Calculations of the conformational preferences of the methoxyphenyl substituent with respect to the pyran ring have been carried out for the two title compounds, C
19H
20N
2O
3, (II), and C
18H
20N
2O
5·0.5H
2O, (III). In both molecules, the heterocyclic ring adopts a flattened boat conformation and the fused cyclohexenone ring adopts a `sofa' conformation. The dihedral angles between these two flat fragments are 14.5 (1) and 9.3 (1)° in (II) and (III), respectively. In both molecules, the methoxy group of the pseudo-axial aryl substituent is
syn with respect to the pyran ring. The dihedral angles between the 2-methoxyphenyl rings and the flat parts of the pyran rings are 86.3 (1) and 87.0 (1)°, respectively. In the crystal structure of (II), intermolecular N—H
N and N—H
O hydrogen bonds link molecules into a three-dimensional framework. In the crystal structure of (III), a strong intramolecular N—H
O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six-membered ring. In (III), the water molecule lies on a twofold axis and forms bifurcated O—H
O hydrogen bonds with the NO
2 group of the molecule. Also in (III), hydrogen bonds link the organic and water molecules into infinite tapes along the
c axis.
Supporting information
CCDC references: 294343; 294344
Compounds (II) and (III) were obtained by the reaction of (2-methoxybenzylidene)malononitrile (Ia) or trans-1-cyano-2- (2-methoxyphenyl)-1-nitroethylene (Ib) with 5,5-dimethylcyclohexane-1,3-dione (dimedone), respectively, according to literature procedures (Kislyi et al., 1999; Nesterov & Viltchinskaia, 2001). The precipitates were isolated and recrystallized from acetonitrile for (II) and ethanol for (III) [melting point 474 K, yield 96% for (II), and 435 K (hemihydrate), yield 71% for (III)]. Both compounds were characterized by 1H and 13C NMR spectroscopy. The crystals were grown by slow isothermic evaporation of solutions in acetonitrile for (II) and ethanol for (III).
In both organic molecules, the H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H distances of 0.95 Å in (II) and 0.93 Å in (III) for aromatic H atoms, 0.98 and 0.96 Å in (II) and (III), respectively, for CH3, 0.99 and 0.97 Å, respectively, for CH2, 1.0 and 0.98 Å, respectively, for CH, and 0.88 and 0.86 Å, respectively, for NH2 groups, with Uiso(H) =1.2Ueq(C,N) or 1.5Ueq(C). In (III), the H atom of the water molecule was located in a difference Fourier map and refined isotropically.
Data collection: P3/PC (Siemens, 1989) for (II); CAD-4 Software (Enraf–Nonius, 1989) for (III). Cell refinement: P3/PC for (II); CAD-4 Software for (III). For both compounds, data reduction: SHELXTL-Plus (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97.
(II) 2-Amino-4-(2-methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro- 4
H-chromene-3-carbonitrile
top
Crystal data top
C19H20N2O3 | F(000) = 688 |
Mr = 324.37 | Dx = 1.289 Mg m−3 |
Monoclinic, P21/n | Mo Kα radiation, λ = 0.71073 Å |
a = 8.7941 (18) Å | Cell parameters from 24 reflections |
b = 17.450 (4) Å | θ = 11–12° |
c = 11.007 (2) Å | µ = 0.09 mm−1 |
β = 98.174 (16)° | T = 153 K |
V = 1671.9 (6) Å3 | Prism, colorless |
Z = 4 | 0.45 × 0.30 × 0.25 mm |
Data collection top
Siemens P3/PC diffractometer | Rint = 0.027 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.2° |
Graphite monochromator | h = 0→10 |
ω/2θ scans | k = 0→20 |
3105 measured reflections | l = −13→12 |
2907 independent reflections | 3 standard reflections every 97 reflections |
2562 reflections with I > 2σ(I) | intensity decay: 3% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.036 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.04 | w = 1/[σ2(Fo2) + (0.05P)2 + 0.54P] where P = (Fo2 + 2Fc2)/3 |
2907 reflections | (Δ/σ)max < 0.001 |
220 parameters | Δρmax = 0.22 e Å−3 |
0 restraints | Δρmin = −0.20 e Å−3 |
Crystal data top
C19H20N2O3 | V = 1671.9 (6) Å3 |
Mr = 324.37 | Z = 4 |
Monoclinic, P21/n | Mo Kα radiation |
a = 8.7941 (18) Å | µ = 0.09 mm−1 |
b = 17.450 (4) Å | T = 153 K |
c = 11.007 (2) Å | 0.45 × 0.30 × 0.25 mm |
β = 98.174 (16)° | |
Data collection top
Siemens P3/PC diffractometer | Rint = 0.027 |
3105 measured reflections | 3 standard reflections every 97 reflections |
2907 independent reflections | intensity decay: 3% |
2562 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.036 | 0 restraints |
wR(F2) = 0.094 | H-atom parameters constrained |
S = 1.04 | Δρmax = 0.22 e Å−3 |
2907 reflections | Δρmin = −0.20 e Å−3 |
220 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.95 Å for aromatic H atoms, 0.98 Å for CH3, 0.99 Å for CH2, 1.0 Å for CH, 0.88 Å for NH2 group. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.52493 (11) | 0.27471 (5) | 0.73529 (8) | 0.0236 (2) | |
O2 | 0.19526 (12) | 0.11434 (6) | 0.47133 (9) | 0.0329 (3) | |
O3 | 0.67493 (11) | 0.17220 (6) | 0.53370 (9) | 0.0302 (2) | |
N1 | 0.58034 (15) | 0.39678 (6) | 0.70743 (10) | 0.0298 (3) | |
H1A | 0.5806 | 0.4399 | 0.6661 | 0.036* | |
H1B | 0.6220 | 0.3950 | 0.7849 | 0.036* | |
N2 | 0.40686 (14) | 0.44098 (7) | 0.39152 (10) | 0.0300 (3) | |
C1 | 0.42754 (15) | 0.38942 (7) | 0.45707 (11) | 0.0213 (3) | |
C2 | 0.51683 (15) | 0.33417 (7) | 0.65266 (12) | 0.0213 (3) | |
C3 | 0.44752 (15) | 0.32487 (7) | 0.53571 (11) | 0.0201 (3) | |
C4 | 0.38235 (15) | 0.24846 (7) | 0.48559 (11) | 0.0197 (3) | |
H4 | 0.2759 | 0.2591 | 0.4438 | 0.024* | |
C5 | 0.36591 (14) | 0.19641 (7) | 0.59223 (11) | 0.0195 (3) | |
C6 | 0.26133 (15) | 0.13056 (7) | 0.57348 (12) | 0.0223 (3) | |
C7 | 0.23123 (16) | 0.08633 (8) | 0.68532 (12) | 0.0262 (3) | |
H7A | 0.2005 | 0.0334 | 0.6602 | 0.031* | |
H7B | 0.1439 | 0.1103 | 0.7187 | 0.031* | |
C8 | 0.36923 (15) | 0.08265 (7) | 0.78723 (12) | 0.0236 (3) | |
C9 | 0.42223 (16) | 0.16480 (7) | 0.81714 (12) | 0.0243 (3) | |
H9A | 0.3488 | 0.1898 | 0.8649 | 0.029* | |
H9B | 0.5238 | 0.1635 | 0.8691 | 0.029* | |
C10 | 0.43407 (15) | 0.21127 (7) | 0.70551 (11) | 0.0203 (3) | |
C11 | 0.49962 (17) | 0.03628 (8) | 0.74447 (14) | 0.0306 (3) | |
H11A | 0.5878 | 0.0352 | 0.8098 | 0.046* | |
H11B | 0.5300 | 0.0601 | 0.6710 | 0.046* | |
H11C | 0.4645 | −0.0162 | 0.7252 | 0.046* | |
C12 | 0.32088 (17) | 0.04652 (8) | 0.90222 (13) | 0.0307 (3) | |
H12A | 0.4078 | 0.0473 | 0.9687 | 0.046* | |
H12B | 0.2886 | −0.0066 | 0.8846 | 0.046* | |
H12C | 0.2352 | 0.0757 | 0.9271 | 0.046* | |
C13 | 0.47114 (15) | 0.21655 (7) | 0.38753 (11) | 0.0214 (3) | |
C14 | 0.61470 (15) | 0.18056 (7) | 0.41270 (12) | 0.0238 (3) | |
C15 | 0.69003 (17) | 0.15555 (8) | 0.31681 (13) | 0.0294 (3) | |
H15 | 0.7869 | 0.1308 | 0.3341 | 0.035* | |
C16 | 0.62341 (19) | 0.16680 (8) | 0.19625 (14) | 0.0335 (4) | |
H16 | 0.6753 | 0.1498 | 0.1312 | 0.040* | |
C17 | 0.4833 (2) | 0.20220 (9) | 0.16999 (13) | 0.0345 (4) | |
H17 | 0.4381 | 0.2099 | 0.0873 | 0.041* | |
C18 | 0.40874 (17) | 0.22661 (8) | 0.26574 (12) | 0.0270 (3) | |
H18 | 0.3117 | 0.2510 | 0.2473 | 0.032* | |
C19 | 0.80071 (18) | 0.12026 (9) | 0.56157 (16) | 0.0382 (4) | |
H19A | 0.8246 | 0.1141 | 0.6507 | 0.057* | |
H19B | 0.8908 | 0.1406 | 0.5293 | 0.057* | |
H19C | 0.7729 | 0.0704 | 0.5238 | 0.057* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0328 (5) | 0.0173 (5) | 0.0187 (4) | −0.0018 (4) | −0.0030 (4) | 0.0024 (3) |
O2 | 0.0389 (6) | 0.0355 (6) | 0.0222 (5) | −0.0132 (5) | −0.0025 (4) | 0.0006 (4) |
O3 | 0.0263 (5) | 0.0358 (6) | 0.0275 (5) | 0.0088 (4) | 0.0004 (4) | −0.0039 (4) |
N1 | 0.0465 (8) | 0.0189 (6) | 0.0208 (6) | −0.0056 (5) | −0.0061 (5) | 0.0019 (4) |
N2 | 0.0389 (7) | 0.0238 (6) | 0.0255 (6) | −0.0031 (5) | −0.0013 (5) | 0.0040 (5) |
C1 | 0.0225 (6) | 0.0222 (7) | 0.0188 (6) | −0.0014 (5) | 0.0022 (5) | −0.0024 (5) |
C2 | 0.0254 (7) | 0.0176 (6) | 0.0211 (6) | 0.0021 (5) | 0.0034 (5) | 0.0017 (5) |
C3 | 0.0234 (6) | 0.0180 (6) | 0.0194 (6) | 0.0010 (5) | 0.0041 (5) | 0.0012 (5) |
C4 | 0.0211 (6) | 0.0198 (6) | 0.0177 (6) | −0.0002 (5) | 0.0011 (5) | 0.0002 (5) |
C5 | 0.0211 (6) | 0.0186 (6) | 0.0191 (6) | 0.0027 (5) | 0.0040 (5) | 0.0006 (5) |
C6 | 0.0227 (7) | 0.0229 (7) | 0.0210 (7) | 0.0009 (5) | 0.0021 (5) | 0.0001 (5) |
C7 | 0.0264 (7) | 0.0272 (7) | 0.0249 (7) | −0.0049 (6) | 0.0032 (6) | 0.0039 (5) |
C8 | 0.0256 (7) | 0.0211 (7) | 0.0239 (7) | −0.0004 (5) | 0.0027 (5) | 0.0044 (5) |
C9 | 0.0320 (7) | 0.0217 (7) | 0.0183 (6) | 0.0027 (5) | 0.0003 (5) | 0.0029 (5) |
C10 | 0.0230 (6) | 0.0155 (6) | 0.0224 (6) | 0.0026 (5) | 0.0030 (5) | −0.0002 (5) |
C11 | 0.0330 (8) | 0.0200 (7) | 0.0401 (8) | 0.0021 (6) | 0.0090 (6) | 0.0042 (6) |
C12 | 0.0333 (8) | 0.0305 (8) | 0.0285 (7) | 0.0000 (6) | 0.0049 (6) | 0.0096 (6) |
C13 | 0.0265 (7) | 0.0176 (6) | 0.0206 (6) | −0.0062 (5) | 0.0055 (5) | −0.0021 (5) |
C14 | 0.0263 (7) | 0.0189 (6) | 0.0268 (7) | −0.0062 (5) | 0.0059 (5) | −0.0032 (5) |
C15 | 0.0327 (8) | 0.0198 (7) | 0.0391 (8) | −0.0051 (6) | 0.0167 (6) | −0.0043 (6) |
C16 | 0.0498 (9) | 0.0241 (7) | 0.0319 (8) | −0.0102 (7) | 0.0238 (7) | −0.0064 (6) |
C17 | 0.0517 (10) | 0.0329 (8) | 0.0205 (7) | −0.0094 (7) | 0.0108 (6) | −0.0021 (6) |
C18 | 0.0334 (8) | 0.0261 (7) | 0.0214 (7) | −0.0054 (6) | 0.0038 (6) | −0.0002 (5) |
C19 | 0.0292 (8) | 0.0387 (9) | 0.0452 (9) | 0.0110 (7) | 0.0004 (7) | −0.0024 (7) |
Geometric parameters (Å, º) top
O1—C2 | 1.3749 (15) | C8—C11 | 1.5311 (19) |
O1—C10 | 1.3773 (16) | C9—C10 | 1.4882 (18) |
O2—C6 | 1.2232 (16) | C9—H9A | 0.9900 |
O3—C14 | 1.3693 (17) | C9—H9B | 0.9900 |
O3—C19 | 1.4292 (17) | C11—H11A | 0.9800 |
N1—C2 | 1.3317 (17) | C11—H11B | 0.9800 |
N1—H1A | 0.8800 | C11—H11C | 0.9800 |
N1—H1B | 0.8800 | C12—H12A | 0.9800 |
N2—C1 | 1.1514 (17) | C12—H12B | 0.9800 |
C1—C3 | 1.4162 (18) | C12—H12C | 0.9800 |
C2—C3 | 1.3535 (18) | C13—C18 | 1.3857 (19) |
C3—C4 | 1.5235 (17) | C13—C14 | 1.4019 (19) |
C4—C5 | 1.5073 (17) | C14—C15 | 1.394 (2) |
C4—C13 | 1.5246 (18) | C15—C16 | 1.386 (2) |
C4—H4 | 1.0000 | C15—H15 | 0.9500 |
C5—C10 | 1.3299 (18) | C16—C17 | 1.372 (2) |
C5—C6 | 1.4679 (18) | C16—H16 | 0.9500 |
C6—C7 | 1.5080 (18) | C17—C18 | 1.385 (2) |
C7—C8 | 1.5323 (19) | C17—H17 | 0.9500 |
C7—H7A | 0.9900 | C18—H18 | 0.9500 |
C7—H7B | 0.9900 | C19—H19A | 0.9800 |
C8—C12 | 1.5275 (18) | C19—H19B | 0.9800 |
C8—C9 | 1.5288 (18) | C19—H19C | 0.9800 |
| | | |
C2—O1—C10 | 118.38 (10) | H9A—C9—H9B | 107.8 |
C14—O3—C19 | 117.19 (11) | C5—C10—O1 | 123.28 (11) |
C2—N1—H1A | 120.0 | C5—C10—C9 | 126.36 (12) |
C2—N1—H1B | 120.0 | O1—C10—C9 | 110.35 (11) |
H1A—N1—H1B | 120.0 | C8—C11—H11A | 109.5 |
N2—C1—C3 | 177.83 (14) | C8—C11—H11B | 109.5 |
N1—C2—C3 | 129.20 (12) | H11A—C11—H11B | 109.5 |
N1—C2—O1 | 109.92 (11) | C8—C11—H11C | 109.5 |
C3—C2—O1 | 120.85 (11) | H11A—C11—H11C | 109.5 |
C2—C3—C1 | 119.08 (11) | H11B—C11—H11C | 109.5 |
C2—C3—C4 | 123.00 (11) | C8—C12—H12A | 109.5 |
C1—C3—C4 | 117.85 (11) | C8—C12—H12B | 109.5 |
C5—C4—C3 | 108.55 (10) | H12A—C12—H12B | 109.5 |
C5—C4—C13 | 116.54 (11) | C8—C12—H12C | 109.5 |
C3—C4—C13 | 111.83 (10) | H12A—C12—H12C | 109.5 |
C5—C4—H4 | 106.4 | H12B—C12—H12C | 109.5 |
C3—C4—H4 | 106.4 | C18—C13—C14 | 118.01 (12) |
C13—C4—H4 | 106.4 | C18—C13—C4 | 117.80 (12) |
C10—C5—C6 | 118.31 (12) | C14—C13—C4 | 124.13 (12) |
C10—C5—C4 | 122.16 (12) | O3—C14—C15 | 122.92 (13) |
C6—C5—C4 | 119.32 (11) | O3—C14—C13 | 116.93 (12) |
O2—C6—C5 | 121.10 (12) | C15—C14—C13 | 120.15 (13) |
O2—C6—C7 | 121.10 (12) | C16—C15—C14 | 119.93 (14) |
C5—C6—C7 | 117.72 (11) | C16—C15—H15 | 120.0 |
C6—C7—C8 | 113.97 (11) | C14—C15—H15 | 120.0 |
C6—C7—H7A | 108.8 | C17—C16—C15 | 120.67 (13) |
C8—C7—H7A | 108.8 | C17—C16—H16 | 119.7 |
C6—C7—H7B | 108.8 | C15—C16—H16 | 119.7 |
C8—C7—H7B | 108.8 | C16—C17—C18 | 119.11 (14) |
H7A—C7—H7B | 107.7 | C16—C17—H17 | 120.4 |
C12—C8—C9 | 108.71 (11) | C18—C17—H17 | 120.4 |
C12—C8—C11 | 110.21 (11) | C17—C18—C13 | 122.12 (14) |
C9—C8—C11 | 110.06 (11) | C17—C18—H18 | 118.9 |
C12—C8—C7 | 109.82 (11) | C13—C18—H18 | 118.9 |
C9—C8—C7 | 107.69 (11) | O3—C19—H19A | 109.5 |
C11—C8—C7 | 110.30 (11) | O3—C19—H19B | 109.5 |
C10—C9—C8 | 112.83 (11) | H19A—C19—H19B | 109.5 |
C10—C9—H9A | 109.0 | O3—C19—H19C | 109.5 |
C8—C9—H9A | 109.0 | H19A—C19—H19C | 109.5 |
C10—C9—H9B | 109.0 | H19B—C19—H19C | 109.5 |
C8—C9—H9B | 109.0 | | |
| | | |
C10—O1—C2—N1 | 164.49 (11) | C6—C5—C10—O1 | −174.89 (11) |
C10—O1—C2—C3 | −13.66 (17) | C4—C5—C10—O1 | −0.10 (19) |
N1—C2—C3—C1 | −4.2 (2) | C6—C5—C10—C9 | 3.7 (2) |
O1—C2—C3—C1 | 173.56 (11) | C4—C5—C10—C9 | 178.44 (12) |
N1—C2—C3—C4 | 178.85 (13) | C2—O1—C10—C5 | 15.72 (18) |
O1—C2—C3—C4 | −3.39 (19) | C2—O1—C10—C9 | −163.03 (11) |
C2—C3—C4—C5 | 16.65 (17) | C8—C9—C10—C5 | 19.93 (19) |
C1—C3—C4—C5 | −160.33 (11) | C8—C9—C10—O1 | −161.37 (11) |
C2—C3—C4—C13 | −113.30 (14) | C5—C4—C13—C18 | 134.31 (12) |
C1—C3—C4—C13 | 69.72 (15) | C3—C4—C13—C18 | −100.02 (13) |
C3—C4—C5—C10 | −14.85 (16) | C5—C4—C13—C14 | −48.45 (17) |
C13—C4—C5—C10 | 112.45 (14) | C3—C4—C13—C14 | 77.22 (15) |
C3—C4—C5—C6 | 159.88 (11) | C19—O3—C14—C15 | −15.06 (19) |
C13—C4—C5—C6 | −72.81 (15) | C19—O3—C14—C13 | 165.34 (12) |
C10—C5—C6—O2 | 179.82 (12) | C18—C13—C14—O3 | 179.14 (11) |
C4—C5—C6—O2 | 4.88 (19) | C4—C13—C14—O3 | 1.91 (18) |
C10—C5—C6—C7 | 3.21 (18) | C18—C13—C14—C15 | −0.47 (18) |
C4—C5—C6—C7 | −171.73 (11) | C4—C13—C14—C15 | −177.70 (12) |
O2—C6—C7—C8 | 149.85 (13) | O3—C14—C15—C16 | −179.10 (12) |
C5—C6—C7—C8 | −33.53 (17) | C13—C14—C15—C16 | 0.5 (2) |
C6—C7—C8—C12 | 172.26 (11) | C14—C15—C16—C17 | −0.2 (2) |
C6—C7—C8—C9 | 54.05 (15) | C15—C16—C17—C18 | −0.1 (2) |
C6—C7—C8—C11 | −66.08 (15) | C16—C17—C18—C13 | 0.1 (2) |
C12—C8—C9—C10 | −165.46 (11) | C14—C13—C18—C17 | 0.18 (19) |
C11—C8—C9—C10 | 73.74 (14) | C4—C13—C18—C17 | 177.59 (12) |
C7—C8—C9—C10 | −46.53 (15) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.88 | 2.18 | 3.041 (2) | 166 |
N1—H1B···O2ii | 0.88 | 2.07 | 2.943 (2) | 173 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2. |
(III) 2-amino-4-(2-methoxyphenyl)-7,7- dimethyl-3-nitro-4,6,7,8-tetrahydro-5
H-chromen-5-one hemihydrate
top
Crystal data top
C18H20N2O5·0.5H2O | F(000) = 1496 |
Mr = 353.37 | Dx = 1.309 Mg m−3 |
Monoclinic, C2/c | Mo Kα radiation, λ = 0.71073 Å |
a = 28.461 (5) Å | Cell parameters from 24 reflections |
b = 9.456 (2) Å | θ = 10–11° |
c = 15.860 (3) Å | µ = 0.10 mm−1 |
β = 122.819 (11)° | T = 298 K |
V = 3587.1 (13) Å3 | Prism, colorless |
Z = 8 | 0.40 × 0.35 × 0.30 mm |
Data collection top
Enraf-Nonius CAD4 diffractometer | Rint = 0.038 |
Radiation source: fine-focus sealed tube | θmax = 25.0°, θmin = 2.5° |
Graphite monochromator | h = 0→33 |
ω/2θ scans | k = 0→11 |
3162 measured reflections | l = −18→15 |
3097 independent reflections | 3 standard reflections every 97 reflections |
1749 reflections with I > 2σ(I) | intensity decay: 3% |
Refinement top
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.055 | Hydrogen site location: mixed |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0534P)2] where P = (Fo2 + 2Fc2)/3 |
3097 reflections | (Δ/σ)max < 0.001 |
238 parameters | Δρmax = 0.13 e Å−3 |
0 restraints | Δρmin = −0.16 e Å−3 |
Crystal data top
C18H20N2O5·0.5H2O | V = 3587.1 (13) Å3 |
Mr = 353.37 | Z = 8 |
Monoclinic, C2/c | Mo Kα radiation |
a = 28.461 (5) Å | µ = 0.10 mm−1 |
b = 9.456 (2) Å | T = 298 K |
c = 15.860 (3) Å | 0.40 × 0.35 × 0.30 mm |
β = 122.819 (11)° | |
Data collection top
Enraf-Nonius CAD4 diffractometer | Rint = 0.038 |
3162 measured reflections | 3 standard reflections every 97 reflections |
3097 independent reflections | intensity decay: 3% |
1749 reflections with I > 2σ(I) | |
Refinement top
R[F2 > 2σ(F2)] = 0.055 | 0 restraints |
wR(F2) = 0.116 | H atoms treated by a mixture of independent and constrained refinement |
S = 1.05 | Δρmax = 0.13 e Å−3 |
3097 reflections | Δρmin = −0.16 e Å−3 |
238 parameters | |
Special details top
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms, 0.96 Å for CH3, 0.97 Å for CH2, 0.98 Å for CH, 0.86 Å for NH2 group. H-atom of H2O was refined isotropically. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top | x | y | z | Uiso*/Ueq | |
O1 | 0.13928 (6) | 0.75954 (16) | 0.25649 (11) | 0.0400 (4) | |
O2 | 0.24467 (8) | 0.5035 (2) | 0.15911 (14) | 0.0611 (5) | |
O3 | 0.08229 (7) | 0.49236 (18) | 0.14960 (13) | 0.0514 (5) | |
O4 | 0.03503 (7) | 0.92138 (19) | −0.02371 (14) | 0.0597 (5) | |
O5 | 0.07335 (7) | 0.7874 (2) | −0.08194 (13) | 0.0573 (5) | |
N1 | 0.06979 (8) | 0.9071 (2) | 0.16535 (16) | 0.0538 (6) | |
H1A | 0.0729 | 0.9275 | 0.2210 | 0.065* | |
H1B | 0.0449 | 0.9486 | 0.1108 | 0.065* | |
N2 | 0.06994 (8) | 0.8275 (2) | −0.01045 (16) | 0.0442 (5) | |
C1 | 0.04911 (13) | 0.4232 (4) | 0.1796 (2) | 0.0756 (10) | |
H1C | 0.0500 | 0.4768 | 0.2318 | 0.113* | |
H1D | 0.0637 | 0.3302 | 0.2040 | 0.113* | |
H1E | 0.0112 | 0.4160 | 0.1231 | 0.113* | |
C2 | 0.10300 (9) | 0.8130 (2) | 0.16369 (18) | 0.0380 (6) | |
C3 | 0.10493 (9) | 0.7671 (2) | 0.08259 (17) | 0.0364 (6) | |
C4 | 0.14294 (9) | 0.6515 (2) | 0.09016 (17) | 0.0352 (6) | |
H4 | 0.1611 | 0.6848 | 0.0562 | 0.042* | |
C5 | 0.18823 (9) | 0.6290 (2) | 0.19887 (17) | 0.0345 (5) | |
C6 | 0.23847 (10) | 0.5492 (2) | 0.22411 (18) | 0.0401 (6) | |
C7 | 0.28288 (10) | 0.5316 (3) | 0.33391 (18) | 0.0508 (7) | |
H7A | 0.3081 | 0.6117 | 0.3557 | 0.061* | |
H7B | 0.3044 | 0.4472 | 0.3423 | 0.061* | |
C8 | 0.25989 (10) | 0.5200 (3) | 0.40187 (18) | 0.0433 (6) | |
C9 | 0.22386 (10) | 0.6516 (3) | 0.38185 (17) | 0.0410 (6) | |
H9A | 0.2033 | 0.6403 | 0.4141 | 0.049* | |
H9B | 0.2480 | 0.7335 | 0.4113 | 0.049* | |
C10 | 0.18399 (9) | 0.6766 (2) | 0.27338 (17) | 0.0336 (5) | |
C11 | 0.22439 (12) | 0.3858 (3) | 0.3764 (2) | 0.0605 (8) | |
H11A | 0.2113 | 0.3778 | 0.4208 | 0.091* | |
H11B | 0.2467 | 0.3046 | 0.3842 | 0.091* | |
H11C | 0.1929 | 0.3910 | 0.3083 | 0.091* | |
C12 | 0.30803 (12) | 0.5166 (3) | 0.51180 (19) | 0.0657 (8) | |
H12A | 0.2933 | 0.5104 | 0.5537 | 0.099* | |
H12B | 0.3298 | 0.6014 | 0.5276 | 0.099* | |
H12C | 0.3313 | 0.4359 | 0.5233 | 0.099* | |
C13 | 0.11270 (9) | 0.5140 (2) | 0.03904 (17) | 0.0365 (6) | |
C14 | 0.08367 (10) | 0.4360 (2) | 0.07124 (18) | 0.0421 (6) | |
C15 | 0.05859 (12) | 0.3089 (3) | 0.0255 (2) | 0.0600 (8) | |
H15 | 0.0401 | 0.2559 | 0.0482 | 0.072* | |
C16 | 0.06126 (12) | 0.2615 (3) | −0.0545 (2) | 0.0686 (9) | |
H16 | 0.0445 | 0.1762 | −0.0853 | 0.082* | |
C17 | 0.08823 (12) | 0.3389 (3) | −0.0884 (2) | 0.0626 (8) | |
H17 | 0.0891 | 0.3079 | −0.1432 | 0.075* | |
C18 | 0.11411 (10) | 0.4634 (3) | −0.04077 (19) | 0.0484 (7) | |
H18 | 0.1331 | 0.5147 | −0.0633 | 0.058* | |
O1W | 0.0000 | 0.9839 (4) | −0.2500 | 0.1011 (13) | |
H1W | 0.0245 (17) | 0.920 (4) | −0.194 (3) | 0.160 (17)* | |
Atomic displacement parameters (Å2) top | U11 | U22 | U33 | U12 | U13 | U23 |
O1 | 0.0359 (9) | 0.0438 (10) | 0.0390 (10) | 0.0109 (8) | 0.0195 (8) | 0.0027 (8) |
O2 | 0.0560 (11) | 0.0794 (14) | 0.0582 (12) | 0.0177 (11) | 0.0377 (11) | −0.0015 (11) |
O3 | 0.0522 (11) | 0.0603 (12) | 0.0530 (11) | −0.0176 (9) | 0.0359 (10) | −0.0064 (9) |
O4 | 0.0448 (11) | 0.0553 (11) | 0.0650 (13) | 0.0151 (10) | 0.0207 (10) | 0.0214 (10) |
O5 | 0.0568 (12) | 0.0686 (13) | 0.0405 (11) | −0.0009 (10) | 0.0225 (10) | 0.0080 (9) |
N1 | 0.0434 (13) | 0.0545 (14) | 0.0551 (15) | 0.0208 (11) | 0.0213 (12) | 0.0063 (11) |
N2 | 0.0362 (12) | 0.0413 (13) | 0.0461 (14) | −0.0048 (10) | 0.0165 (11) | 0.0086 (11) |
C1 | 0.079 (2) | 0.095 (2) | 0.076 (2) | −0.0282 (19) | 0.058 (2) | −0.0058 (18) |
C2 | 0.0282 (13) | 0.0346 (14) | 0.0452 (16) | 0.0011 (11) | 0.0159 (13) | 0.0055 (11) |
C3 | 0.0301 (12) | 0.0346 (14) | 0.0363 (14) | −0.0020 (11) | 0.0127 (11) | 0.0044 (11) |
C4 | 0.0310 (13) | 0.0403 (13) | 0.0347 (14) | −0.0051 (11) | 0.0181 (12) | 0.0008 (11) |
C5 | 0.0299 (13) | 0.0341 (13) | 0.0389 (14) | 0.0005 (10) | 0.0183 (12) | 0.0016 (11) |
C6 | 0.0376 (14) | 0.0419 (14) | 0.0483 (16) | 0.0013 (11) | 0.0282 (14) | −0.0015 (12) |
C7 | 0.0371 (14) | 0.0631 (17) | 0.0502 (17) | 0.0140 (13) | 0.0225 (14) | 0.0019 (14) |
C8 | 0.0367 (14) | 0.0485 (16) | 0.0402 (14) | 0.0114 (12) | 0.0180 (12) | 0.0041 (12) |
C9 | 0.0385 (14) | 0.0448 (15) | 0.0379 (15) | 0.0068 (12) | 0.0194 (13) | 0.0016 (11) |
C10 | 0.0265 (12) | 0.0332 (13) | 0.0388 (15) | 0.0020 (10) | 0.0163 (12) | 0.0005 (11) |
C11 | 0.0644 (19) | 0.0480 (18) | 0.074 (2) | 0.0139 (14) | 0.0411 (17) | 0.0114 (15) |
C12 | 0.0567 (17) | 0.082 (2) | 0.0470 (17) | 0.0262 (16) | 0.0209 (15) | 0.0101 (16) |
C13 | 0.0325 (13) | 0.0380 (14) | 0.0350 (13) | −0.0021 (11) | 0.0156 (11) | 0.0009 (11) |
C14 | 0.0404 (14) | 0.0449 (15) | 0.0397 (15) | −0.0046 (12) | 0.0209 (13) | −0.0035 (12) |
C15 | 0.0606 (18) | 0.0521 (17) | 0.073 (2) | −0.0190 (14) | 0.0402 (17) | −0.0077 (15) |
C16 | 0.072 (2) | 0.0524 (18) | 0.084 (2) | −0.0207 (16) | 0.044 (2) | −0.0269 (17) |
C17 | 0.068 (2) | 0.0635 (19) | 0.066 (2) | −0.0122 (16) | 0.0429 (18) | −0.0247 (16) |
C18 | 0.0506 (16) | 0.0500 (16) | 0.0509 (17) | −0.0079 (13) | 0.0316 (14) | −0.0094 (14) |
O1W | 0.171 (4) | 0.064 (2) | 0.0425 (19) | 0.000 | 0.041 (2) | 0.000 |
Geometric parameters (Å, º) top
O1—C2 | 1.357 (3) | C7—H7B | 0.9700 |
O1—C10 | 1.391 (2) | C8—C12 | 1.526 (3) |
O2—C6 | 1.215 (3) | C8—C9 | 1.532 (3) |
O3—C14 | 1.372 (3) | C8—C11 | 1.534 (4) |
O3—C1 | 1.426 (3) | C9—C10 | 1.479 (3) |
O4—N2 | 1.262 (2) | C9—H9A | 0.9700 |
O5—N2 | 1.248 (2) | C9—H9B | 0.9700 |
N1—C2 | 1.309 (3) | C11—H11A | 0.9600 |
N1—H1A | 0.8600 | C11—H11B | 0.9600 |
N1—H1B | 0.8600 | C11—H11C | 0.9600 |
N2—C3 | 1.379 (3) | C12—H12A | 0.9600 |
C1—H1C | 0.9600 | C12—H12B | 0.9600 |
C1—H1D | 0.9600 | C12—H12C | 0.9600 |
C1—H1E | 0.9600 | C13—C18 | 1.374 (3) |
C2—C3 | 1.386 (3) | C13—C14 | 1.395 (3) |
C3—C4 | 1.497 (3) | C14—C15 | 1.385 (3) |
C4—C5 | 1.507 (3) | C15—C16 | 1.385 (4) |
C4—C13 | 1.527 (3) | C15—H15 | 0.9300 |
C4—H4 | 0.9800 | C16—C17 | 1.365 (4) |
C5—C10 | 1.330 (3) | C16—H16 | 0.9300 |
C5—C6 | 1.468 (3) | C17—C18 | 1.377 (4) |
C6—C7 | 1.507 (3) | C17—H17 | 0.9300 |
C7—C8 | 1.538 (3) | C18—H18 | 0.9300 |
C7—H7A | 0.9700 | O1W—H1W | 0.99 (4) |
| | | |
C2—O1—C10 | 119.85 (17) | C9—C8—C7 | 106.7 (2) |
C14—O3—C1 | 118.2 (2) | C11—C8—C7 | 110.1 (2) |
C2—N1—H1A | 120.0 | C10—C9—C8 | 112.10 (19) |
C2—N1—H1B | 120.0 | C10—C9—H9A | 109.2 |
H1A—N1—H1B | 120.0 | C8—C9—H9A | 109.2 |
O5—N2—O4 | 120.3 (2) | C10—C9—H9B | 109.2 |
O5—N2—C3 | 118.7 (2) | C8—C9—H9B | 109.2 |
O4—N2—C3 | 121.1 (2) | H9A—C9—H9B | 107.9 |
O3—C1—H1C | 109.5 | C5—C10—O1 | 122.3 (2) |
O3—C1—H1D | 109.5 | C5—C10—C9 | 126.7 (2) |
H1C—C1—H1D | 109.5 | O1—C10—C9 | 111.05 (19) |
O3—C1—H1E | 109.5 | C8—C11—H11A | 109.5 |
H1C—C1—H1E | 109.5 | C8—C11—H11B | 109.5 |
H1D—C1—H1E | 109.5 | H11A—C11—H11B | 109.5 |
N1—C2—O1 | 111.4 (2) | C8—C11—H11C | 109.5 |
N1—C2—C3 | 128.6 (2) | H11A—C11—H11C | 109.5 |
O1—C2—C3 | 120.0 (2) | H11B—C11—H11C | 109.5 |
N2—C3—C2 | 119.6 (2) | C8—C12—H12A | 109.5 |
N2—C3—C4 | 117.4 (2) | C8—C12—H12B | 109.5 |
C2—C3—C4 | 123.0 (2) | H12A—C12—H12B | 109.5 |
C3—C4—C5 | 109.13 (19) | C8—C12—H12C | 109.5 |
C3—C4—C13 | 113.87 (18) | H12A—C12—H12C | 109.5 |
C5—C4—C13 | 111.94 (18) | H12B—C12—H12C | 109.5 |
C3—C4—H4 | 107.2 | C18—C13—C14 | 118.2 (2) |
C5—C4—H4 | 107.2 | C18—C13—C4 | 119.8 (2) |
C13—C4—H4 | 107.2 | C14—C13—C4 | 122.1 (2) |
C10—C5—C6 | 118.4 (2) | O3—C14—C15 | 123.5 (2) |
C10—C5—C4 | 122.4 (2) | O3—C14—C13 | 116.1 (2) |
C6—C5—C4 | 119.2 (2) | C15—C14—C13 | 120.4 (2) |
O2—C6—C5 | 121.3 (2) | C16—C15—C14 | 119.5 (3) |
O2—C6—C7 | 121.6 (2) | C16—C15—H15 | 120.3 |
C5—C6—C7 | 117.0 (2) | C14—C15—H15 | 120.3 |
C6—C7—C8 | 114.1 (2) | C17—C16—C15 | 120.6 (3) |
C6—C7—H7A | 108.7 | C17—C16—H16 | 119.7 |
C8—C7—H7A | 108.7 | C15—C16—H16 | 119.7 |
C6—C7—H7B | 108.7 | C16—C17—C18 | 119.3 (3) |
C8—C7—H7B | 108.7 | C16—C17—H17 | 120.3 |
H7A—C7—H7B | 107.6 | C18—C17—H17 | 120.3 |
C12—C8—C9 | 109.8 (2) | C13—C18—C17 | 122.0 (2) |
C12—C8—C11 | 109.8 (2) | C13—C18—H18 | 119.0 |
C9—C8—C11 | 110.26 (19) | C17—C18—H18 | 119.0 |
C12—C8—C7 | 110.0 (2) | | |
| | | |
C10—O1—C2—N1 | −168.99 (19) | C11—C8—C9—C10 | −70.9 (3) |
C10—O1—C2—C3 | 10.5 (3) | C7—C8—C9—C10 | 48.7 (3) |
O5—N2—C3—C2 | 178.1 (2) | C6—C5—C10—O1 | 176.51 (19) |
O4—N2—C3—C2 | −2.0 (3) | C4—C5—C10—O1 | −4.8 (3) |
O5—N2—C3—C4 | −3.0 (3) | C6—C5—C10—C9 | −3.5 (4) |
O4—N2—C3—C4 | 176.96 (19) | C4—C5—C10—C9 | 175.3 (2) |
N1—C2—C3—N2 | 2.8 (4) | C2—O1—C10—C5 | −10.6 (3) |
O1—C2—C3—N2 | −176.52 (19) | C2—O1—C10—C9 | 169.43 (19) |
N1—C2—C3—C4 | −176.1 (2) | C8—C9—C10—C5 | −22.0 (3) |
O1—C2—C3—C4 | 4.6 (3) | C8—C9—C10—O1 | 158.00 (18) |
N2—C3—C4—C5 | 163.82 (18) | C3—C4—C13—C18 | 117.0 (2) |
C2—C3—C4—C5 | −17.3 (3) | C5—C4—C13—C18 | −118.6 (2) |
N2—C3—C4—C13 | −70.3 (3) | C3—C4—C13—C14 | −63.5 (3) |
C2—C3—C4—C13 | 108.6 (2) | C5—C4—C13—C14 | 60.8 (3) |
C3—C4—C5—C10 | 17.3 (3) | C1—O3—C14—C15 | −5.9 (4) |
C13—C4—C5—C10 | −109.7 (2) | C1—O3—C14—C13 | 174.6 (2) |
C3—C4—C5—C6 | −163.98 (19) | C18—C13—C14—O3 | −178.5 (2) |
C13—C4—C5—C6 | 69.0 (3) | C4—C13—C14—O3 | 2.1 (3) |
C10—C5—C6—O2 | −179.8 (2) | C18—C13—C14—C15 | 2.0 (4) |
C4—C5—C6—O2 | 1.5 (3) | C4—C13—C14—C15 | −177.5 (2) |
C10—C5—C6—C7 | −2.1 (3) | O3—C14—C15—C16 | 178.8 (3) |
C4—C5—C6—C7 | 179.1 (2) | C13—C14—C15—C16 | −1.7 (4) |
O2—C6—C7—C8 | −149.1 (2) | C14—C15—C16—C17 | −0.1 (5) |
C5—C6—C7—C8 | 33.3 (3) | C15—C16—C17—C18 | 1.6 (5) |
C6—C7—C8—C12 | −174.7 (2) | C14—C13—C18—C17 | −0.4 (4) |
C6—C7—C8—C9 | −55.6 (3) | C4—C13—C18—C17 | 179.0 (2) |
C6—C7—C8—C11 | 64.1 (3) | C16—C17—C18—C13 | −1.4 (4) |
C12—C8—C9—C10 | 168.0 (2) | | |
Hydrogen-bond geometry (Å, º) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O4 | 0.86 | 2.01 | 2.602 (3) | 125 |
N1—H1B···O4i | 0.86 | 2.28 | 3.052 (3) | 150 |
N1—H1A···O1Wi | 0.86 | 2.50 | 3.115 (3) | 129 |
O1W—H1W···O5 | 0.99 (4) | 1.99 (4) | 2.980 (3) | 179 (5) |
O1W—H1W···O4 | 0.99 (4) | 2.55 (4) | 3.216 (3) | 125 (5) |
Symmetry code: (i) −x, −y+2, −z. |
Experimental details
| (II) | (III) |
Crystal data |
Chemical formula | C19H20N2O3 | C18H20N2O5·0.5H2O |
Mr | 324.37 | 353.37 |
Crystal system, space group | Monoclinic, P21/n | Monoclinic, C2/c |
Temperature (K) | 153 | 298 |
a, b, c (Å) | 8.7941 (18), 17.450 (4), 11.007 (2) | 28.461 (5), 9.456 (2), 15.860 (3) |
α, β, γ (°) | 90, 98.174 (16), 90 | 90, 122.819 (11), 90 |
V (Å3) | 1671.9 (6) | 3587.1 (13) |
Z | 4 | 8 |
Radiation type | Mo Kα | Mo Kα |
µ (mm−1) | 0.09 | 0.10 |
Crystal size (mm) | 0.45 × 0.30 × 0.25 | 0.40 × 0.35 × 0.30 |
|
Data collection |
Diffractometer | Siemens P3/PC diffractometer | Enraf-Nonius CAD4 diffractometer |
Absorption correction | – | – |
No. of measured, independent and observed [I > 2σ(I)] reflections | 3105, 2907, 2562 | 3162, 3097, 1749 |
Rint | 0.027 | 0.038 |
(sin θ/λ)max (Å−1) | 0.595 | 0.595 |
|
Refinement |
R[F2 > 2σ(F2)], wR(F2), S | 0.036, 0.094, 1.04 | 0.055, 0.116, 1.05 |
No. of reflections | 2907 | 3097 |
No. of parameters | 220 | 238 |
H-atom treatment | H-atom parameters constrained | H atoms treated by a mixture of independent and constrained refinement |
Δρmax, Δρmin (e Å−3) | 0.22, −0.20 | 0.13, −0.16 |
Selected geometric parameters (Å, º) for (II) topO1—C2 | 1.3749 (15) | C1—C3 | 1.4162 (18) |
O1—C10 | 1.3773 (16) | C2—C3 | 1.3535 (18) |
O2—C6 | 1.2232 (16) | C4—C13 | 1.5246 (18) |
N1—C2 | 1.3317 (17) | C5—C10 | 1.3299 (18) |
N2—C1 | 1.1514 (17) | C5—C6 | 1.4679 (18) |
| | | |
C2—O1—C10 | 118.38 (10) | N2—C1—C3 | 177.83 (14) |
C14—O3—C19 | 117.19 (11) | | |
| | | |
C19—O3—C14—C15 | −15.06 (19) | | |
Hydrogen-bond geometry (Å, º) for (II) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1A···N2i | 0.88 | 2.18 | 3.041 (2) | 166 |
N1—H1B···O2ii | 0.88 | 2.07 | 2.943 (2) | 173 |
Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) x+1/2, −y+1/2, z+1/2. |
Selected geometric parameters (Å, º) for (III) topO1—C2 | 1.357 (3) | N2—C3 | 1.379 (3) |
O1—C10 | 1.391 (2) | C2—C3 | 1.386 (3) |
O2—C6 | 1.215 (3) | C4—C13 | 1.527 (3) |
O4—N2 | 1.262 (2) | C5—C10 | 1.330 (3) |
O5—N2 | 1.248 (2) | C5—C6 | 1.468 (3) |
N1—C2 | 1.309 (3) | | |
| | | |
C2—O1—C10 | 119.85 (17) | C14—O3—C1 | 118.2 (2) |
| | | |
C1—O3—C14—C15 | −5.9 (4) | | |
Hydrogen-bond geometry (Å, º) for (III) top
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1B···O4 | 0.86 | 2.01 | 2.602 (3) | 125 |
N1—H1B···O4i | 0.86 | 2.28 | 3.052 (3) | 150 |
N1—H1A···O1Wi | 0.86 | 2.50 | 3.115 (3) | 129 |
O1W—H1W···O5 | 0.99 (4) | 1.99 (4) | 2.980 (3) | 179 (5) |
O1W—H1W···O4 | 0.99 (4) | 2.55 (4) | 3.216 (3) | 125 (5) |
Symmetry code: (i) −x, −y+2, −z. |
The present investigation is a continuation of our systematic work that includes the syntheses and structural studies of unsaturated nitriles as potential nonlinear optical materials (Nesterov et al., 2000, 2001a,b) and heterocyclic compounds that may be obtained using such nitriles (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004; Nesterova et al., 2004). Some 4H-pyran derivatives are potentially bioactive compounds and can be used as calcium antagonists (Suarez et al., 2002). Such heterocyclic compounds have structures similar to those of the well known 1,4-dihydropyridines (Triggle et al., 1980; Bossert et al., 1981, 1989; Kokubun & Reuter, 1984), which exhibit high bioactivities. Thus, there has been a growing interest in the structures of 4H-pyran derivatives (Florencio & Garcia-Blanco, 1987; Bellanato et al., 1988; Lokaj et al., 1990; Marco et al., 1993; Suarez et al., 2002).
Syntheses and X-ray structural investigations have been carried out for compounds (II) and (III) (Figs. 1 and 2). Most of the geometric parameters are very similar to the standard values (Allen et al., 1987), and very close to our and literature data for similar 4H-pyran derivatives (Kislyi et al., 1999; Suarez et al., 2002; Nesterov et al., 2004).
The X-ray analyses show that molecules (II) and (III) have slightly different conformations. The pyran ring in both structures adopts a flattened boat conformation, with a deviation of atoms O1 and C4 from the C2/C3/C5/C10 plane [planar within 0.008 (2) and 0.001 (2) Å, respectively] of 0.151 (2) and 0.203 (2) Å in (II), and −0.108 (2) and −0.218 (2) Å in (III), respectively. The bending of the ring along the lines O1···C4, C2···C10 and C3···C5 is, respectively, equal to 16.6 (2), 12.4 (2) and 13.2 (2)° in (II), and 15.2 (2), 9.0 (2) and 14.5 (2)° in (III). According to our previous work and literature data, the pyran ring is flexible, but usually adopts a flattened boat conformation. In both molecules, the fused cyclohexenone ring adopts a sofa conformation; atom C8 deviates from the C7/C6/C5/C10/C9 plane [planar within 0.030 (1) and 0.024 (1) Å, respectively] of 0.636 (1) and −0.666 (2) Å, respectively. The dihedral angle between these two flat fragments is equal to 14.5 (1) and 9.3 (1)° in (II) and (III), respectively. In both molecules, the o-methoxyphenyl substituent is anti relative to the H atom bonded to C4 [the H4A—C4—C13—C14 angles are −167 and 178°, and the C4—C13—C14—O3 angles are 1.9 (2) and 2.1 (3)°, respectively]. The phenyl substituents occupy pseudo-axial positions and form dihedral angles with the flat moieties of the pyran rings in (II) and (III) equal to 86.3 (1) and 87.0 (1)°, respectively. Such mutual orientation of these fragments and the flatness of the heterocyclic rings leads to O···C intramolecular steric interactions [O3···C5 = 2.911 (3) Å and O3···C10 = 3.109 (3) Å in molecule (II), and O3···C2 = 3.074 (3) Å, O3···C3 = 3.006 (3) Å, O3···C5 = 2.969 (3) Å and O3···C10 = 3.018 (3) Å in (III)]. These are shorter than the sum of the van der Waals radii of O and C (Rowland & Taylor, 1996), especially in the case of (II). Such steric hindrance causes elongation of the C4—C13 bond lengths to 1.525 (2) and 1.527 (3) Å, respectively, in comparison with neighboring Csp3—Csp2 distances that are equal to standard values (Allen et al., 1987).
As was described previously for related compounds (Kislyi et al., 1999; Nesterov et al., 2001, 2004; Nesterova et al., 2004), there is a conjugation [especially in (III)] between the donor (NH2) and the acceptor [CN in (II) and NO2 in (III)] groups via the C2═C3 double bond (Tables 1 and 3). Thus, in both molecules the C2—N1 distances are shorter than the average conjugated C—N single bond (1.370 Å) found in the Cambridge Structural Database (Allen, 2002). In contrast, the C2═C3 bond lengths are elongated in comparison with the C5═C10 bond length and the standard value (Allen et al., 1987). Variations of the other bond lengths in the flat fragments are less distinct in (II). However, in (III) the C3—N2 distance is considerably shorter than usual for C—NO2 bonds (1.468 Å; Allen et al., 1987) and the N2—O4 is distinctly longer than the standard value (Allen et al., 1987).
In the crystal stucture of (II), both H atoms of the NH2 group participate in intermolecular N—H···N and N—H···O hydrogen bonds that link the molecules into a three- dimensional framework (Fig. 3 and Table 2). In (III), a strong intramolecular N—H···O hydrogen bond links the flat conjugated fragment H—N—C=C—N—O into a six-membered ring. The water molecule lies on a twofold axis and forms bifurcated O—H.·O hydrogen bonds with the NO2 group of the molecule. In the crystal structure, hydrogen bonds link the product and water molecules into infinite tapes along the c axis (Fig. 4 and Table 4).
Analysis of the crystal packing shows that in (III) there is only one intermolecular steric contact [O4···O4i = 2.894 (2) Å; symmetry code: (i) −x, 2 − y, −z], which is equal to the sum of the van der Waals radii of the O atoms (Rowland & Taylor, 1996). The other geometric parameters in (II) and (III) have standard values (Allen et al., 1987).
Using computational methods (GAUSSIAN03; Frisch et al., 2003), we explored the conformational preferences of the methoxyphenyl substituent with respect to the pyran ring in molecules (II) and (III). This was done first at the AM1 level by minimizing the conformer found in the crystal, and then rotating the H4—C4—C13—C14 angle by 10° increments and minimizing the conformations encountered until the original conformer was generated once again. For the molecules of both (II) and (III), two minima were found. The first has the methoxy substituent on the phenyl ring syn to the pyran ring (H4—C4—C13—C14 angle close to −180°), similar to the configuration observed in the crystal structures (Figs. 1 and 2). The second has the methoxy substituent on the phenyl ring anti to the pyran ring (H4—C4—C13—C14 angle close to 0°). For compound (II) at the AM1 level, the anti conformation is predicted to be the global minimum, being 1.8 kcal mol−1 more stable than the syn minimum and 6.4 kcal mol−1 more stable than the highest energy conformation. In contrast, higher level restricted Hartree–Fock calculations on the two minima of (II) [basis set 6–311++G(d,p)] predict that the syn conformer observed in the crystal is more stable than the anti conformer by 0.9 kcal mol−1. AM1 calculations on (III) gave similar results, with the anti conformer predicted to be more stable than the syn by 0.5 kcal mol−1 and also more stable than the highest energy conformation by 5.1 kcal mol−1. Similar to the results with (II), the higher level ab initio calculations (same basis set used) predict the conformer observed in the crystal of (III) to be the minimum energy conformer: the syn conformer is predicted to be 2.2 kcal mol−1 more stable than the anti.