |
F11 | 0.0543 (13) | 0.0975 (19) | 0.0621 (14) | −0.0185 (13) | 0.0244 (12) | −0.0088 (13) |
F12 | 0.0749 (16) | 0.0939 (18) | 0.0599 (14) | −0.0091 (14) | 0.0447 (13) | −0.0115 (13) |
F13 | 0.0609 (15) | 0.0817 (17) | 0.0531 (13) | −0.0076 (13) | 0.0001 (11) | −0.0111 (12) |
F14 | 0.0785 (18) | 0.0809 (18) | 0.0857 (19) | −0.0359 (15) | 0.0317 (15) | −0.0108 (15) |
F15 | 0.0857 (18) | 0.0706 (16) | 0.0629 (15) | −0.0133 (13) | 0.0307 (14) | −0.0317 (12) |
F16 | 0.0885 (19) | 0.093 (2) | 0.0782 (17) | 0.0175 (16) | 0.0468 (16) | 0.0356 (15) |
F17 | 0.120 (2) | 0.0517 (15) | 0.105 (2) | 0.0318 (16) | 0.042 (2) | 0.0131 (14) |
F18 | 0.0674 (16) | 0.0909 (19) | 0.0611 (15) | 0.0252 (14) | 0.0202 (13) | 0.0260 (13) |
Sn1—Sn4 | 3.7359 (8) | C2—C3 | 1.369 (5) |
Sn1—Sn2 | 3.7424 (9) | C2—C1 | 1.530 (6) |
Sn1—Sn3 | 4.9526 (9) | C3—C4 | 1.376 (5) |
Sn2—Sn3 | 3.6868 (10) | C3—H3 | 0.9300 |
Sn2—Sn4 | 4.9664 (9) | C4—C5 | 1.528 (5) |
Sn3—Sn4 | 3.6677 (9) | C6—F14 | 1.330 (5) |
Sn1—O9 | 2.083 (3) | C6—F13 | 1.332 (5) |
Sn1—O7 | 2.149 (2) | C6—F15 | 1.341 (5) |
Sn1—O4 | 2.181 (2) | C6—C7 | 1.545 (5) |
Sn1—O3 | 2.887 (3) | C7—C8 | 1.525 (5) |
Sn2—O3 | 2.158 (2) | C8—C9 | 1.530 (5) |
Sn2—O5 | 2.165 (2) | C8—H8A | 0.9700 |
Sn2—O7 | 2.222 (2) | C8—H8B | 0.9700 |
Sn2—O8 | 2.659 (3) | C9—C10 | 1.546 (5) |
Sn3—O8 | 2.109 (2) | C10—F17 | 1.331 (5) |
Sn3—O10 | 2.170 (2) | C10—F16 | 1.333 (5) |
Sn3—O5 | 2.188 (3) | C10—F18 | 1.342 (5) |
Sn3—O6 | 2.727 (3) | C11—F7 | 1.334 (4) |
Sn4—O6 | 2.128 (2) | C11—F9 | 1.337 (4) |
Sn4—O10 | 2.178 (2) | C11—F8 | 1.340 (4) |
Sn4—O4 | 2.181 (2) | C11—C12 | 1.542 (5) |
Sn4—O9 | 2.800 (3) | C12—C13 | 1.525 (5) |
Cu1—O2i | 1.924 (2) | C13—C14 | 1.525 (5) |
Cu1—O2 | 1.924 (2) | C13—H13A | 0.9700 |
Cu1—O1i | 1.927 (3) | C13—H13B | 0.9700 |
Cu1—O1 | 1.927 (3) | C14—C15 | 1.546 (5) |
O1—C2 | 1.254 (4) | C15—F11 | 1.332 (4) |
O2—C4 | 1.257 (4) | C15—F12 | 1.336 (4) |
O3—C7 | 1.387 (4) | C15—F10 | 1.336 (5) |
O4—C7 | 1.421 (4) | C5—F1 | 1.262 (6) |
O5—C9 | 1.430 (4) | C5—F3 | 1.294 (6) |
O6—C9 | 1.383 (4) | C5—F2 | 1.330 (7) |
O7—C12 | 1.421 (4) | C1—F5 | 1.302 (8) |
O8—C12 | 1.387 (4) | C1—F4 | 1.316 (6) |
O9—C14 | 1.380 (4) | C1—F6 | 1.342 (7) |
O10—C14 | 1.425 (4) | ||
O9—Sn1—O7 | 87.36 (9) | C9—C8—H8A | 108.6 |
O9—Sn1—O4 | 78.79 (10) | C7—C8—H8B | 108.6 |
O7—Sn1—O4 | 88.44 (9) | C9—C8—H8B | 108.6 |
O3—Sn2—O5 | 85.92 (9) | H8A—C8—H8B | 107.6 |
O3—Sn2—O7 | 80.77 (9) | O6—C9—O5 | 108.0 (3) |
O5—Sn2—O7 | 92.08 (9) | O6—C9—C8 | 113.9 (3) |
O8—Sn3—O10 | 87.01 (8) | O5—C9—C8 | 113.2 (3) |
O8—Sn3—O5 | 77.08 (10) | O6—C9—C10 | 108.4 (3) |
O10—Sn3—O5 | 91.85 (9) | O5—C9—C10 | 105.6 (3) |
O6—Sn4—O10 | 79.92 (9) | C8—C9—C10 | 107.3 (3) |
O6—Sn4—O4 | 86.08 (9) | F17—C10—F16 | 107.0 (4) |
O10—Sn4—O4 | 88.13 (9) | F17—C10—F18 | 107.9 (3) |
O2i—Cu1—O2 | 180.0 | F16—C10—F18 | 106.5 (3) |
O2i—Cu1—O1i | 92.28 (10) | F17—C10—C9 | 111.0 (3) |
O2—Cu1—O1i | 87.72 (10) | F16—C10—C9 | 112.2 (3) |
O2i—Cu1—O1 | 87.72 (10) | F18—C10—C9 | 112.1 (4) |
O2—Cu1—O1 | 92.28 (10) | F7—C11—F9 | 107.0 (3) |
O1i—Cu1—O1 | 180.00 (19) | F7—C11—F8 | 107.4 (3) |
C2—O1—Cu1 | 125.3 (2) | F9—C11—F8 | 107.1 (3) |
C4—O2—Cu1 | 124.6 (2) | F7—C11—C12 | 112.4 (3) |
C7—O3—Sn2 | 121.4 (2) | F9—C11—C12 | 111.5 (3) |
C7—O4—Sn1 | 111.82 (19) | F8—C11—C12 | 111.2 (3) |
C7—O4—Sn4 | 128.9 (2) | O8—C12—O7 | 107.8 (3) |
Sn1—O4—Sn4 | 117.85 (10) | O8—C12—C13 | 114.2 (3) |
C9—O5—Sn2 | 131.2 (2) | O7—C12—C13 | 113.4 (3) |
C9—O5—Sn3 | 108.5 (2) | O8—C12—C11 | 106.4 (3) |
Sn2—O5—Sn3 | 115.77 (11) | O7—C12—C11 | 106.3 (3) |
C9—O6—Sn4 | 121.6 (2) | C13—C12—C11 | 108.2 (3) |
C12—O7—Sn1 | 129.88 (19) | C12—C13—C14 | 115.1 (3) |
C12—O7—Sn2 | 106.15 (18) | C12—C13—H13A | 108.5 |
Sn1—O7—Sn2 | 117.78 (11) | C14—C13—H13A | 108.5 |
C12—O8—Sn3 | 123.15 (19) | C12—C13—H13B | 108.5 |
C14—O9—Sn1 | 123.98 (19) | C14—C13—H13B | 108.5 |
C14—O10—Sn3 | 129.54 (19) | H13A—C13—H13B | 107.5 |
C14—O10—Sn4 | 110.28 (18) | O9—C14—O10 | 109.1 (3) |
Sn3—O10—Sn4 | 115.03 (11) | O9—C14—C13 | 114.7 (3) |
O1—C2—C3 | 127.6 (4) | O10—C14—C13 | 111.6 (3) |
O1—C2—C1 | 113.8 (3) | O9—C14—C15 | 106.2 (3) |
C3—C2—C1 | 118.6 (3) | O10—C14—C15 | 106.3 (3) |
C2—C3—C4 | 121.5 (3) | C13—C14—C15 | 108.4 (3) |
C2—C3—H3 | 119.3 | F11—C15—F12 | 107.1 (3) |
C4—C3—H3 | 119.3 | F11—C15—F10 | 107.7 (3) |
O2—C4—C3 | 128.4 (3) | F12—C15—F10 | 106.9 (3) |
O2—C4—C5 | 113.2 (3) | F11—C15—C14 | 112.5 (3) |
C3—C4—C5 | 118.4 (3) | F12—C15—C14 | 110.7 (3) |
F14—C6—F13 | 107.3 (3) | F10—C15—C14 | 111.7 (3) |
F14—C6—F15 | 106.4 (3) | F1—C5—F3 | 112.9 (9) |
F13—C6—F15 | 107.1 (3) | F1—C5—F2 | 105.9 (10) |
F14—C6—C7 | 112.3 (3) | F3—C5—F2 | 102.8 (7) |
F13—C6—C7 | 112.4 (3) | F1—C5—C4 | 112.2 (5) |
F15—C6—C7 | 111.0 (3) | F3—C5—C4 | 113.7 (5) |
O3—C7—O4 | 109.4 (3) | F2—C5—C4 | 108.4 (5) |
O3—C7—C8 | 113.6 (3) | F5—C1—F4 | 112.4 (10) |
O4—C7—C8 | 111.5 (3) | F5—C1—F6 | 101.1 (9) |
O3—C7—C6 | 107.3 (3) | F4—C1—F6 | 101.8 (8) |
O4—C7—C6 | 105.4 (3) | F5—C1—C2 | 113.6 (8) |
C8—C7—C6 | 109.2 (3) | F4—C1—C2 | 116.8 (6) |
C7—C8—C9 | 114.7 (3) | F6—C1—C2 | 109.0 (5) |
C7—C8—H8A | 108.6 |
Symmetry code: (i) −x+1, −y+1, −z+1. |
Experimental details
Crystal data | |
Chemical formula | [CuSn8(C5HF6O2)2(C5H2F6O4)4] |
Mr | 2387.61 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 293 |
a, b, c (Å) | 16.716 (4), 12.535 (3), 15.232 (4) |
β (°) | 113.331 (3) |
V (Å3) | 2930.6 (12) |
Z | 2 |
Radiation type | Mo Kα |
µ (mm−1) | 3.88 |
Crystal size (mm) | 0.41 × 0.32 × 0.08 |
Data collection | |
Diffractometer | Bruker SMART APEX CCD area-detector diffractometer |
Absorption correction | Multi-scan (SADABS; Bruker, 2003) |
Tmin, Tmax | 0.299, 0.746 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 22479, 7021, 6002 |
Rint | 0.032 |
(sin θ/λ)max (Å−1) | 0.676 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.027, 0.071, 1.04 |
No. of reflections | 7021 |
No. of parameters | 485 |
No. of restraints | 72 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.69, −0.94 |
Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SHELXTL (Bruker, 2003).
Sn1—O9 | 2.083 (3) | Sn3—O10 | 2.170 (2) |
Sn1—O7 | 2.149 (2) | Sn3—O5 | 2.188 (3) |
Sn1—O4 | 2.181 (2) | Sn3—O6 | 2.727 (3) |
Sn1—O3 | 2.887 (3) | Sn4—O6 | 2.128 (2) |
Sn2—O3 | 2.158 (2) | Sn4—O10 | 2.178 (2) |
Sn2—O5 | 2.165 (2) | Sn4—O4 | 2.181 (2) |
Sn2—O7 | 2.222 (2) | Sn4—O9 | 2.800 (3) |
Sn2—O8 | 2.659 (3) | Cu1—O2 | 1.924 (2) |
Sn3—O8 | 2.109 (2) | Cu1—O1 | 1.927 (3) |
O9—Sn1—O7 | 87.36 (9) | O8—Sn3—O5 | 77.08 (10) |
O9—Sn1—O4 | 78.79 (10) | O10—Sn3—O5 | 91.85 (9) |
O7—Sn1—O4 | 88.44 (9) | O6—Sn4—O10 | 79.92 (9) |
O3—Sn2—O5 | 85.92 (9) | O6—Sn4—O4 | 86.08 (9) |
O3—Sn2—O7 | 80.77 (9) | O10—Sn4—O4 | 88.13 (9) |
O5—Sn2—O7 | 92.08 (9) | O2—Cu1—O1i | 87.72 (10) |
O8—Sn3—O10 | 87.01 (8) | O2—Cu1—O1 | 92.28 (10) |
Symmetry code: (i) −x+1, −y+1, −z+1. |