Download citation
Download citation
link to html
We have isolated and crystallographically characterized the three homologous compounds N,N′-bis(2-methoxy­benzyl­idene)­ethane-1,2-di­amine (MeSalen), C18H20N2O2, N,N′-bis(2-methoxy­benzyl­idene)­propane-1,3-di­amine (MeSalpr), C19H22N2O2, and N,N′-bis(2-methoxy­benzyl­idene)­butane-1,4-di­amine (MeSalbu), C20H24N2O2. In contrast with MeSalpr, the mol­ecules of MeSalen and MeSalbu, which have an even number of methyl­ene units, have crystallographic \overline 1 symmetry. Comparing these methoxy-substituted species with their hydroxy equivalents shows that the aryl rings rotate upon removal of the O—H...N hydrogen bonds. The packing of MeSalen and MeSalpr is controlled by C—H...π interactions, whereas that of MeSalbu has only van der Waals contacts.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104001404/fg1727sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104001404/fg1727Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104001404/fg1727IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104001404/fg1727IIIsup4.hkl
Contains datablock III

CCDC references: 235331; 235332; 235333

Comment top

We have been investigating the structures adopted by the complexes of the late transition metals Ni, Cu and Zn (Reglinski et al., 2002a,b) with symmetric salicylidene Schiff base ligands, as a function of the number of methylene units (n = 2, 3 or 4) between the two imine groups. As part of our on-going study, we recently turned our attention to the preparation of the homologous compounds derived from o-anisaldehyde. As part of the characterization process, we have isolated and crystallographically characterized the three title compounds, namely N,N-bis(2-methoxybenzylidene)ethane-1,2-diamine (MeSalen), (I) (Billman & Dorman, 1963), N,N-bis(2-methoxybenzylidene)propane-1,3-diamine (MeSalpr), (II) (Moneta et al., 1988), and N,N-bis(2-methoxybenzylidene)butane-1,4-diamine (MeSalbu), (III). A search of the December 2003 release of the Cambridge Structural Database (Allen, 2002) shows that no higher homologues have been reported to date. The availability of the structures of these three compounds has allowed us to make some simple but instructive observations regarding the effects of methylene chain lengths and the effects of hydrogen bonding in these systems, compared with the parent salicylidene complexes, N,N-bis(2-hydroxybenzylidene)ethane-1,2-diamine (salen; Pahor et al., 1978), N,N-bis(2-hydroxybenzylidene)propane-1,3-diamine (Salpr; Elderman et al., 1991) and N,N-bis(2-hydroxybenzylidene)butane-1,4-diamine (Salbu; Kennedy & Reglinski, 2001), respectively. \sch

The three title molecules adopt extended conformations, as shown in Figs. 1a, 1 b and 1c. In salen, (I), and Salbu, (III), where there are an even number of C atoms in the chain, the molecules lie about inversion centres and adopt an essentially planar extended conformation, with the methoxy moieties, of necessity, in a trans arrangement (Figs. 1a and 1c). However, for MeSalpr, (II), which has an odd number of C atoms in the linking chains, no symmetry is imposed by the P1 space group and a markedly non-planar conformation is adopted, with the methoxy moieties in a cis arrangement (Fig. 1 b).

In all three cases, replacement of the salicylidene moiety (–OH) with the anisaldehyde (–OMe) moiety has removed the stabilizing influence of intramolecular hydrogen bonding exhibited in the parent compounds (Pahor et al., 1978; Elderman et al., 1991; Kennedy & Reglinski, 2001), thus allowing a rotation of the aromatic ring such that the methoxy group is remote from the influence of the imine N atom. The lack of intramolecular hydrogen bonding does not alter the bond lengths or angles of the molecules. The largest systematic difference occurs in the angles to the OR group, where O1—C12—C11 is significantly smaller for the methoxy compounds than for their hydroxy equivalents [116.66 (8), 116.29 (14) and 115.75 (12)° for (I), (II) and (III), respectively, and 121.23, 121.68 and 121.37° for the equivalent literature species). This difference is simply explained by the steric effect of the Me group, which lies in the aryl ring plane.

Geometry calculations with PLATON (Spek, 2003) show that the packing of the three compounds is quite different. In MeSalen (Fig. 2), the molecules are linked by pairs of inversion-related C—H···π interactions to generate infinite chains extending in the b direction (details in Table 2). In MeSalpr, chains of inversion-related molecules are linked by two independent C—H···π interactions, as shown in Fig. 3a (details in Table 4). These chains are then linked to form sheets via pairs of inversion-related C17—H17···Cg1iii interactions similar to those observed in MeSalen [Fig. 2; symmetry code: (iii) 1 − x, −y, 2 − z]. In this way, the three independent C—H···π interactions generate sheets of molecules in the [011] plane, as shown in the stereo pair (Fig. 3 b). By contrast, in MeSalbu (Fig. 4), with a short [4.6903 (2) Å] a axis, there are no signficant intermolecular interactions and contacts are all of the van der Waals variety.

Experimental top

MeSalen (Billman et al., 1963) and MeSalpr (Moneta et al., 1988) were prepared as previously reported and crystallized from chloroform: diethyl ether (Ratio?) by vapour diffusion. MeSalbu was prepared by refluxing 1,4-diaminobutane with two equivalents of ortho-anisaldehyde in methanol for 4 h. The solvent was removed, giving a yellow oil which was dissolved in a small amount of diethyl ether. Storing the solution in the freezer (258 K) overnight produced pale-yellow crystals which were recrystallized from chloroform:diethyl ether (Ratio?) by vapour diffussion. Analysis for MeSalbu: found: C 74.06, H 7.37, N 8.39%; expected for C20H24N2O2: C 74.05, H 7.46, N 8.64%; 1H NMR (270 MHz, CDCl3, δ, p.p.m.): 8.72 (s, 2H, CN), 7.95 (d, 2H, arom), 7.39 (t, 2H, arom), 7.06 (t, 2H, arom), 6.91 (d, 2H, arom), 3.87 (s, 6H, OCH3), 3.67 (t, 4H, N—CH2–), 2.12 (p, 4H, –CH2—CH2–); 13C NMR (270 MHz, CDCl3, δ, p.p.m.): 159, 157, 132, 128, 125, 121 (arom), 111 (CN), 62 (MeO–), 56 (N—CH2–), 29 (–CH2—CH2–); m.p. 332.5–334 K.

Refinement top

All H atoms were clearly revealed in difference maps and were then allowed for as riding atoms with idealized geometry in the final refinement cycles. C—H distances were in the range 0.93–0.99 Å, and Uiso(H) values were set to 1.2Ueq(C) for CH and CH2 groups, and to 1.5Ueq(C) for CH3 groups.

Computing details top

For all compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1997); molecular graphics: ORTEPII (Johnson, 1976) and PLATON (Spek 2003); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Views of (a) MeSalen, (b) MeSalpr and (c) MeSalbu, with the atom-numbering schemes and with displacement ellipsoids drawn at the 50% probability level [symmetry code: (i) 1 − x, 1 − y, 1 − z Is added code correct?].
[Figure 2] Fig. 2. A chain of molecules in MeSalen. Cg1 denotes the centroid of the C11—C16 ring CORRECT? [symmetry code: (i) 1 − x, 2 − y, 1 − z].
[Figure 3] Fig. 3. (a) The chains of molecules in MeSalpr. Cg1 denotes the centroid of the C11—C16 ring and Cg2 denotes the centroid of the C21—C26 ring CORRECT? [symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z]. (b) A stereo view, showing a sheet of molecules in MeSalpr.
[Figure 4] Fig. 4. The crystal packing in MeSalbu.
(I) N,N-bis(2-methoxybenzylidene)ethane-1,2-diamine top
Crystal data top
C18H20N2O2F(000) = 316
Mr = 296.36Dx = 1.229 Mg m3
Monoclinic, P21/nMelting point: 115 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 7.8727 (2) ÅCell parameters from 1815 reflections
b = 8.9846 (2) Åθ = 3.5–27.5°
c = 11.3927 (3) ŵ = 0.08 mm1
β = 96.345 (1)°T = 123 K
V = 800.90 (3) Å3Prism, colourless
Z = 20.5 × 0.5 × 0.4 mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
1627 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
Graphite monochromatorθmax = 27.5°, θmin = 3.5°
ϕ and ω scansh = 1010
9458 measured reflectionsk = 1110
1815 independent reflectionsl = 1414
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.02 w = 1/[σ2(Fo2) + (0.0465P)2 + 0.2339P]
where P = (Fo2 + 2Fc2)/3
1815 reflections(Δ/σ)max = 0.001
101 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C18H20N2O2V = 800.90 (3) Å3
Mr = 296.36Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.8727 (2) ŵ = 0.08 mm1
b = 8.9846 (2) ÅT = 123 K
c = 11.3927 (3) Å0.5 × 0.5 × 0.4 mm
β = 96.345 (1)°
Data collection top
Nonius Kappa CCD area-detector
diffractometer
1627 reflections with I > 2σ(I)
9458 measured reflectionsRint = 0.037
1815 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.02Δρmax = 0.26 e Å3
1815 reflectionsΔρmin = 0.17 e Å3
101 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.19421 (9)1.01402 (8)0.40164 (6)0.0244 (2)
N10.54895 (11)0.68924 (9)0.44732 (7)0.0225 (2)
C10.52413 (13)0.57243 (10)0.53260 (9)0.0239 (2)
H1A0.43230.60170.58080.029*
H1B0.63070.55810.58620.029*
C110.46301 (12)0.92395 (10)0.36019 (8)0.0189 (2)
C120.33329 (12)1.03201 (11)0.34116 (8)0.0189 (2)
C130.34965 (13)1.14917 (11)0.26279 (8)0.0220 (2)
H130.26271.22270.25080.026*
C140.49296 (13)1.15812 (12)0.20244 (9)0.0256 (2)
H140.50301.23770.14870.031*
C150.62209 (13)1.05223 (12)0.21951 (9)0.0271 (2)
H150.71991.05890.17780.033*
C160.60611 (13)0.93660 (11)0.29828 (9)0.0234 (2)
H160.69440.86440.31040.028*
C170.44935 (12)0.80061 (10)0.44419 (8)0.0193 (2)
H170.36420.80470.49700.023*
C180.06398 (14)1.12653 (13)0.38476 (11)0.0319 (3)
H18A0.11221.22280.41160.048*
H18B0.03031.10070.43040.048*
H18C0.02131.13270.30080.048*
Cg10.477851.042010.280730.01*0.0
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0212 (4)0.0244 (4)0.0284 (4)0.0041 (3)0.0063 (3)0.0062 (3)
N10.0270 (4)0.0162 (4)0.0244 (4)0.0000 (3)0.0029 (3)0.0011 (3)
C10.0316 (5)0.0168 (5)0.0231 (5)0.0007 (4)0.0028 (4)0.0021 (4)
C110.0207 (5)0.0161 (5)0.0194 (4)0.0019 (3)0.0000 (3)0.0016 (3)
C120.0192 (4)0.0187 (5)0.0185 (4)0.0022 (3)0.0003 (3)0.0016 (3)
C130.0235 (5)0.0193 (5)0.0223 (5)0.0006 (4)0.0015 (4)0.0016 (4)
C140.0296 (5)0.0223 (5)0.0246 (5)0.0039 (4)0.0025 (4)0.0053 (4)
C150.0263 (5)0.0270 (5)0.0293 (5)0.0028 (4)0.0092 (4)0.0022 (4)
C160.0228 (5)0.0193 (5)0.0283 (5)0.0005 (4)0.0037 (4)0.0005 (4)
C170.0214 (4)0.0173 (4)0.0189 (4)0.0019 (4)0.0011 (3)0.0019 (3)
C180.0250 (5)0.0333 (6)0.0387 (6)0.0097 (4)0.0088 (4)0.0093 (5)
Geometric parameters (Å, º) top
O1—C121.3663 (11)C13—C141.3869 (14)
O1—C181.4375 (12)C13—H130.95
N1—C171.2693 (13)C14—C151.3903 (15)
N1—C11.4579 (12)C14—H140.95
C1—C1i1.5256 (19)C15—C161.3876 (14)
C1—H1A0.99C15—H150.95
C1—H1B0.99C16—H160.95
C11—C161.3984 (14)C17—H170.95
C11—C121.4084 (13)C18—H18A0.98
C11—C171.4759 (13)C18—H18B0.98
C12—C131.3954 (13)C18—H18C0.98
C12—O1—C18116.67 (8)C13—C14—H14119.6
C17—N1—C1117.28 (8)C15—C14—H14119.6
N1—C1—C1i109.52 (10)C16—C15—C14119.06 (9)
N1—C1—H1A109.8C16—C15—H15120.5
C1i—C1—H1A109.8C14—C15—H15120.5
N1—C1—H1B109.8C15—C16—C11121.52 (9)
C1i—C1—H1B109.8C15—C16—H16119.2
H1A—C1—H1B108.2C11—C16—H16119.2
C16—C11—C12118.50 (9)N1—C17—C11121.40 (9)
C16—C11—C17120.57 (9)N1—C17—H17119.3
C12—C11—C17120.93 (8)C11—C17—H17119.3
O1—C12—C13123.21 (9)O1—C18—H18A109.5
O1—C12—C11116.66 (8)O1—C18—H18B109.5
C13—C12—C11120.13 (9)H18A—C18—H18B109.5
C14—C13—C12119.91 (9)O1—C18—H18C109.5
C14—C13—H13120.0H18A—C18—H18C109.5
C12—C13—H13120.0H18B—C18—H18C109.5
C13—C14—C15120.88 (9)
C17—N1—C1—C1i117.42 (11)C12—C13—C14—C150.50 (15)
C18—O1—C12—C132.37 (14)C13—C14—C15—C160.07 (16)
C18—O1—C12—C11178.32 (9)C14—C15—C16—C110.33 (16)
C16—C11—C12—O1178.79 (8)C12—C11—C16—C150.02 (15)
C17—C11—C12—O11.68 (13)C17—C11—C16—C15179.55 (9)
C16—C11—C12—C130.55 (14)C1—N1—C17—C11179.39 (8)
C17—C11—C12—C13178.98 (8)C16—C11—C17—N112.87 (14)
O1—C12—C13—C14178.48 (9)C12—C11—C17—N1167.61 (9)
C11—C12—C13—C140.81 (14)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1ii0.953.023.428107
Symmetry code: (ii) x+1, y+2, z+1.
(II) N,N-bis(2-methoxybenzylidene)propane-1,3-diamine top
Crystal data top
C19H22N2O2Z = 2
Mr = 310.39F(000) = 332
Triclinic, P1Dx = 1.242 Mg m3
Hall symbol: -P 1Melting point: 75 K
a = 8.8669 (2) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.9139 (3) ÅCell parameters from 3737 reflections
c = 10.2724 (4) Åθ = 2.0–27.5°
α = 101.140 (2)°µ = 0.08 mm1
β = 92.341 (2)°T = 123 K
γ = 109.442 (2)°Prism, yellow
V = 830.05 (5) Å30.4 × 0.3 × 0.2 mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
2279 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.063
Graphite monochromatorθmax = 27.6°, θmin = 2.0°
ϕ and ω scansh = 1111
12958 measured reflectionsk = 1212
3737 independent reflectionsl = 1213
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.122H-atom parameters constrained
S = 0.99 w = 1/[σ2(Fo2) + (0.0622P)2]
where P = (Fo2 + 2Fc2)/3
3737 reflections(Δ/σ)max < 0.001
210 parametersΔρmax = 0.24 e Å3
0 restraintsΔρmin = 0.22 e Å3
Crystal data top
C19H22N2O2γ = 109.442 (2)°
Mr = 310.39V = 830.05 (5) Å3
Triclinic, P1Z = 2
a = 8.8669 (2) ÅMo Kα radiation
b = 9.9139 (3) ŵ = 0.08 mm1
c = 10.2724 (4) ÅT = 123 K
α = 101.140 (2)°0.4 × 0.3 × 0.2 mm
β = 92.341 (2)°
Data collection top
Nonius Kappa CCD area-detector
diffractometer
2279 reflections with I > 2σ(I)
12958 measured reflectionsRint = 0.063
3737 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.122H-atom parameters constrained
S = 0.99Δρmax = 0.24 e Å3
3737 reflectionsΔρmin = 0.22 e Å3
210 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.77317 (12)0.14374 (12)1.07537 (10)0.0282 (3)
O21.05404 (13)0.82837 (12)0.48211 (10)0.0335 (3)
N10.50559 (15)0.15505 (14)0.75501 (12)0.0241 (3)
N20.72851 (15)0.43107 (14)0.49220 (12)0.0269 (3)
C10.46774 (19)0.28801 (17)0.75720 (15)0.0250 (4)
H1A0.52820.36440.83640.030*
H1B0.35130.26680.76360.030*
C20.51246 (18)0.34378 (17)0.63030 (15)0.0241 (4)
H2A0.45810.26390.55150.029*
H2B0.47260.42550.62740.029*
C30.69278 (18)0.39654 (18)0.62193 (15)0.0269 (4)
H3A0.74650.48500.69350.032*
H3B0.73570.31950.63580.032*
C110.62244 (17)0.01624 (17)0.86792 (14)0.0219 (4)
C120.72085 (17)0.01728 (17)0.97853 (14)0.0228 (4)
C130.76131 (19)0.10518 (18)0.98533 (15)0.0280 (4)
H130.82820.10421.06040.034*
C140.7039 (2)0.22879 (19)0.88232 (16)0.0316 (4)
H140.73130.31260.88760.038*
C150.60735 (19)0.23176 (18)0.77203 (16)0.0293 (4)
H150.56940.31650.70140.035*
C160.56651 (18)0.10966 (17)0.76566 (15)0.0253 (4)
H160.49930.11180.69030.030*
C170.57997 (17)0.14626 (17)0.85944 (15)0.0226 (4)
H170.60930.22610.93470.027*
C180.8520 (2)0.1415 (2)1.19883 (15)0.0340 (4)
H18A0.78470.05931.23410.051*
H18B0.86960.23371.26320.051*
H18C0.95590.13001.18370.051*
C210.87439 (17)0.59806 (17)0.36295 (14)0.0217 (4)
C220.98652 (17)0.73724 (17)0.36087 (15)0.0235 (4)
C231.02586 (18)0.77502 (18)0.24003 (15)0.0256 (4)
H231.09910.86980.23920.031*
C240.95873 (19)0.67495 (18)0.12104 (15)0.0289 (4)
H240.98780.70070.03880.035*
C250.8495 (2)0.53756 (19)0.12092 (16)0.0317 (4)
H250.80390.46880.03910.038*
C260.80752 (18)0.50115 (18)0.24110 (15)0.0267 (4)
H260.73090.40740.24040.032*
C270.83081 (17)0.55534 (18)0.48955 (15)0.0240 (4)
H270.88050.62250.57140.029*
C281.1828 (2)0.9626 (2)0.48021 (17)0.0428 (5)
H28A1.26970.93970.43570.064*
H28B1.22391.01760.57200.064*
H28C1.14231.02180.43170.064*
Cg10.663730.106980.87530 (6)0.01*0.0
Cg20.917090.637330.24115 (6)0.01*0.0
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0310 (7)0.0254 (7)0.0246 (6)0.0049 (5)0.0008 (5)0.0068 (5)
O20.0337 (7)0.0264 (7)0.0281 (6)0.0067 (5)0.0009 (5)0.0091 (5)
N10.0235 (7)0.0216 (8)0.0267 (7)0.0039 (6)0.0050 (6)0.0108 (6)
N20.0262 (8)0.0248 (8)0.0313 (8)0.0066 (6)0.0068 (6)0.0129 (6)
C10.0220 (9)0.0224 (9)0.0319 (9)0.0071 (7)0.0044 (7)0.0099 (7)
C20.0228 (9)0.0207 (9)0.0287 (8)0.0048 (7)0.0024 (6)0.0103 (7)
C30.0239 (9)0.0258 (9)0.0325 (9)0.0054 (7)0.0048 (7)0.0156 (7)
C110.0190 (8)0.0207 (9)0.0257 (8)0.0030 (7)0.0076 (6)0.0101 (7)
C120.0207 (8)0.0234 (9)0.0223 (8)0.0024 (7)0.0066 (6)0.0086 (7)
C130.0263 (9)0.0314 (10)0.0285 (9)0.0092 (8)0.0044 (7)0.0133 (8)
C140.0342 (10)0.0259 (10)0.0395 (10)0.0135 (8)0.0089 (8)0.0118 (8)
C150.0315 (10)0.0227 (9)0.0307 (9)0.0065 (8)0.0062 (7)0.0037 (7)
C160.0229 (9)0.0250 (9)0.0258 (8)0.0034 (7)0.0046 (7)0.0085 (7)
C170.0197 (8)0.0199 (9)0.0242 (8)0.0013 (7)0.0051 (6)0.0047 (7)
C180.0341 (10)0.0366 (11)0.0264 (9)0.0053 (8)0.0045 (7)0.0097 (8)
C210.0164 (8)0.0227 (9)0.0283 (9)0.0072 (7)0.0049 (6)0.0097 (7)
C220.0176 (8)0.0241 (9)0.0284 (9)0.0053 (7)0.0013 (6)0.0085 (7)
C230.0225 (9)0.0253 (9)0.0308 (9)0.0058 (7)0.0070 (7)0.0139 (7)
C240.0273 (9)0.0343 (11)0.0287 (9)0.0110 (8)0.0083 (7)0.0139 (8)
C250.0318 (10)0.0290 (10)0.0298 (9)0.0060 (8)0.0048 (7)0.0040 (8)
C260.0217 (9)0.0238 (9)0.0345 (9)0.0056 (7)0.0064 (7)0.0096 (8)
C270.0187 (8)0.0241 (9)0.0282 (8)0.0045 (7)0.0004 (7)0.0089 (7)
C280.0450 (11)0.0297 (11)0.0351 (10)0.0123 (9)0.0004 (8)0.0104 (8)
Geometric parameters (Å, º) top
O1—C121.3674 (17)C14—H140.95
O1—C181.4307 (17)C15—C161.386 (2)
O2—C221.3674 (17)C15—H150.95
O2—C281.4404 (19)C16—H160.95
N1—C171.2688 (18)C17—H170.95
N1—C11.4609 (19)C18—H18A0.98
N2—C271.270 (2)C18—H18B0.98
N2—C31.4600 (18)C18—H18C0.98
C1—C21.529 (2)C21—C261.392 (2)
C1—H1A0.99C21—C221.412 (2)
C1—H1B0.99C21—C271.471 (2)
C2—C31.520 (2)C22—C231.390 (2)
C2—H2A0.99C23—C241.382 (2)
C2—H2B0.99C23—H230.95
C3—H3A0.99C24—C251.383 (2)
C3—H3B0.99C24—H240.95
C11—C161.395 (2)C25—C261.383 (2)
C11—C121.400 (2)C25—H250.95
C11—C171.475 (2)C26—H260.95
C12—C131.389 (2)C27—H270.95
C13—C141.386 (2)C28—H28A0.98
C13—H130.95C28—H28B0.98
C14—C151.382 (2)C28—H28C0.98
C12—O1—C18117.86 (13)C15—C16—H16119.4
C22—O2—C28116.49 (12)C11—C16—H16119.4
C17—N1—C1117.99 (13)N1—C17—C11122.23 (14)
C27—N2—C3118.37 (13)N1—C17—H17118.9
N1—C1—C2110.05 (12)C11—C17—H17118.9
N1—C1—H1A109.7O1—C18—H18A109.5
C2—C1—H1A109.7O1—C18—H18B109.5
N1—C1—H1B109.7H18A—C18—H18B109.5
C2—C1—H1B109.7O1—C18—H18C109.5
H1A—C1—H1B108.2H18A—C18—H18C109.5
C3—C2—C1112.78 (12)H18B—C18—H18C109.5
C3—C2—H2A109.0C26—C21—C22117.86 (14)
C1—C2—H2A109.0C26—C21—C27120.79 (14)
C3—C2—H2B109.0C22—C21—C27121.34 (14)
C1—C2—H2B109.0O2—C22—C23123.15 (14)
H2A—C2—H2B107.8O2—C22—C21116.56 (13)
N2—C3—C2110.90 (12)C23—C22—C21120.28 (14)
N2—C3—H3A109.5C24—C23—C22120.16 (15)
C2—C3—H3A109.5C24—C23—H23119.9
N2—C3—H3B109.5C22—C23—H23119.9
C2—C3—H3B109.5C23—C24—C25120.45 (15)
H3A—C3—H3B108.0C23—C24—H24119.8
C16—C11—C12118.70 (14)C25—C24—H24119.8
C16—C11—C17120.75 (14)C26—C25—C24119.39 (15)
C12—C11—C17120.55 (14)C26—C25—H25120.3
O1—C12—C13123.50 (14)C24—C25—H25120.3
O1—C12—C11116.29 (14)C25—C26—C21121.82 (15)
C13—C12—C11120.22 (14)C25—C26—H26119.1
C14—C13—C12119.84 (15)C21—C26—H26119.1
C14—C13—H13120.1N2—C27—C21121.70 (14)
C12—C13—H13120.1N2—C27—H27119.1
C15—C14—C13120.84 (16)C21—C27—H27119.1
C15—C14—H14119.6O2—C28—H28A109.5
C13—C14—H14119.6O2—C28—H28B109.5
C14—C15—C16119.25 (16)H28A—C28—H28B109.5
C14—C15—H15120.4O2—C28—H28C109.5
C16—C15—H15120.4H28A—C28—H28C109.5
C15—C16—C11121.15 (15)H28B—C28—H28C109.5
C17—N1—C1—C2133.21 (14)C16—C11—C17—N17.1 (2)
N1—C1—C2—C366.40 (17)C12—C11—C17—N1172.39 (13)
C27—N2—C3—C2128.37 (15)C28—O2—C22—C236.3 (2)
C1—C2—C3—N2172.76 (13)C28—O2—C22—C21172.46 (15)
C18—O1—C12—C1310.2 (2)C26—C21—C22—O2177.99 (13)
C18—O1—C12—C11170.25 (13)C27—C21—C22—O21.2 (2)
C16—C11—C12—O1179.57 (13)C26—C21—C22—C230.8 (2)
C17—C11—C12—O10.0 (2)C27—C21—C22—C23179.94 (13)
C16—C11—C12—C130.0 (2)O2—C22—C23—C24176.90 (14)
C17—C11—C12—C13179.52 (13)C21—C22—C23—C241.8 (2)
O1—C12—C13—C14179.58 (14)C22—C23—C24—C251.3 (2)
C11—C12—C13—C140.1 (2)C23—C24—C25—C260.2 (2)
C12—C13—C14—C150.4 (2)C24—C25—C26—C211.2 (2)
C13—C14—C15—C160.7 (2)C22—C21—C26—C250.7 (2)
C14—C15—C16—C110.6 (2)C27—C21—C26—C25178.42 (14)
C12—C11—C16—C150.3 (2)C3—N2—C27—C21179.51 (13)
C17—C11—C16—C15179.23 (13)C26—C21—C27—N21.8 (2)
C1—N1—C17—C11179.40 (13)C22—C21—C27—N2179.08 (14)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg2i0.992.843.725149
C23—H23···Cg1ii0.953.053.944157
C17—H17···Cg1iii0.953.233.546102
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+2.
(III) N,N-bis(2-methoxybenzylidene)butane-1,4-diamine top
Crystal data top
C20H24N2O2F(000) = 348
Mr = 324.41Dx = 1.221 Mg m3
Monoclinic, P21/nMelting point: 60 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 4.6903 (2) ÅCell parameters from 2004 reflections
b = 14.2387 (6) Åθ = 2.1–27.5°
c = 13.2170 (5) ŵ = 0.08 mm1
β = 91.002 (2)°T = 123 K
V = 882.55 (6) Å3Needle, pale yellow
Z = 20.40 × 0.15 × 0.10 mm
Data collection top
Nonius Kappa CCD area-detector
diffractometer
1303 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.046
Graphite monochromatorθmax = 27.5°, θmin = 2.1°
ϕ and ω scansh = 66
10154 measured reflectionsk = 1818
2004 independent reflectionsl = 1717
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0411P)2 + 0.144P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2004 reflectionsΔρmax = 0.19 e Å3
111 parametersΔρmin = 0.19 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.021 (4)
Crystal data top
C20H24N2O2V = 882.55 (6) Å3
Mr = 324.41Z = 2
Monoclinic, P21/nMo Kα radiation
a = 4.6903 (2) ŵ = 0.08 mm1
b = 14.2387 (6) ÅT = 123 K
c = 13.2170 (5) Å0.40 × 0.15 × 0.10 mm
β = 91.002 (2)°
Data collection top
Nonius Kappa CCD area-detector
diffractometer
1303 reflections with I > 2σ(I)
10154 measured reflectionsRint = 0.046
2004 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.03Δρmax = 0.19 e Å3
2004 reflectionsΔρmin = 0.19 e Å3
111 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.6705 (2)0.39640 (8)0.30317 (8)0.0288 (3)
O11.0906 (2)0.15552 (7)0.33652 (7)0.0420 (3)
C10.4697 (3)0.41660 (10)0.38382 (10)0.0284 (3)
H1A0.42720.35820.42130.034*
H1B0.28890.44070.35410.034*
C20.5965 (3)0.48897 (9)0.45585 (10)0.0268 (3)
H2A0.63350.54760.41800.032*
H2B0.78150.46540.48260.032*
C110.9857 (3)0.28276 (10)0.22940 (10)0.0268 (3)
C121.1410 (3)0.20003 (10)0.24681 (10)0.0308 (4)
C131.3370 (3)0.16890 (11)0.17602 (11)0.0356 (4)
H131.43990.11230.18720.043*
C141.3799 (3)0.22110 (11)0.08954 (12)0.0385 (4)
H141.51460.20020.04160.046*
C151.2308 (3)0.30294 (11)0.07162 (11)0.0380 (4)
H151.26290.33830.01190.046*
C161.0337 (3)0.33327 (10)0.14122 (10)0.0318 (4)
H160.92970.38940.12860.038*
C170.7745 (3)0.31425 (10)0.30313 (10)0.0267 (3)
H170.71320.27100.35300.032*
C181.2349 (4)0.06902 (12)0.35660 (13)0.0512 (5)
H18A1.17170.02170.30730.077*
H18B1.19080.04760.42500.077*
H18C1.44100.07840.35130.077*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0274 (7)0.0315 (7)0.0276 (7)0.0003 (5)0.0046 (5)0.0048 (5)
O10.0522 (7)0.0381 (6)0.0359 (6)0.0136 (5)0.0082 (5)0.0020 (5)
C10.0234 (7)0.0311 (8)0.0308 (8)0.0003 (6)0.0048 (6)0.0029 (6)
C20.0220 (7)0.0276 (8)0.0310 (8)0.0005 (6)0.0042 (6)0.0015 (6)
C110.0233 (7)0.0291 (8)0.0280 (8)0.0046 (6)0.0013 (6)0.0081 (6)
C120.0280 (8)0.0334 (9)0.0310 (8)0.0027 (6)0.0009 (6)0.0088 (6)
C130.0290 (8)0.0365 (9)0.0414 (9)0.0005 (7)0.0028 (7)0.0142 (7)
C140.0305 (8)0.0457 (10)0.0398 (9)0.0083 (7)0.0124 (7)0.0195 (7)
C150.0415 (9)0.0426 (9)0.0303 (9)0.0116 (8)0.0106 (7)0.0075 (7)
C160.0314 (8)0.0330 (8)0.0310 (8)0.0051 (7)0.0029 (6)0.0058 (6)
C170.0251 (7)0.0293 (8)0.0257 (8)0.0033 (6)0.0020 (6)0.0034 (6)
C180.0665 (12)0.0401 (10)0.0469 (10)0.0193 (9)0.0004 (9)0.0002 (8)
Geometric parameters (Å, º) top
N1—C171.2673 (17)C12—C131.3954 (19)
N1—C11.4634 (17)C13—C141.381 (2)
O1—C121.3686 (17)C13—H130.95
O1—C181.4279 (18)C14—C151.378 (2)
C1—C21.5172 (18)C14—H140.95
C1—H1A0.99C15—C161.384 (2)
C1—H1B0.99C15—H150.95
C2—C2i1.522 (3)C16—H160.95
C2—H2A0.99C17—H170.95
C2—H2B0.99C18—H18A0.98
C11—C161.391 (2)C18—H18B0.98
C11—C121.402 (2)C18—H18C0.98
C11—C171.4719 (18)
C17—N1—C1115.73 (12)C14—C13—H13120.3
C12—O1—C18118.18 (11)C12—C13—H13120.3
N1—C1—C2109.90 (11)C15—C14—C13121.10 (14)
N1—C1—H1A109.7C15—C14—H14119.4
C2—C1—H1A109.7C13—C14—H14119.4
N1—C1—H1B109.7C14—C15—C16119.51 (14)
C2—C1—H1B109.7C14—C15—H15120.2
H1A—C1—H1B108.2C16—C15—H15120.2
C1—C2—C2i112.93 (14)C15—C16—C11121.00 (15)
C1—C2—H2A109.0C15—C16—H16119.5
C2i—C2—H2A109.0C11—C16—H16119.5
C1—C2—H2B109.0N1—C17—C11123.01 (13)
C2i—C2—H2B109.0N1—C17—H17118.5
H2A—C2—H2B107.8C11—C17—H17118.5
C16—C11—C12118.74 (13)O1—C18—H18A109.5
C16—C11—C17121.19 (13)O1—C18—H18B109.5
C12—C11—C17120.07 (13)H18A—C18—H18B109.5
O1—C12—C13124.01 (13)O1—C18—H18C109.5
O1—C12—C11115.75 (12)H18A—C18—H18C109.5
C13—C12—C11120.22 (13)H18B—C18—H18C109.5
C14—C13—C12119.43 (15)
C17—N1—C1—C2113.14 (13)C11—C12—C13—C141.1 (2)
N1—C1—C2—C2i177.94 (14)C12—C13—C14—C150.6 (2)
C18—O1—C12—C133.8 (2)C13—C14—C15—C160.2 (2)
C18—O1—C12—C11177.69 (14)C14—C15—C16—C110.5 (2)
C16—C11—C12—O1177.84 (12)C12—C11—C16—C150.0 (2)
C17—C11—C12—O12.81 (19)C17—C11—C16—C15179.39 (12)
C16—C11—C12—C130.7 (2)C1—N1—C17—C11178.18 (12)
C17—C11—C12—C13178.61 (12)C16—C11—C17—N115.5 (2)
O1—C12—C13—C14177.41 (13)C12—C11—C17—N1165.12 (13)
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC18H20N2O2C19H22N2O2C20H24N2O2
Mr296.36310.39324.41
Crystal system, space groupMonoclinic, P21/nTriclinic, P1Monoclinic, P21/n
Temperature (K)123123123
a, b, c (Å)7.8727 (2), 8.9846 (2), 11.3927 (3)8.8669 (2), 9.9139 (3), 10.2724 (4)4.6903 (2), 14.2387 (6), 13.2170 (5)
α, β, γ (°)90, 96.345 (1), 90101.140 (2), 92.341 (2), 109.442 (2)90, 91.002 (2), 90
V3)800.90 (3)830.05 (5)882.55 (6)
Z222
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.080.080.08
Crystal size (mm)0.5 × 0.5 × 0.40.4 × 0.3 × 0.20.40 × 0.15 × 0.10
Data collection
DiffractometerNonius Kappa CCD area-detector
diffractometer
Nonius Kappa CCD area-detector
diffractometer
Nonius Kappa CCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
9458, 1815, 1627 12958, 3737, 2279 10154, 2004, 1303
Rint0.0370.0630.046
(sin θ/λ)max1)0.6490.6510.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.098, 1.02 0.047, 0.122, 0.99 0.042, 0.103, 1.03
No. of reflections181537372004
No. of parameters101210111
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.170.24, 0.220.19, 0.19

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO and COLLECT, DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997) and WinGX (Farrugia, 1997), ORTEPII (Johnson, 1976) and PLATON (Spek 2003), SHELXL97.

Selected geometric parameters (Å, º) for (I) top
O1—C121.3663 (11)N1—C11.4579 (12)
O1—C181.4375 (12)C11—C171.4759 (13)
N1—C171.2693 (13)
C12—O1—C18116.67 (8)O1—C12—C13123.21 (9)
C17—N1—C1117.28 (8)O1—C12—C11116.66 (8)
C16—C11—C17120.57 (9)N1—C17—C11121.40 (9)
C12—C11—C17120.93 (8)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Cg1i0.953.023.428107
Symmetry code: (i) x+1, y+2, z+1.
Selected geometric parameters (Å, º) for (II) top
O1—C121.3674 (17)N1—C11.4609 (19)
O1—C181.4307 (17)N2—C271.270 (2)
O2—C221.3674 (17)N2—C31.4600 (18)
O2—C281.4404 (19)C11—C171.475 (2)
N1—C171.2688 (18)C21—C271.471 (2)
C12—O1—C18117.86 (13)O1—C12—C11116.29 (14)
C22—O2—C28116.49 (12)N1—C17—C11122.23 (14)
C17—N1—C1117.99 (13)C26—C21—C27120.79 (14)
C27—N2—C3118.37 (13)C22—C21—C27121.34 (14)
C16—C11—C17120.75 (14)O2—C22—C23123.15 (14)
C12—C11—C17120.55 (14)O2—C22—C21116.56 (13)
O1—C12—C13123.50 (14)N2—C27—C21121.70 (14)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C1—H1B···Cg2i0.992.843.725149
C23—H23···Cg1ii0.953.053.944157
C17—H17···Cg1iii0.953.233.546102
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y+1, z+1; (iii) x+1, y, z+2.
Selected geometric parameters (Å, º) for (III) top
N1—C171.2673 (17)O1—C181.4279 (18)
N1—C11.4634 (17)C11—C171.4719 (18)
O1—C121.3686 (17)
C17—N1—C1115.73 (12)O1—C12—C13124.01 (13)
C12—O1—C18118.18 (11)O1—C12—C11115.75 (12)
C16—C11—C17121.19 (13)N1—C17—C11123.01 (13)
C12—C11—C17120.07 (13)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds