Download citation
Download citation
link to html
The titanocene complex [Ti(C10H15)(C15H23N)] features a penta­methyl­cyclo­penta­dienyl ligand and a substituted cyclo­penta­dienyl ligand Me4C5R, where R is an amino functional group which is subsequently attached to the titanium metal centre. The structure has been determined to ascertain the conformational properties of the side chain with regard to extended conjugation between the π systems and the nature of the amino interaction with the metal centre.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100002158/fg1577sup1.cif
Contains datablocks I, s251a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100002158/fg1577Isup2.hkl
Contains datablock I

CCDC reference: 145529

Comment top

Pentamethylcyclopentadienyl ligands (η5-C5Me5, Cp*) are generally preferred to their cyclopentadiene analogues due to their electron richness, steric bulk and relative inertness. In turn one or more of the methyl substituents can be deprotonated to produce functionalized pendant arms which may react, or induce, other reactions at the metal, or additionally be bonded to form extended units.

The bent sandwich geometry of the title complex, (I), shown in Figure 1, is a titanocene complex featuring a pendant amino substituted pentamethylcyclopentadienyl group. The Cp* and substituted cyclopentadienyl ligand form a staggered conformation about the Ti1 atom (viewed from above the functionalized Cp* plane), with an acute angle between the ligands of 28.5 (5)°. The molecule possesses near crystallographic mirror symmetry through the nitrogen, metal and Cp* ligands. The substituted Cp* ring is unsymmetrical; there is a shorter Ti1—C1 distance of 2.312 (4) Å compared to the remaining carbon atoms in either Cp* ligands attached to titanium [2.335 (4)–2.423 (4) Å for the functionalized Cp*; 2.380 (4)–2.407 (4) Å for Cp*]. A further measure of the ligand asymmetry is the ring slippage of the titanium atom relative to two Cp* ligands; 0.13 (2) Å for the substituted ring, 0.02 (2) Å for the unsubstituted Cp*. \sch

There is a distorted planar geometry around the titanium metal centre as shown by the angles between the centroids of the ring, titanium and nitrogen: Cg1—Ti1—Cg2 = 147.0 (5), Cg1—Ti1—N1 = 103.8 (5) and Cg2—Ti1—N1 = 109.1 (5)° [where Cg1 is the ring centroid of C1 to C5, Cg2 for C16 to C20]. These angles are in the range observed for other Cp*2TiLn systems.

There is no Ti1···H1A interaction [2.47 (2) Å], since the distance exceeds the covalent radii of the relevant atoms; rcov(Ti) = 1.47, rcov(H) = 0.35 Å. There are no suitable N—H hydrogen bond acceptor atoms in the molecule.

The other interesting feature concerns the planar nature of the substituent at C1 of the tetramethylcyclopentadienyl ring. The hydrogen H10 on C10 and tert-butyl group at C11 are arranged in a cis configuration. The C1—C10 distance of 1.462 (5) Å has single bond characteristics whereas the inner carbon-carbon distance C10—C11 = 1.339 (6) Å is in accordance with a double bond. The nitrogen atom is near planar (Σangles = 358.8°) and connects to C11 via an intermediate length bond N1—C11 =1.393 (5) Å. This suggests a small or little delocalization of the ligand. The three atoms in the side chain, C10, C11 and N1, are all sp2 hybridization as shown by their bond angles (being close to the expected 120°) and near zero torsion angles; Table 1. In this case the planarity of the pendant arm produces a more rigid group compared to those in previous studies of titanocene compounds (Beckhaus et al., 1997; Sinnema et al., 1997). The Ti1—N1 distance of 2.000 (3) Å is longer than those observed in simple titanocene amido complexes (Brady et al., 1995; Lukens et al., 1996), but is in the normal range for a Ti—N σ bond.

Experimental top

The complex was prepared by addition of t-CN (0.072 g, 0.87 mmol) to a pentane solution of [(η5-C5Me5)(Me4C5CH2)Ti] (0.276 g, 0.87 mmol) at 193 K. The reaction mixture goes dark red and is warmed to room temperature. After 4 h the volatiles were removed, the residue extracted and slowly cooled to 243 K to give dark red crystals in 84% yield (Pattiasina, 1988).

Refinement top

All hydrogen atoms, with the exception of those on C10 and N1, were constrained and allowed to ride on their methyl carbon atoms with Uiso(H) = 1.5Ueq(C). H10 and H1A were located from a difference Fourier map and their coordinates allowed to refine with their isotropic displacement parameters constrained to Uiso(H) = 1.2Ueq(C or N); the dimensions refined to C10—H10 1.06 (4), N1—H1A 0.83 (5) Å.

Structure description top

Pentamethylcyclopentadienyl ligands (η5-C5Me5, Cp*) are generally preferred to their cyclopentadiene analogues due to their electron richness, steric bulk and relative inertness. In turn one or more of the methyl substituents can be deprotonated to produce functionalized pendant arms which may react, or induce, other reactions at the metal, or additionally be bonded to form extended units.

The bent sandwich geometry of the title complex, (I), shown in Figure 1, is a titanocene complex featuring a pendant amino substituted pentamethylcyclopentadienyl group. The Cp* and substituted cyclopentadienyl ligand form a staggered conformation about the Ti1 atom (viewed from above the functionalized Cp* plane), with an acute angle between the ligands of 28.5 (5)°. The molecule possesses near crystallographic mirror symmetry through the nitrogen, metal and Cp* ligands. The substituted Cp* ring is unsymmetrical; there is a shorter Ti1—C1 distance of 2.312 (4) Å compared to the remaining carbon atoms in either Cp* ligands attached to titanium [2.335 (4)–2.423 (4) Å for the functionalized Cp*; 2.380 (4)–2.407 (4) Å for Cp*]. A further measure of the ligand asymmetry is the ring slippage of the titanium atom relative to two Cp* ligands; 0.13 (2) Å for the substituted ring, 0.02 (2) Å for the unsubstituted Cp*. \sch

There is a distorted planar geometry around the titanium metal centre as shown by the angles between the centroids of the ring, titanium and nitrogen: Cg1—Ti1—Cg2 = 147.0 (5), Cg1—Ti1—N1 = 103.8 (5) and Cg2—Ti1—N1 = 109.1 (5)° [where Cg1 is the ring centroid of C1 to C5, Cg2 for C16 to C20]. These angles are in the range observed for other Cp*2TiLn systems.

There is no Ti1···H1A interaction [2.47 (2) Å], since the distance exceeds the covalent radii of the relevant atoms; rcov(Ti) = 1.47, rcov(H) = 0.35 Å. There are no suitable N—H hydrogen bond acceptor atoms in the molecule.

The other interesting feature concerns the planar nature of the substituent at C1 of the tetramethylcyclopentadienyl ring. The hydrogen H10 on C10 and tert-butyl group at C11 are arranged in a cis configuration. The C1—C10 distance of 1.462 (5) Å has single bond characteristics whereas the inner carbon-carbon distance C10—C11 = 1.339 (6) Å is in accordance with a double bond. The nitrogen atom is near planar (Σangles = 358.8°) and connects to C11 via an intermediate length bond N1—C11 =1.393 (5) Å. This suggests a small or little delocalization of the ligand. The three atoms in the side chain, C10, C11 and N1, are all sp2 hybridization as shown by their bond angles (being close to the expected 120°) and near zero torsion angles; Table 1. In this case the planarity of the pendant arm produces a more rigid group compared to those in previous studies of titanocene compounds (Beckhaus et al., 1997; Sinnema et al., 1997). The Ti1—N1 distance of 2.000 (3) Å is longer than those observed in simple titanocene amido complexes (Brady et al., 1995; Lukens et al., 1996), but is in the normal range for a Ti—N σ bond.

Computing details top

Data collection: Locally modified CAD-4 Software (Enraf-Nonius, 1989); cell refinement: SET4 (de Boer & Duisenberg, 1984); data reduction: HELENA (Spek, 1997); program(s) used to solve structure: DIRDIF96 (Beurskens et al., 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 1999); software used to prepare material for publication: PLATON.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoids plot (50% probability) of the complex with atom labels.
(I) top
Crystal data top
[Ti(C10H15)(C15H23N)]F(000) = 1736
Mr = 400.46Dx = 1.166 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 9 reflections
a = 14.518 (9) Åθ = 11.4–13.8°
b = 13.701 (7) ŵ = 0.38 mm1
c = 23.924 (4) ÅT = 100 K
β = 106.59 (4)°Block, brown
V = 4561 (4) Å30.38 × 0.30 × 0.25 mm
Z = 8
Data collection top
Enraf Nonius CAD-4F
diffractometer
Rint = 0.059
Radiation source: rotating anodeθmax = 25.0°, θmin = 1.8°
Graphite monochromatorh = 1717
ω/2θ scansk = 016
4951 measured reflectionsl = 286
4006 independent reflections3 standard reflections every 60 min
2813 reflections with I > 2σ(I) intensity decay: 4%
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.162H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0616P)2 + 21.1265]
where P = (Fo2 + 2Fc2)/3
4006 reflections(Δ/σ)max = 0.001
262 parametersΔρmax = 0.47 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Ti(C10H15)(C15H23N)]V = 4561 (4) Å3
Mr = 400.46Z = 8
Monoclinic, C2/cMo Kα radiation
a = 14.518 (9) ŵ = 0.38 mm1
b = 13.701 (7) ÅT = 100 K
c = 23.924 (4) Å0.38 × 0.30 × 0.25 mm
β = 106.59 (4)°
Data collection top
Enraf Nonius CAD-4F
diffractometer
Rint = 0.059
4951 measured reflections3 standard reflections every 60 min
4006 independent reflections intensity decay: 4%
2813 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.162H-atom parameters constrained
S = 1.07Δρmax = 0.47 e Å3
4006 reflectionsΔρmin = 0.55 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ti10.22744 (5)0.06096 (5)0.13174 (3)0.0116 (2)
N10.2565 (2)0.0178 (3)0.06844 (15)0.0143 (7)
H1A0.267 (3)0.077 (3)0.0758 (19)0.017*
C190.1914 (3)0.0953 (3)0.16305 (16)0.0136 (8)
C160.2895 (3)0.0073 (3)0.23023 (16)0.0126 (8)
C170.1933 (3)0.0360 (3)0.22343 (17)0.0156 (9)
C110.2711 (3)0.0192 (3)0.01743 (17)0.0149 (9)
C210.3770 (3)0.0469 (3)0.27424 (18)0.0215 (9)
H21A0.35940.10500.29270.032*
H21B0.42550.06430.25470.032*
H21C0.40310.00280.30400.032*
C50.3103 (3)0.1977 (3)0.11321 (17)0.0155 (9)
C180.1314 (3)0.0266 (3)0.18047 (17)0.0155 (9)
C20.1481 (3)0.1813 (3)0.06646 (18)0.0168 (9)
C60.0562 (3)0.1605 (3)0.01976 (19)0.0251 (10)
H6A0.00570.14370.03790.038*
H6B0.06610.10580.00430.038*
H6C0.03680.21850.00480.038*
C200.2883 (3)0.0746 (3)0.19294 (17)0.0141 (8)
C250.3759 (3)0.1293 (3)0.18913 (18)0.0179 (9)
H25A0.40100.16840.22450.027*
H25B0.42510.08280.18540.027*
H25C0.35880.17240.15500.027*
C10.2420 (3)0.1675 (3)0.05978 (17)0.0145 (8)
C100.2640 (3)0.1164 (3)0.01153 (18)0.0161 (9)
H100.268 (3)0.155 (3)0.0263 (19)0.019*
C40.2580 (3)0.2333 (3)0.15124 (18)0.0168 (9)
C30.1585 (3)0.2230 (3)0.12196 (18)0.0177 (9)
C120.2905 (3)0.0515 (3)0.02726 (17)0.0168 (9)
C220.1592 (3)0.1068 (3)0.26082 (19)0.0212 (9)
H22A0.15290.07340.29580.032*
H22B0.09660.13330.23880.032*
H22C0.20570.16020.27240.032*
C230.0243 (3)0.0278 (3)0.16329 (19)0.0222 (10)
H23A0.00040.04680.12220.033*
H23B0.00040.03730.16880.033*
H23C0.00240.07490.18760.033*
C140.2032 (3)0.1196 (3)0.04947 (19)0.0218 (10)
H14A0.19260.15600.01660.033*
H14B0.21550.16550.07790.033*
H14C0.14600.08070.06800.033*
C240.1547 (3)0.1810 (3)0.12336 (18)0.0179 (9)
H24A0.20820.21120.11240.027*
H24B0.10620.15850.08820.027*
H24C0.12590.22900.14370.027*
C150.3812 (3)0.1111 (3)0.0012 (2)0.0243 (10)
H15A0.43570.06690.01620.036*
H15B0.39480.15490.02780.036*
H15C0.37100.14980.03340.036*
C70.0764 (3)0.2612 (3)0.14249 (19)0.0256 (10)
H7A0.05140.32130.12130.038*
H7B0.09910.27510.18440.038*
H7C0.02520.21220.13510.038*
C90.4171 (3)0.1978 (3)0.12392 (19)0.0232 (10)
H9A0.43720.26040.11140.035*
H9B0.43540.14470.10180.035*
H9C0.44860.18840.16560.035*
C130.3061 (4)0.0035 (3)0.07978 (19)0.0262 (10)
H13A0.24950.04370.09780.039*
H13B0.31590.04350.10840.039*
H13C0.36290.04550.06670.039*
C80.3023 (3)0.2856 (3)0.20729 (19)0.0253 (10)
H8A0.31220.35430.19920.038*
H8B0.36420.25550.22720.038*
H8C0.25940.28130.23230.038*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ti10.0132 (4)0.0093 (3)0.0130 (4)0.0005 (3)0.0047 (3)0.0005 (3)
N10.0220 (19)0.0051 (16)0.0179 (18)0.0004 (14)0.0089 (15)0.0024 (14)
C190.017 (2)0.012 (2)0.0124 (19)0.0005 (16)0.0059 (16)0.0016 (16)
C160.013 (2)0.017 (2)0.0076 (18)0.0011 (16)0.0030 (15)0.0045 (16)
C170.016 (2)0.017 (2)0.015 (2)0.0014 (17)0.0048 (16)0.0050 (16)
C110.013 (2)0.016 (2)0.015 (2)0.0012 (16)0.0035 (16)0.0005 (17)
C210.019 (2)0.025 (2)0.020 (2)0.0009 (18)0.0051 (17)0.0002 (19)
C50.021 (2)0.0073 (19)0.019 (2)0.0006 (16)0.0077 (17)0.0022 (16)
C180.016 (2)0.017 (2)0.016 (2)0.0002 (17)0.0073 (17)0.0041 (16)
C20.016 (2)0.012 (2)0.022 (2)0.0037 (16)0.0045 (17)0.0028 (17)
C60.020 (2)0.029 (3)0.024 (2)0.005 (2)0.0020 (19)0.005 (2)
C200.0118 (19)0.016 (2)0.0162 (19)0.0035 (16)0.0065 (16)0.0069 (16)
C250.014 (2)0.018 (2)0.022 (2)0.0018 (17)0.0065 (18)0.0041 (17)
C10.019 (2)0.0053 (18)0.020 (2)0.0014 (16)0.0063 (17)0.0022 (16)
C100.017 (2)0.013 (2)0.018 (2)0.0012 (17)0.0061 (17)0.0043 (17)
C40.023 (2)0.007 (2)0.020 (2)0.0032 (16)0.0054 (17)0.0006 (16)
C30.020 (2)0.010 (2)0.024 (2)0.0068 (17)0.0086 (18)0.0038 (17)
C120.019 (2)0.014 (2)0.019 (2)0.0006 (17)0.0072 (17)0.0014 (17)
C220.019 (2)0.023 (2)0.024 (2)0.0019 (18)0.0096 (19)0.0000 (19)
C230.016 (2)0.025 (2)0.026 (2)0.0011 (18)0.0064 (18)0.0020 (19)
C140.019 (2)0.019 (2)0.025 (2)0.0022 (18)0.0021 (19)0.0076 (19)
C240.021 (2)0.013 (2)0.022 (2)0.0025 (17)0.0093 (18)0.0010 (17)
C150.020 (2)0.025 (2)0.031 (3)0.0041 (19)0.011 (2)0.003 (2)
C70.030 (3)0.027 (2)0.022 (2)0.011 (2)0.011 (2)0.0005 (19)
C90.019 (2)0.022 (2)0.028 (2)0.0045 (19)0.0067 (19)0.0007 (19)
C130.039 (3)0.025 (2)0.018 (2)0.000 (2)0.014 (2)0.0036 (19)
C80.034 (3)0.015 (2)0.026 (2)0.0019 (19)0.007 (2)0.0097 (19)
Geometric parameters (Å, º) top
Ti1—N12.000 (3)C25—H25B0.9800
Ti1—C12.312 (4)C25—H25C0.9800
Ti1—C52.336 (4)C1—C101.462 (6)
Ti1—C22.336 (4)C10—H101.06 (4)
Ti1—C202.374 (4)C4—C31.421 (6)
Ti1—C192.375 (4)C4—C81.494 (6)
Ti1—C182.381 (4)C3—C71.508 (6)
Ti1—C162.386 (4)C12—C151.534 (6)
Ti1—C172.407 (4)C12—C131.536 (6)
Ti1—C32.419 (4)C12—C141.541 (6)
Ti1—C42.423 (4)C22—H22A0.9800
N1—C111.393 (5)C22—H22B0.9800
N1—H1A0.83 (5)C22—H22C0.9800
C19—C201.413 (5)C23—H23A0.9800
C19—C181.423 (6)C23—H23B0.9800
C19—C241.509 (6)C23—H23C0.9800
C16—C171.414 (5)C14—H14A0.9800
C16—C201.430 (6)C14—H14B0.9800
C16—C211.501 (5)C14—H14C0.9800
C17—C181.439 (6)C24—H24A0.9800
C17—C221.497 (6)C24—H24B0.9800
C11—C101.339 (6)C24—H24C0.9800
C11—C121.527 (6)C15—H15A0.9800
C21—H21A0.9800C15—H15B0.9800
C21—H21B0.9800C15—H15C0.9800
C21—H21C0.9800C7—H7A0.9800
C5—C41.426 (6)C7—H7B0.9800
C5—C11.437 (6)C7—H7C0.9800
C5—C91.498 (6)C9—H9A0.9800
C18—C231.491 (6)C9—H9B0.9800
C2—C31.413 (6)C9—H9C0.9800
C2—C11.429 (6)C13—H13A0.9800
C2—C61.503 (6)C13—H13B0.9800
C6—H6A0.9800C13—H13C0.9800
C6—H6B0.9800C8—H8A0.9800
C6—H6C0.9800C8—H8B0.9800
C20—C251.501 (5)C8—H8C0.9800
C25—H25A0.9800
N1—Ti1—C172.12 (14)C2—C6—H6A109.5
N1—Ti1—C593.31 (14)C2—C6—H6B109.5
C1—Ti1—C536.01 (14)H6A—C6—H6B109.5
N1—Ti1—C292.58 (14)C2—C6—H6C109.5
C1—Ti1—C235.82 (14)H6A—C6—H6C109.5
C5—Ti1—C259.30 (15)H6B—C6—H6C109.5
N1—Ti1—C2085.59 (14)C19—C20—C16107.8 (3)
C1—Ti1—C20148.88 (14)C19—C20—C25127.4 (4)
C5—Ti1—C20128.57 (14)C16—C20—C25124.7 (4)
C2—Ti1—C20171.97 (14)C19—C20—Ti172.7 (2)
N1—Ti1—C1982.28 (14)C16—C20—Ti173.0 (2)
C1—Ti1—C19151.51 (14)C25—C20—Ti1121.7 (3)
C5—Ti1—C19162.63 (14)C20—C25—H25A109.5
C2—Ti1—C19137.39 (15)C20—C25—H25B109.5
C20—Ti1—C1934.62 (13)H25A—C25—H25B109.5
N1—Ti1—C18112.24 (14)C20—C25—H25C109.5
C1—Ti1—C18150.84 (14)H25A—C25—H25C109.5
C5—Ti1—C18154.43 (14)H25B—C25—H25C109.5
C2—Ti1—C18115.91 (15)C2—C1—C5107.5 (3)
C20—Ti1—C1858.04 (14)C2—C1—C10125.6 (4)
C19—Ti1—C1834.82 (13)C5—C1—C10126.1 (4)
N1—Ti1—C16118.67 (14)C2—C1—Ti173.0 (2)
C1—Ti1—C16147.25 (14)C5—C1—Ti172.9 (2)
C5—Ti1—C16111.41 (14)C10—C1—Ti1111.9 (3)
C2—Ti1—C16148.52 (14)C11—C10—C1114.9 (4)
C20—Ti1—C1634.97 (13)C11—C10—H10124 (2)
C19—Ti1—C1657.70 (14)C1—C10—H10121 (2)
C18—Ti1—C1657.98 (14)C3—C4—C5107.6 (4)
N1—Ti1—C17139.10 (14)C3—C4—C8127.3 (4)
C1—Ti1—C17148.71 (14)C5—C4—C8124.5 (4)
C5—Ti1—C17122.55 (14)C3—C4—Ti172.8 (2)
C2—Ti1—C17121.27 (14)C5—C4—Ti169.2 (2)
C20—Ti1—C1757.57 (13)C8—C4—Ti1130.4 (3)
C19—Ti1—C1757.53 (13)C2—C3—C4108.9 (4)
C18—Ti1—C1734.97 (14)C2—C3—C7124.3 (4)
C16—Ti1—C1734.31 (13)C4—C3—C7126.3 (4)
N1—Ti1—C3126.35 (14)C2—C3—Ti169.5 (2)
C1—Ti1—C358.11 (14)C4—C3—Ti173.1 (2)
C5—Ti1—C357.77 (14)C7—C3—Ti1129.1 (3)
C2—Ti1—C334.52 (14)C11—C12—C15109.5 (3)
C20—Ti1—C3148.06 (14)C11—C12—C13111.2 (3)
C19—Ti1—C3137.34 (14)C15—C12—C13108.4 (3)
C18—Ti1—C3103.06 (14)C11—C12—C14109.1 (3)
C16—Ti1—C3114.05 (14)C15—C12—C14110.3 (4)
C17—Ti1—C391.82 (14)C13—C12—C14108.3 (3)
N1—Ti1—C4127.22 (14)C17—C22—H22A109.5
C1—Ti1—C458.51 (14)C17—C22—H22B109.5
C5—Ti1—C434.83 (14)H22A—C22—H22B109.5
C2—Ti1—C457.95 (14)C17—C22—H22C109.5
C20—Ti1—C4128.91 (14)H22A—C22—H22C109.5
C19—Ti1—C4149.57 (14)H22B—C22—H22C109.5
C18—Ti1—C4119.83 (14)C18—C23—H23A109.5
C16—Ti1—C496.52 (14)C18—C23—H23B109.5
C17—Ti1—C492.14 (14)H23A—C23—H23B109.5
C3—Ti1—C434.14 (14)C18—C23—H23C109.5
C11—N1—Ti1125.8 (3)H23A—C23—H23C109.5
C11—N1—H1A118 (3)H23B—C23—H23C109.5
Ti1—N1—H1A115 (3)C12—C14—H14A109.5
C20—C19—C18108.9 (3)C12—C14—H14B109.5
C20—C19—C24126.6 (4)H14A—C14—H14B109.5
C18—C19—C24124.3 (4)C12—C14—H14C109.5
C20—C19—Ti172.6 (2)H14A—C14—H14C109.5
C18—C19—Ti172.8 (2)H14B—C14—H14C109.5
C24—C19—Ti1125.0 (3)C19—C24—H24A109.5
C17—C16—C20108.1 (3)C19—C24—H24B109.5
C17—C16—C21126.2 (4)H24A—C24—H24B109.5
C20—C16—C21125.3 (4)C19—C24—H24C109.5
C17—C16—Ti173.7 (2)H24A—C24—H24C109.5
C20—C16—Ti172.1 (2)H24B—C24—H24C109.5
C21—C16—Ti1125.9 (3)C12—C15—H15A109.5
C16—C17—C18108.1 (3)C12—C15—H15B109.5
C16—C17—C22126.6 (4)H15A—C15—H15B109.5
C18—C17—C22124.5 (4)C12—C15—H15C109.5
C16—C17—Ti172.0 (2)H15A—C15—H15C109.5
C18—C17—Ti171.5 (2)H15B—C15—H15C109.5
C22—C17—Ti1129.9 (3)C3—C7—H7A109.5
C10—C11—N1115.3 (4)C3—C7—H7B109.5
C10—C11—C12125.5 (4)H7A—C7—H7B109.5
N1—C11—C12119.2 (4)C3—C7—H7C109.5
C16—C21—H21A109.5H7A—C7—H7C109.5
C16—C21—H21B109.5H7B—C7—H7C109.5
H21A—C21—H21B109.5C5—C9—H9A109.5
C16—C21—H21C109.5C5—C9—H9B109.5
H21A—C21—H21C109.5H9A—C9—H9B109.5
H21B—C21—H21C109.5C5—C9—H9C109.5
C4—C5—C1108.0 (4)H9A—C9—H9C109.5
C4—C5—C9127.1 (4)H9B—C9—H9C109.5
C1—C5—C9124.8 (4)C12—C13—H13A109.5
C4—C5—Ti175.9 (2)C12—C13—H13B109.5
C1—C5—Ti171.1 (2)H13A—C13—H13B109.5
C9—C5—Ti1122.2 (3)C12—C13—H13C109.5
C19—C18—C17107.1 (3)H13A—C13—H13C109.5
C19—C18—C23126.1 (4)H13B—C13—H13C109.5
C17—C18—C23126.4 (4)C4—C8—H8A109.5
C19—C18—Ti172.4 (2)C4—C8—H8B109.5
C17—C18—Ti173.5 (2)H8A—C8—H8B109.5
C23—C18—Ti1125.6 (3)C4—C8—H8C109.5
C3—C2—C1108.0 (4)H8A—C8—H8C109.5
C3—C2—C6127.5 (4)H8B—C8—H8C109.5
C1—C2—C6124.4 (4)Cg1—Ti1—Cg2147.0
C3—C2—Ti175.9 (2)Cg1—Ti1—N1103.8
C1—C2—Ti171.2 (2)Cg2—Ti1—N1109.1
C6—C2—Ti1121.8 (3)
C1—Ti1—N1—C110.5 (3)C3—Ti1—C2—C1114.9 (3)
C5—Ti1—N1—C1129.1 (3)C4—Ti1—C2—C179.3 (2)
C2—Ti1—N1—C1130.3 (3)N1—Ti1—C2—C665.3 (3)
C20—Ti1—N1—C11157.5 (3)C1—Ti1—C2—C6119.4 (4)
C19—Ti1—N1—C11167.8 (3)C5—Ti1—C2—C6157.6 (4)
C18—Ti1—N1—C11149.7 (3)C20—Ti1—C2—C611.3 (12)
C16—Ti1—N1—C11145.7 (3)C19—Ti1—C2—C616.1 (4)
C17—Ti1—N1—C11178.0 (3)C18—Ti1—C2—C651.0 (4)
C3—Ti1—N1—C1122.6 (4)C16—Ti1—C2—C6121.4 (3)
C4—Ti1—N1—C1120.4 (4)C17—Ti1—C2—C690.5 (3)
N1—Ti1—C19—C2093.4 (2)C3—Ti1—C2—C6125.7 (4)
C1—Ti1—C19—C20119.3 (3)C4—Ti1—C2—C6161.3 (4)
C5—Ti1—C19—C2017.2 (6)C18—C19—C20—C160.8 (4)
C2—Ti1—C19—C20178.8 (2)C24—C19—C20—C16173.9 (4)
C18—Ti1—C19—C20116.8 (3)Ti1—C19—C20—C1665.0 (3)
C16—Ti1—C19—C2037.7 (2)C18—C19—C20—C25178.6 (4)
C17—Ti1—C19—C2078.6 (2)C24—C19—C20—C254.0 (6)
C3—Ti1—C19—C20129.2 (3)Ti1—C19—C20—C25117.1 (4)
C4—Ti1—C19—C2073.5 (3)C18—C19—C20—Ti164.3 (3)
N1—Ti1—C19—C18149.8 (2)C24—C19—C20—Ti1121.1 (4)
C1—Ti1—C19—C18123.8 (3)C17—C16—C20—C190.5 (4)
C5—Ti1—C19—C18134.0 (4)C21—C16—C20—C19173.4 (4)
C2—Ti1—C19—C1864.4 (3)Ti1—C16—C20—C1964.9 (3)
C20—Ti1—C19—C18116.8 (3)C17—C16—C20—C25177.5 (3)
C16—Ti1—C19—C1879.1 (2)C21—C16—C20—C254.6 (6)
C17—Ti1—C19—C1838.2 (2)Ti1—C16—C20—C25117.2 (4)
C3—Ti1—C19—C1812.4 (3)C17—C16—C20—Ti165.4 (3)
C4—Ti1—C19—C1843.3 (4)C21—C16—C20—Ti1121.7 (4)
N1—Ti1—C19—C2429.5 (3)N1—Ti1—C20—C1982.8 (2)
C1—Ti1—C19—C243.6 (5)C1—Ti1—C20—C19126.4 (3)
C5—Ti1—C19—C24105.7 (5)C5—Ti1—C20—C19173.5 (2)
C2—Ti1—C19—C2455.9 (4)C2—Ti1—C20—C195.7 (11)
C20—Ti1—C19—C24122.9 (4)C18—Ti1—C20—C1936.9 (2)
C18—Ti1—C19—C24120.3 (4)C16—Ti1—C20—C19115.5 (3)
C16—Ti1—C19—C24160.7 (4)C17—Ti1—C20—C1978.5 (2)
C17—Ti1—C19—C24158.4 (4)C3—Ti1—C20—C1997.1 (3)
C3—Ti1—C19—C24107.9 (3)C4—Ti1—C20—C19141.4 (2)
C4—Ti1—C19—C24163.5 (3)N1—Ti1—C20—C16161.7 (2)
N1—Ti1—C16—C17136.6 (2)C1—Ti1—C20—C16118.1 (3)
C1—Ti1—C16—C17121.6 (3)C5—Ti1—C20—C1671.0 (3)
C5—Ti1—C16—C17116.8 (2)C2—Ti1—C20—C16121.2 (10)
C2—Ti1—C16—C1751.0 (4)C19—Ti1—C20—C16115.5 (3)
C20—Ti1—C16—C17115.8 (3)C18—Ti1—C20—C1678.6 (2)
C19—Ti1—C16—C1778.4 (2)C17—Ti1—C20—C1637.0 (2)
C18—Ti1—C16—C1737.0 (2)C3—Ti1—C20—C1618.4 (4)
C3—Ti1—C16—C1753.7 (3)C4—Ti1—C20—C1625.9 (3)
C4—Ti1—C16—C1784.2 (2)N1—Ti1—C20—C2541.0 (3)
N1—Ti1—C16—C2020.9 (3)C1—Ti1—C20—C252.7 (5)
C1—Ti1—C16—C20122.6 (3)C5—Ti1—C20—C2549.7 (4)
C5—Ti1—C16—C20127.4 (2)C2—Ti1—C20—C25118.1 (10)
C2—Ti1—C16—C20166.8 (3)C19—Ti1—C20—C25123.8 (4)
C19—Ti1—C16—C2037.4 (2)C18—Ti1—C20—C25160.7 (4)
C18—Ti1—C16—C2078.7 (2)C16—Ti1—C20—C25120.7 (4)
C17—Ti1—C16—C20115.8 (3)C17—Ti1—C20—C25157.7 (4)
C3—Ti1—C16—C20169.5 (2)C3—Ti1—C20—C25139.1 (3)
C4—Ti1—C16—C20160.0 (2)C4—Ti1—C20—C2594.8 (3)
N1—Ti1—C16—C21100.2 (3)C3—C2—C1—C52.4 (4)
C1—Ti1—C16—C211.5 (5)C6—C2—C1—C5178.6 (4)
C5—Ti1—C16—C216.4 (4)Ti1—C2—C1—C565.3 (3)
C2—Ti1—C16—C2172.2 (4)C3—C2—C1—C10172.7 (4)
C20—Ti1—C16—C21121.0 (4)C6—C2—C1—C1011.1 (7)
C19—Ti1—C16—C21158.4 (4)Ti1—C2—C1—C10105.1 (4)
C18—Ti1—C16—C21160.2 (4)C3—C2—C1—Ti167.6 (3)
C17—Ti1—C16—C21123.2 (4)C6—C2—C1—Ti1116.2 (4)
C3—Ti1—C16—C2169.5 (4)C4—C5—C1—C22.2 (4)
C4—Ti1—C16—C2138.9 (3)C9—C5—C1—C2178.1 (4)
C20—C16—C17—C181.5 (4)Ti1—C5—C1—C265.3 (3)
C21—C16—C17—C18174.3 (4)C4—C5—C1—C10172.6 (4)
Ti1—C16—C17—C1862.8 (3)C9—C5—C1—C1011.6 (6)
C20—C16—C17—C22168.9 (4)Ti1—C5—C1—C10105.0 (4)
C21—C16—C17—C223.9 (6)C4—C5—C1—Ti167.6 (3)
Ti1—C16—C17—C22126.8 (4)C9—C5—C1—Ti1116.6 (4)
C20—C16—C17—Ti164.3 (3)N1—Ti1—C1—C2121.8 (3)
C21—C16—C17—Ti1122.9 (4)C5—Ti1—C1—C2115.0 (3)
N1—Ti1—C17—C1666.9 (3)C20—Ti1—C1—C2168.2 (3)
C1—Ti1—C17—C16117.5 (3)C19—Ti1—C1—C294.8 (3)
C5—Ti1—C17—C1680.4 (3)C18—Ti1—C1—C218.1 (4)
C2—Ti1—C17—C16151.7 (2)C16—Ti1—C1—C2122.7 (3)
C20—Ti1—C17—C1637.7 (2)C17—Ti1—C1—C255.1 (4)
C19—Ti1—C17—C1679.0 (2)C3—Ti1—C1—C237.2 (2)
C18—Ti1—C17—C16117.0 (3)C4—Ti1—C1—C277.6 (2)
C3—Ti1—C17—C16132.6 (2)N1—Ti1—C1—C5123.2 (3)
C4—Ti1—C17—C1698.4 (2)C2—Ti1—C1—C5115.0 (3)
N1—Ti1—C17—C1850.0 (3)C20—Ti1—C1—C576.8 (3)
C1—Ti1—C17—C18125.5 (3)C19—Ti1—C1—C5150.2 (3)
C5—Ti1—C17—C18162.6 (2)C18—Ti1—C1—C5133.1 (3)
C2—Ti1—C17—C1891.4 (3)C16—Ti1—C1—C57.7 (4)
C20—Ti1—C17—C1879.3 (3)C17—Ti1—C1—C559.9 (4)
C19—Ti1—C17—C1838.0 (2)C3—Ti1—C1—C577.7 (2)
C16—Ti1—C17—C18117.0 (3)C4—Ti1—C1—C537.4 (2)
C3—Ti1—C17—C18110.4 (2)N1—Ti1—C1—C100.4 (3)
C4—Ti1—C17—C18144.6 (2)C5—Ti1—C1—C10122.7 (4)
N1—Ti1—C17—C22170.0 (3)C2—Ti1—C1—C10122.3 (4)
C1—Ti1—C17—C225.5 (5)C20—Ti1—C1—C1045.9 (4)
C5—Ti1—C17—C2242.6 (4)C19—Ti1—C1—C1027.5 (5)
C2—Ti1—C17—C2228.6 (4)C18—Ti1—C1—C10104.2 (4)
C20—Ti1—C17—C22160.7 (4)C16—Ti1—C1—C10115.1 (3)
C19—Ti1—C17—C22158.0 (4)C17—Ti1—C1—C10177.4 (3)
C18—Ti1—C17—C22120.0 (5)C3—Ti1—C1—C10159.5 (3)
C16—Ti1—C17—C22123.0 (5)C4—Ti1—C1—C10160.1 (3)
C3—Ti1—C17—C229.6 (4)N1—C11—C10—C10.0 (6)
C4—Ti1—C17—C2224.6 (4)C12—C11—C10—C1178.1 (3)
Ti1—N1—C11—C100.4 (5)C2—C1—C10—C1183.9 (5)
Ti1—N1—C11—C12178.7 (3)C5—C1—C10—C1184.7 (5)
N1—Ti1—C5—C4167.9 (2)Ti1—C1—C10—C110.4 (5)
C1—Ti1—C5—C4115.0 (3)C1—C5—C4—C31.3 (4)
C2—Ti1—C5—C476.9 (3)C9—C5—C4—C3177.0 (4)
C20—Ti1—C5—C4105.1 (3)Ti1—C5—C4—C363.1 (3)
C19—Ti1—C5—C4117.5 (5)C1—C5—C4—C8170.1 (4)
C18—Ti1—C5—C49.5 (4)C9—C5—C4—C85.6 (7)
C16—Ti1—C5—C469.5 (3)Ti1—C5—C4—C8125.5 (4)
C17—Ti1—C5—C432.8 (3)C1—C5—C4—Ti164.4 (3)
C3—Ti1—C5—C436.2 (2)C9—C5—C4—Ti1119.9 (4)
N1—Ti1—C5—C152.9 (2)N1—Ti1—C4—C3101.9 (3)
C2—Ti1—C5—C138.1 (2)C1—Ti1—C4—C378.4 (3)
C20—Ti1—C5—C1139.9 (2)C5—Ti1—C4—C3117.1 (3)
C19—Ti1—C5—C1127.5 (4)C2—Ti1—C4—C336.0 (2)
C18—Ti1—C5—C1124.4 (3)C20—Ti1—C4—C3138.8 (2)
C16—Ti1—C5—C1175.5 (2)C19—Ti1—C4—C394.4 (3)
C17—Ti1—C5—C1147.8 (2)C18—Ti1—C4—C367.6 (3)
C3—Ti1—C5—C178.8 (2)C16—Ti1—C4—C3124.2 (2)
C4—Ti1—C5—C1115.0 (3)C17—Ti1—C4—C390.1 (2)
N1—Ti1—C5—C966.8 (3)N1—Ti1—C4—C515.2 (3)
C1—Ti1—C5—C9119.8 (4)C1—Ti1—C4—C538.7 (2)
C2—Ti1—C5—C9157.9 (4)C2—Ti1—C4—C581.1 (3)
C20—Ti1—C5—C920.2 (4)C20—Ti1—C4—C5104.0 (3)
C19—Ti1—C5—C97.7 (7)C19—Ti1—C4—C5148.5 (3)
C18—Ti1—C5—C9115.8 (4)C18—Ti1—C4—C5175.3 (2)
C16—Ti1—C5—C955.8 (4)C16—Ti1—C4—C5118.6 (2)
C17—Ti1—C5—C992.4 (3)C17—Ti1—C4—C5152.8 (2)
C3—Ti1—C5—C9161.4 (4)C3—Ti1—C4—C5117.1 (3)
C4—Ti1—C5—C9125.3 (4)N1—Ti1—C4—C8133.4 (4)
C20—C19—C18—C171.7 (4)C1—Ti1—C4—C8156.9 (4)
C24—C19—C18—C17173.1 (3)C5—Ti1—C4—C8118.2 (5)
Ti1—C19—C18—C1765.8 (3)C2—Ti1—C4—C8160.7 (4)
C20—C19—C18—C23174.3 (4)C20—Ti1—C4—C814.1 (5)
C24—C19—C18—C230.5 (6)C19—Ti1—C4—C830.3 (5)
Ti1—C19—C18—C23121.6 (4)C18—Ti1—C4—C857.1 (4)
C20—C19—C18—Ti164.2 (3)C16—Ti1—C4—C80.5 (4)
C24—C19—C18—Ti1121.0 (4)C17—Ti1—C4—C834.6 (4)
C16—C17—C18—C192.0 (4)C3—Ti1—C4—C8124.7 (5)
C22—C17—C18—C19168.7 (4)C1—C2—C3—C41.6 (5)
Ti1—C17—C18—C1965.1 (3)C6—C2—C3—C4177.7 (4)
C16—C17—C18—C23174.5 (4)Ti1—C2—C3—C462.8 (3)
C22—C17—C18—C233.9 (6)C1—C2—C3—C7171.4 (4)
Ti1—C17—C18—C23122.3 (4)C6—C2—C3—C74.6 (7)
C16—C17—C18—Ti163.1 (3)Ti1—C2—C3—C7124.1 (4)
C22—C17—C18—Ti1126.2 (4)C1—C2—C3—Ti164.5 (3)
N1—Ti1—C18—C1932.6 (3)C6—C2—C3—Ti1119.5 (4)
C1—Ti1—C18—C19125.6 (3)C5—C4—C3—C20.2 (5)
C5—Ti1—C18—C19150.2 (3)C8—C4—C3—C2171.2 (4)
C2—Ti1—C18—C19137.3 (2)Ti1—C4—C3—C260.6 (3)
C20—Ti1—C18—C1936.7 (2)C5—C4—C3—C7172.6 (4)
C16—Ti1—C18—C1978.2 (2)C8—C4—C3—C71.6 (7)
C17—Ti1—C18—C19114.5 (3)Ti1—C4—C3—C7126.5 (4)
C3—Ti1—C18—C19171.4 (2)C5—C4—C3—Ti160.8 (3)
C4—Ti1—C18—C19156.4 (2)C8—C4—C3—Ti1128.2 (4)
N1—Ti1—C18—C17147.2 (2)N1—Ti1—C3—C213.8 (3)
C1—Ti1—C18—C17119.9 (3)C1—Ti1—C3—C238.7 (2)
C5—Ti1—C18—C1735.6 (4)C5—Ti1—C3—C281.5 (3)
C2—Ti1—C18—C17108.2 (2)C20—Ti1—C3—C2166.1 (3)
C20—Ti1—C18—C1777.8 (2)C19—Ti1—C3—C2109.8 (3)
C19—Ti1—C18—C17114.5 (3)C18—Ti1—C3—C2117.0 (2)
C16—Ti1—C18—C1736.3 (2)C16—Ti1—C3—C2177.5 (2)
C3—Ti1—C18—C1774.1 (2)C17—Ti1—C3—C2150.5 (2)
C4—Ti1—C18—C1741.9 (3)C4—Ti1—C3—C2118.4 (4)
N1—Ti1—C18—C2389.5 (4)N1—Ti1—C3—C4104.6 (3)
C1—Ti1—C18—C233.4 (5)C1—Ti1—C3—C479.7 (3)
C5—Ti1—C18—C2387.7 (5)C5—Ti1—C3—C436.9 (2)
C2—Ti1—C18—C2315.1 (4)C2—Ti1—C3—C4118.4 (4)
C20—Ti1—C18—C23158.9 (4)C20—Ti1—C3—C475.5 (4)
C19—Ti1—C18—C23122.2 (5)C19—Ti1—C3—C4131.8 (3)
C16—Ti1—C18—C23159.6 (4)C18—Ti1—C3—C4124.6 (2)
C17—Ti1—C18—C23123.3 (5)C16—Ti1—C3—C464.1 (3)
C3—Ti1—C18—C2349.2 (4)C17—Ti1—C3—C491.1 (2)
C4—Ti1—C18—C2381.4 (4)N1—Ti1—C3—C7131.9 (4)
N1—Ti1—C2—C3169.0 (2)C1—Ti1—C3—C7156.9 (4)
C1—Ti1—C2—C3114.9 (3)C5—Ti1—C3—C7160.4 (4)
C5—Ti1—C2—C376.6 (3)C2—Ti1—C3—C7118.2 (5)
C20—Ti1—C2—C3114.4 (10)C20—Ti1—C3—C747.9 (5)
C19—Ti1—C2—C3109.7 (3)C19—Ti1—C3—C78.4 (5)
C18—Ti1—C2—C374.8 (3)C18—Ti1—C3—C71.2 (4)
C16—Ti1—C2—C34.4 (4)C16—Ti1—C3—C759.3 (4)
C17—Ti1—C2—C335.2 (3)C17—Ti1—C3—C732.3 (4)
C4—Ti1—C2—C335.6 (2)C4—Ti1—C3—C7123.4 (5)
N1—Ti1—C2—C154.0 (2)C10—C11—C12—C15122.6 (5)
C5—Ti1—C2—C138.3 (2)N1—C11—C12—C1559.4 (5)
C20—Ti1—C2—C1130.6 (10)C10—C11—C12—C132.8 (6)
C19—Ti1—C2—C1135.4 (2)N1—C11—C12—C13179.2 (3)
C18—Ti1—C2—C1170.3 (2)C10—C11—C12—C14116.6 (5)
C16—Ti1—C2—C1119.3 (3)N1—C11—C12—C1461.4 (5)
C17—Ti1—C2—C1150.1 (2)

Experimental details

Crystal data
Chemical formula[Ti(C10H15)(C15H23N)]
Mr400.46
Crystal system, space groupMonoclinic, C2/c
Temperature (K)100
a, b, c (Å)14.518 (9), 13.701 (7), 23.924 (4)
β (°) 106.59 (4)
V3)4561 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.38
Crystal size (mm)0.38 × 0.30 × 0.25
Data collection
DiffractometerEnraf Nonius CAD-4F
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
4951, 4006, 2813
Rint0.059
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.162, 1.07
No. of reflections4006
No. of parameters262
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.47, 0.55

Computer programs: Locally modified CAD-4 Software (Enraf-Nonius, 1989), SET4 (de Boer & Duisenberg, 1984), HELENA (Spek, 1997), DIRDIF96 (Beurskens et al., 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 1999), PLATON.

Selected geometric parameters (Å, º) top
Ti1—N12.000 (3)Ti1—C172.407 (4)
Ti1—C12.312 (4)Ti1—C32.419 (4)
Ti1—C52.336 (4)Ti1—C42.423 (4)
Ti1—C22.336 (4)N1—C111.393 (5)
Ti1—C202.374 (4)N1—H1A0.83 (5)
Ti1—C192.375 (4)C11—C101.339 (6)
Ti1—C182.381 (4)C1—C101.462 (6)
Ti1—C162.386 (4)C10—H101.06 (4)
C11—N1—Ti1125.8 (3)Cg1—Ti1—Cg2147.0
C10—C11—N1115.3 (4)Cg1—Ti1—N1103.8
C10—C11—C12125.5 (4)Cg2—Ti1—N1109.1
N1—C11—C12119.2 (4)
Ti1—N1—C11—C100.4 (5)N1—C11—C10—C10.0 (6)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds