Download citation
Download citation
link to html
Calculations of the conformational preferences of the methoxy­phenyl substituent with respect to the pyran ring have been carried out for the two title compounds, C19H20N2O3, (II), and C18H20N2O5·0.5H2O, (III). In both mol­ecules, the heterocyclic ring adopts a flattened boat conformation and the fused cyclo­hexenone ring adopts a `sofa' conformation. The dihedral angles between these two flat fragments are 14.5 (1) and 9.3 (1)° in (II) and (III), respectively. In both mol­ecules, the methoxy group of the pseudo-axial aryl substituent is syn with respect to the pyran ring. The dihedral angles between the 2-methoxy­phenyl rings and the flat parts of the pyran rings are 86.3 (1) and 87.0 (1)°, respectively. In the crystal structure of (II), inter­molecular N—H...N and N—H...O hydrogen bonds link mol­ecules into a three-dimensional framework. In the crystal structure of (III), a strong intra­molecular N—H...O hydrogen bond links the flat conjugated H—N—C=C—N—O fragment into a six-membered ring. In (III), the water mol­ecule lies on a twofold axis and forms bifurcated O—H...O hydrogen bonds with the NO2 group of the mol­ecule. Also in (III), hydrogen bonds link the organic and water mol­ecules into infinite tapes along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105037078/fg1879sup1.cif
Contains datablocks II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105037078/fg1879IIsup2.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105037078/fg1879IIIsup3.hkl
Contains datablock III

CCDC references: 294343; 294344

Comment top

The present investigation is a continuation of our systematic work that includes the syntheses and structural studies of unsaturated nitriles as potential nonlinear optical materials (Nesterov et al., 2000, 2001a,b) and heterocyclic compounds that may be obtained using such nitriles (Nesterov & Viltchinskaia, 2001; Nesterov et al., 2004; Nesterova et al., 2004). Some 4H-pyran derivatives are potentially bioactive compounds and can be used as calcium antagonists (Suarez et al., 2002). Such heterocyclic compounds have structures similar to those of the well known 1,4-dihydropyridines (Triggle et al., 1980; Bossert et al., 1981, 1989; Kokubun & Reuter, 1984), which exhibit high bioactivities. Thus, there has been a growing interest in the structures of 4H-pyran derivatives (Florencio & Garcia-Blanco, 1987; Bellanato et al., 1988; Lokaj et al., 1990; Marco et al., 1993; Suarez et al., 2002).

Syntheses and X-ray structural investigations have been carried out for compounds (II) and (III) (Figs. 1 and 2). Most of the geometric parameters are very similar to the standard values (Allen et al., 1987), and very close to our and literature data for similar 4H-pyran derivatives (Kislyi et al., 1999; Suarez et al., 2002; Nesterov et al., 2004).

The X-ray analyses show that molecules (II) and (III) have slightly different conformations. The pyran ring in both structures adopts a flattened boat conformation, with a deviation of atoms O1 and C4 from the C2/C3/C5/C10 plane [planar within 0.008 (2) and 0.001 (2) Å, respectively] of 0.151 (2) and 0.203 (2) Å in (II), and −0.108 (2) and −0.218 (2) Å in (III), respectively. The bending of the ring along the lines O1···C4, C2···C10 and C3···C5 is, respectively, equal to 16.6 (2), 12.4 (2) and 13.2 (2)° in (II), and 15.2 (2), 9.0 (2) and 14.5 (2)° in (III). According to our previous work and literature data, the pyran ring is flexible, but usually adopts a flattened boat conformation. In both molecules, the fused cyclohexenone ring adopts a sofa conformation; atom C8 deviates from the C7/C6/C5/C10/C9 plane [planar within 0.030 (1) and 0.024 (1) Å, respectively] of 0.636 (1) and −0.666 (2) Å, respectively. The dihedral angle between these two flat fragments is equal to 14.5 (1) and 9.3 (1)° in (II) and (III), respectively. In both molecules, the o-methoxyphenyl substituent is anti relative to the H atom bonded to C4 [the H4A—C4—C13—C14 angles are −167 and 178°, and the C4—C13—C14—O3 angles are 1.9 (2) and 2.1 (3)°, respectively]. The phenyl substituents occupy pseudo-axial positions and form dihedral angles with the flat moieties of the pyran rings in (II) and (III) equal to 86.3 (1) and 87.0 (1)°, respectively. Such mutual orientation of these fragments and the flatness of the heterocyclic rings leads to O···C intramolecular steric interactions [O3···C5 = 2.911 (3) Å and O3···C10 = 3.109 (3) Å in molecule (II), and O3···C2 = 3.074 (3) Å, O3···C3 = 3.006 (3) Å, O3···C5 = 2.969 (3) Å and O3···C10 = 3.018 (3) Å in (III)]. These are shorter than the sum of the van der Waals radii of O and C (Rowland & Taylor, 1996), especially in the case of (II). Such steric hindrance causes elongation of the C4—C13 bond lengths to 1.525 (2) and 1.527 (3) Å, respectively, in comparison with neighboring Csp3—Csp2 distances that are equal to standard values (Allen et al., 1987).

As was described previously for related compounds (Kislyi et al., 1999; Nesterov et al., 2001, 2004; Nesterova et al., 2004), there is a conjugation [especially in (III)] between the donor (NH2) and the acceptor [CN in (II) and NO2 in (III)] groups via the C2C3 double bond (Tables 1 and 3). Thus, in both molecules the C2—N1 distances are shorter than the average conjugated C—N single bond (1.370 Å) found in the Cambridge Structural Database (Allen, 2002). In contrast, the C2C3 bond lengths are elongated in comparison with the C5C10 bond length and the standard value (Allen et al., 1987). Variations of the other bond lengths in the flat fragments are less distinct in (II). However, in (III) the C3—N2 distance is considerably shorter than usual for C—NO2 bonds (1.468 Å; Allen et al., 1987) and the N2—O4 is distinctly longer than the standard value (Allen et al., 1987).

In the crystal stucture of (II), both H atoms of the NH2 group participate in intermolecular N—H···N and N—H···O hydrogen bonds that link the molecules into a three- dimensional framework (Fig. 3 and Table 2). In (III), a strong intramolecular N—H···O hydrogen bond links the flat conjugated fragment H—N—C=C—N—O into a six-membered ring. The water molecule lies on a twofold axis and forms bifurcated O—H.·O hydrogen bonds with the NO2 group of the molecule. In the crystal structure, hydrogen bonds link the product and water molecules into infinite tapes along the c axis (Fig. 4 and Table 4).

Analysis of the crystal packing shows that in (III) there is only one intermolecular steric contact [O4···O4i = 2.894 (2) Å; symmetry code: (i) −x, 2 − y, −z], which is equal to the sum of the van der Waals radii of the O atoms (Rowland & Taylor, 1996). The other geometric parameters in (II) and (III) have standard values (Allen et al., 1987).

Using computational methods (GAUSSIAN03; Frisch et al., 2003), we explored the conformational preferences of the methoxyphenyl substituent with respect to the pyran ring in molecules (II) and (III). This was done first at the AM1 level by minimizing the conformer found in the crystal, and then rotating the H4—C4—C13—C14 angle by 10° increments and minimizing the conformations encountered until the original conformer was generated once again. For the molecules of both (II) and (III), two minima were found. The first has the methoxy substituent on the phenyl ring syn to the pyran ring (H4—C4—C13—C14 angle close to −180°), similar to the configuration observed in the crystal structures (Figs. 1 and 2). The second has the methoxy substituent on the phenyl ring anti to the pyran ring (H4—C4—C13—C14 angle close to 0°). For compound (II) at the AM1 level, the anti conformation is predicted to be the global minimum, being 1.8 kcal mol−1 more stable than the syn minimum and 6.4 kcal mol−1 more stable than the highest energy conformation. In contrast, higher level restricted Hartree–Fock calculations on the two minima of (II) [basis set 6–311++G(d,p)] predict that the syn conformer observed in the crystal is more stable than the anti conformer by 0.9 kcal mol−1. AM1 calculations on (III) gave similar results, with the anti conformer predicted to be more stable than the syn by 0.5 kcal mol−1 and also more stable than the highest energy conformation by 5.1 kcal mol−1. Similar to the results with (II), the higher level ab initio calculations (same basis set used) predict the conformer observed in the crystal of (III) to be the minimum energy conformer: the syn conformer is predicted to be 2.2 kcal mol−1 more stable than the anti.

Experimental top

Compounds (II) and (III) were obtained by the reaction of (2-methoxybenzylidene)malononitrile (Ia) or trans-1-cyano-2- (2-methoxyphenyl)-1-nitroethylene (Ib) with 5,5-dimethylcyclohexane-1,3-dione (dimedone), respectively, according to literature procedures (Kislyi et al., 1999; Nesterov & Viltchinskaia, 2001). The precipitates were isolated and recrystallized from acetonitrile for (II) and ethanol for (III) [melting point 474 K, yield 96% for (II), and 435 K (hemihydrate), yield 71% for (III)]. Both compounds were characterized by 1H and 13C NMR spectroscopy. The crystals were grown by slow isothermic evaporation of solutions in acetonitrile for (II) and ethanol for (III).

Refinement top

In both organic molecules, the H atoms were placed in geometrically calculated positions and refined using a riding model, with C—H distances of 0.95 Å in (II) and 0.93 Å in (III) for aromatic H atoms, 0.98 and 0.96 Å in (II) and (III), respectively, for CH3, 0.99 and 0.97 Å, respectively, for CH2, 1.0 and 0.98 Å, respectively, for CH, and 0.88 and 0.86 Å, respectively, for NH2 groups, with Uiso(H) =1.2Ueq(C,N) or 1.5Ueq(C). In (III), the H atom of the water molecule was located in a difference Fourier map and refined isotropically.

Computing details top

Data collection: P3/PC (Siemens, 1989) for (II); CAD-4 Software (Enraf–Nonius, 1989) for (III). Cell refinement: P3/PC for (II); CAD-4 Software for (III). For both compounds, data reduction: SHELXTL-Plus (Sheldrick, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus; software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. : A view of (II), showing the atom numbering used. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level.
[Figure 2] Fig. 2. : A view of (III), showing the atom numbering used. The non-H atoms are shown with displacement ellipsoids drawn at the 50% probability level. Dashed lines indicate the intramolecular N—H···O hydrogen bond and the O—H···O bifurcated hydrogen bonds.
[Figure 3] Fig. 3. : A projection of the crystal packing of (II) along the a axis. [Symmetry codes: (i) 1 − x, 1 − y, 1 − z; (ii) 1/2 + x, 1/2 − y, 1/2 + z.]
[Figure 4] Fig. 4. : A projection of the crystal packing of (III) along the b axis. [Symmetry codes: (i) −x, 2 − y, −z.]
(II) 2-Amino-4-(2-methoxyphenyl)-7,7-dimethyl-5-oxo-5,6,7,8-tetrahydro- 4H-chromene-3-carbonitrile top
Crystal data top
C19H20N2O3F(000) = 688
Mr = 324.37Dx = 1.289 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.7941 (18) ÅCell parameters from 24 reflections
b = 17.450 (4) Åθ = 11–12°
c = 11.007 (2) ŵ = 0.09 mm1
β = 98.174 (16)°T = 153 K
V = 1671.9 (6) Å3Prism, colorless
Z = 40.45 × 0.30 × 0.25 mm
Data collection top
Siemens P3/PC
diffractometer
Rint = 0.027
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.2°
Graphite monochromatorh = 010
ω/2θ scansk = 020
3105 measured reflectionsl = 1312
2907 independent reflections3 standard reflections every 97 reflections
2562 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.05P)2 + 0.54P]
where P = (Fo2 + 2Fc2)/3
2907 reflections(Δ/σ)max < 0.001
220 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.20 e Å3
Crystal data top
C19H20N2O3V = 1671.9 (6) Å3
Mr = 324.37Z = 4
Monoclinic, P21/nMo Kα radiation
a = 8.7941 (18) ŵ = 0.09 mm1
b = 17.450 (4) ÅT = 153 K
c = 11.007 (2) Å0.45 × 0.30 × 0.25 mm
β = 98.174 (16)°
Data collection top
Siemens P3/PC
diffractometer
Rint = 0.027
3105 measured reflections3 standard reflections every 97 reflections
2907 independent reflections intensity decay: 3%
2562 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
2907 reflectionsΔρmin = 0.20 e Å3
220 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.95 Å for aromatic H atoms, 0.98 Å for CH3, 0.99 Å for CH2, 1.0 Å for CH, 0.88 Å for NH2 group.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.52493 (11)0.27471 (5)0.73529 (8)0.0236 (2)
O20.19526 (12)0.11434 (6)0.47133 (9)0.0329 (3)
O30.67493 (11)0.17220 (6)0.53370 (9)0.0302 (2)
N10.58034 (15)0.39678 (6)0.70743 (10)0.0298 (3)
H1A0.58060.43990.66610.036*
H1B0.62200.39500.78490.036*
N20.40686 (14)0.44098 (7)0.39152 (10)0.0300 (3)
C10.42754 (15)0.38942 (7)0.45707 (11)0.0213 (3)
C20.51683 (15)0.33417 (7)0.65266 (12)0.0213 (3)
C30.44752 (15)0.32487 (7)0.53571 (11)0.0201 (3)
C40.38235 (15)0.24846 (7)0.48559 (11)0.0197 (3)
H40.27590.25910.44380.024*
C50.36591 (14)0.19641 (7)0.59223 (11)0.0195 (3)
C60.26133 (15)0.13056 (7)0.57348 (12)0.0223 (3)
C70.23123 (16)0.08633 (8)0.68532 (12)0.0262 (3)
H7A0.20050.03340.66020.031*
H7B0.14390.11030.71870.031*
C80.36923 (15)0.08265 (7)0.78723 (12)0.0236 (3)
C90.42223 (16)0.16480 (7)0.81714 (12)0.0243 (3)
H9A0.34880.18980.86490.029*
H9B0.52380.16350.86910.029*
C100.43407 (15)0.21127 (7)0.70551 (11)0.0203 (3)
C110.49962 (17)0.03628 (8)0.74447 (14)0.0306 (3)
H11A0.58780.03520.80980.046*
H11B0.53000.06010.67100.046*
H11C0.46450.01620.72520.046*
C120.32088 (17)0.04652 (8)0.90222 (13)0.0307 (3)
H12A0.40780.04730.96870.046*
H12B0.28860.00660.88460.046*
H12C0.23520.07570.92710.046*
C130.47114 (15)0.21655 (7)0.38753 (11)0.0214 (3)
C140.61470 (15)0.18056 (7)0.41270 (12)0.0238 (3)
C150.69003 (17)0.15555 (8)0.31681 (13)0.0294 (3)
H150.78690.13080.33410.035*
C160.62341 (19)0.16680 (8)0.19625 (14)0.0335 (4)
H160.67530.14980.13120.040*
C170.4833 (2)0.20220 (9)0.16999 (13)0.0345 (4)
H170.43810.20990.08730.041*
C180.40874 (17)0.22661 (8)0.26574 (12)0.0270 (3)
H180.31170.25100.24730.032*
C190.80071 (18)0.12026 (9)0.56157 (16)0.0382 (4)
H19A0.82460.11410.65070.057*
H19B0.89080.14060.52930.057*
H19C0.77290.07040.52380.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0328 (5)0.0173 (5)0.0187 (4)0.0018 (4)0.0030 (4)0.0024 (3)
O20.0389 (6)0.0355 (6)0.0222 (5)0.0132 (5)0.0025 (4)0.0006 (4)
O30.0263 (5)0.0358 (6)0.0275 (5)0.0088 (4)0.0004 (4)0.0039 (4)
N10.0465 (8)0.0189 (6)0.0208 (6)0.0056 (5)0.0061 (5)0.0019 (4)
N20.0389 (7)0.0238 (6)0.0255 (6)0.0031 (5)0.0013 (5)0.0040 (5)
C10.0225 (6)0.0222 (7)0.0188 (6)0.0014 (5)0.0022 (5)0.0024 (5)
C20.0254 (7)0.0176 (6)0.0211 (6)0.0021 (5)0.0034 (5)0.0017 (5)
C30.0234 (6)0.0180 (6)0.0194 (6)0.0010 (5)0.0041 (5)0.0012 (5)
C40.0211 (6)0.0198 (6)0.0177 (6)0.0002 (5)0.0011 (5)0.0002 (5)
C50.0211 (6)0.0186 (6)0.0191 (6)0.0027 (5)0.0040 (5)0.0006 (5)
C60.0227 (7)0.0229 (7)0.0210 (7)0.0009 (5)0.0021 (5)0.0001 (5)
C70.0264 (7)0.0272 (7)0.0249 (7)0.0049 (6)0.0032 (6)0.0039 (5)
C80.0256 (7)0.0211 (7)0.0239 (7)0.0004 (5)0.0027 (5)0.0044 (5)
C90.0320 (7)0.0217 (7)0.0183 (6)0.0027 (5)0.0003 (5)0.0029 (5)
C100.0230 (6)0.0155 (6)0.0224 (6)0.0026 (5)0.0030 (5)0.0002 (5)
C110.0330 (8)0.0200 (7)0.0401 (8)0.0021 (6)0.0090 (6)0.0042 (6)
C120.0333 (8)0.0305 (8)0.0285 (7)0.0000 (6)0.0049 (6)0.0096 (6)
C130.0265 (7)0.0176 (6)0.0206 (6)0.0062 (5)0.0055 (5)0.0021 (5)
C140.0263 (7)0.0189 (6)0.0268 (7)0.0062 (5)0.0059 (5)0.0032 (5)
C150.0327 (8)0.0198 (7)0.0391 (8)0.0051 (6)0.0167 (6)0.0043 (6)
C160.0498 (9)0.0241 (7)0.0319 (8)0.0102 (7)0.0238 (7)0.0064 (6)
C170.0517 (10)0.0329 (8)0.0205 (7)0.0094 (7)0.0108 (6)0.0021 (6)
C180.0334 (8)0.0261 (7)0.0214 (7)0.0054 (6)0.0038 (6)0.0002 (5)
C190.0292 (8)0.0387 (9)0.0452 (9)0.0110 (7)0.0004 (7)0.0024 (7)
Geometric parameters (Å, º) top
O1—C21.3749 (15)C8—C111.5311 (19)
O1—C101.3773 (16)C9—C101.4882 (18)
O2—C61.2232 (16)C9—H9A0.9900
O3—C141.3693 (17)C9—H9B0.9900
O3—C191.4292 (17)C11—H11A0.9800
N1—C21.3317 (17)C11—H11B0.9800
N1—H1A0.8800C11—H11C0.9800
N1—H1B0.8800C12—H12A0.9800
N2—C11.1514 (17)C12—H12B0.9800
C1—C31.4162 (18)C12—H12C0.9800
C2—C31.3535 (18)C13—C181.3857 (19)
C3—C41.5235 (17)C13—C141.4019 (19)
C4—C51.5073 (17)C14—C151.394 (2)
C4—C131.5246 (18)C15—C161.386 (2)
C4—H41.0000C15—H150.9500
C5—C101.3299 (18)C16—C171.372 (2)
C5—C61.4679 (18)C16—H160.9500
C6—C71.5080 (18)C17—C181.385 (2)
C7—C81.5323 (19)C17—H170.9500
C7—H7A0.9900C18—H180.9500
C7—H7B0.9900C19—H19A0.9800
C8—C121.5275 (18)C19—H19B0.9800
C8—C91.5288 (18)C19—H19C0.9800
C2—O1—C10118.38 (10)H9A—C9—H9B107.8
C14—O3—C19117.19 (11)C5—C10—O1123.28 (11)
C2—N1—H1A120.0C5—C10—C9126.36 (12)
C2—N1—H1B120.0O1—C10—C9110.35 (11)
H1A—N1—H1B120.0C8—C11—H11A109.5
N2—C1—C3177.83 (14)C8—C11—H11B109.5
N1—C2—C3129.20 (12)H11A—C11—H11B109.5
N1—C2—O1109.92 (11)C8—C11—H11C109.5
C3—C2—O1120.85 (11)H11A—C11—H11C109.5
C2—C3—C1119.08 (11)H11B—C11—H11C109.5
C2—C3—C4123.00 (11)C8—C12—H12A109.5
C1—C3—C4117.85 (11)C8—C12—H12B109.5
C5—C4—C3108.55 (10)H12A—C12—H12B109.5
C5—C4—C13116.54 (11)C8—C12—H12C109.5
C3—C4—C13111.83 (10)H12A—C12—H12C109.5
C5—C4—H4106.4H12B—C12—H12C109.5
C3—C4—H4106.4C18—C13—C14118.01 (12)
C13—C4—H4106.4C18—C13—C4117.80 (12)
C10—C5—C6118.31 (12)C14—C13—C4124.13 (12)
C10—C5—C4122.16 (12)O3—C14—C15122.92 (13)
C6—C5—C4119.32 (11)O3—C14—C13116.93 (12)
O2—C6—C5121.10 (12)C15—C14—C13120.15 (13)
O2—C6—C7121.10 (12)C16—C15—C14119.93 (14)
C5—C6—C7117.72 (11)C16—C15—H15120.0
C6—C7—C8113.97 (11)C14—C15—H15120.0
C6—C7—H7A108.8C17—C16—C15120.67 (13)
C8—C7—H7A108.8C17—C16—H16119.7
C6—C7—H7B108.8C15—C16—H16119.7
C8—C7—H7B108.8C16—C17—C18119.11 (14)
H7A—C7—H7B107.7C16—C17—H17120.4
C12—C8—C9108.71 (11)C18—C17—H17120.4
C12—C8—C11110.21 (11)C17—C18—C13122.12 (14)
C9—C8—C11110.06 (11)C17—C18—H18118.9
C12—C8—C7109.82 (11)C13—C18—H18118.9
C9—C8—C7107.69 (11)O3—C19—H19A109.5
C11—C8—C7110.30 (11)O3—C19—H19B109.5
C10—C9—C8112.83 (11)H19A—C19—H19B109.5
C10—C9—H9A109.0O3—C19—H19C109.5
C8—C9—H9A109.0H19A—C19—H19C109.5
C10—C9—H9B109.0H19B—C19—H19C109.5
C8—C9—H9B109.0
C10—O1—C2—N1164.49 (11)C6—C5—C10—O1174.89 (11)
C10—O1—C2—C313.66 (17)C4—C5—C10—O10.10 (19)
N1—C2—C3—C14.2 (2)C6—C5—C10—C93.7 (2)
O1—C2—C3—C1173.56 (11)C4—C5—C10—C9178.44 (12)
N1—C2—C3—C4178.85 (13)C2—O1—C10—C515.72 (18)
O1—C2—C3—C43.39 (19)C2—O1—C10—C9163.03 (11)
C2—C3—C4—C516.65 (17)C8—C9—C10—C519.93 (19)
C1—C3—C4—C5160.33 (11)C8—C9—C10—O1161.37 (11)
C2—C3—C4—C13113.30 (14)C5—C4—C13—C18134.31 (12)
C1—C3—C4—C1369.72 (15)C3—C4—C13—C18100.02 (13)
C3—C4—C5—C1014.85 (16)C5—C4—C13—C1448.45 (17)
C13—C4—C5—C10112.45 (14)C3—C4—C13—C1477.22 (15)
C3—C4—C5—C6159.88 (11)C19—O3—C14—C1515.06 (19)
C13—C4—C5—C672.81 (15)C19—O3—C14—C13165.34 (12)
C10—C5—C6—O2179.82 (12)C18—C13—C14—O3179.14 (11)
C4—C5—C6—O24.88 (19)C4—C13—C14—O31.91 (18)
C10—C5—C6—C73.21 (18)C18—C13—C14—C150.47 (18)
C4—C5—C6—C7171.73 (11)C4—C13—C14—C15177.70 (12)
O2—C6—C7—C8149.85 (13)O3—C14—C15—C16179.10 (12)
C5—C6—C7—C833.53 (17)C13—C14—C15—C160.5 (2)
C6—C7—C8—C12172.26 (11)C14—C15—C16—C170.2 (2)
C6—C7—C8—C954.05 (15)C15—C16—C17—C180.1 (2)
C6—C7—C8—C1166.08 (15)C16—C17—C18—C130.1 (2)
C12—C8—C9—C10165.46 (11)C14—C13—C18—C170.18 (19)
C11—C8—C9—C1073.74 (14)C4—C13—C18—C17177.59 (12)
C7—C8—C9—C1046.53 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.183.041 (2)166
N1—H1B···O2ii0.882.072.943 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
(III) 2-amino-4-(2-methoxyphenyl)-7,7- dimethyl-3-nitro-4,6,7,8-tetrahydro-5H-chromen-5-one hemihydrate top
Crystal data top
C18H20N2O5·0.5H2OF(000) = 1496
Mr = 353.37Dx = 1.309 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 28.461 (5) ÅCell parameters from 24 reflections
b = 9.456 (2) Åθ = 10–11°
c = 15.860 (3) ŵ = 0.10 mm1
β = 122.819 (11)°T = 298 K
V = 3587.1 (13) Å3Prism, colorless
Z = 80.40 × 0.35 × 0.30 mm
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.038
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 2.5°
Graphite monochromatorh = 033
ω/2θ scansk = 011
3162 measured reflectionsl = 1815
3097 independent reflections3 standard reflections every 97 reflections
1749 reflections with I > 2σ(I) intensity decay: 3%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: mixed
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0534P)2]
where P = (Fo2 + 2Fc2)/3
3097 reflections(Δ/σ)max < 0.001
238 parametersΔρmax = 0.13 e Å3
0 restraintsΔρmin = 0.16 e Å3
Crystal data top
C18H20N2O5·0.5H2OV = 3587.1 (13) Å3
Mr = 353.37Z = 8
Monoclinic, C2/cMo Kα radiation
a = 28.461 (5) ŵ = 0.10 mm1
b = 9.456 (2) ÅT = 298 K
c = 15.860 (3) Å0.40 × 0.35 × 0.30 mm
β = 122.819 (11)°
Data collection top
Enraf-Nonius CAD4
diffractometer
Rint = 0.038
3162 measured reflections3 standard reflections every 97 reflections
3097 independent reflections intensity decay: 3%
1749 reflections with I > 2σ(I)
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.116H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.13 e Å3
3097 reflectionsΔρmin = 0.16 e Å3
238 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. All H atoms were placed in geometrically calculated positions and refined using a riding model with C—H distances of 0.93 Å for aromatic H atoms, 0.96 Å for CH3, 0.97 Å for CH2, 0.98 Å for CH, 0.86 Å for NH2 group. H-atom of H2O was refined isotropically.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13928 (6)0.75954 (16)0.25649 (11)0.0400 (4)
O20.24467 (8)0.5035 (2)0.15911 (14)0.0611 (5)
O30.08229 (7)0.49236 (18)0.14960 (13)0.0514 (5)
O40.03503 (7)0.92138 (19)0.02371 (14)0.0597 (5)
O50.07335 (7)0.7874 (2)0.08194 (13)0.0573 (5)
N10.06979 (8)0.9071 (2)0.16535 (16)0.0538 (6)
H1A0.07290.92750.22100.065*
H1B0.04490.94860.11080.065*
N20.06994 (8)0.8275 (2)0.01045 (16)0.0442 (5)
C10.04911 (13)0.4232 (4)0.1796 (2)0.0756 (10)
H1C0.05000.47680.23180.113*
H1D0.06370.33020.20400.113*
H1E0.01120.41600.12310.113*
C20.10300 (9)0.8130 (2)0.16369 (18)0.0380 (6)
C30.10493 (9)0.7671 (2)0.08259 (17)0.0364 (6)
C40.14294 (9)0.6515 (2)0.09016 (17)0.0352 (6)
H40.16110.68480.05620.042*
C50.18823 (9)0.6290 (2)0.19887 (17)0.0345 (5)
C60.23847 (10)0.5492 (2)0.22411 (18)0.0401 (6)
C70.28288 (10)0.5316 (3)0.33391 (18)0.0508 (7)
H7A0.30810.61170.35570.061*
H7B0.30440.44720.34230.061*
C80.25989 (10)0.5200 (3)0.40187 (18)0.0433 (6)
C90.22386 (10)0.6516 (3)0.38185 (17)0.0410 (6)
H9A0.20330.64030.41410.049*
H9B0.24800.73350.41130.049*
C100.18399 (9)0.6766 (2)0.27338 (17)0.0336 (5)
C110.22439 (12)0.3858 (3)0.3764 (2)0.0605 (8)
H11A0.21130.37780.42080.091*
H11B0.24670.30460.38420.091*
H11C0.19290.39100.30830.091*
C120.30803 (12)0.5166 (3)0.51180 (19)0.0657 (8)
H12A0.29330.51040.55370.099*
H12B0.32980.60140.52760.099*
H12C0.33130.43590.52330.099*
C130.11270 (9)0.5140 (2)0.03904 (17)0.0365 (6)
C140.08367 (10)0.4360 (2)0.07124 (18)0.0421 (6)
C150.05859 (12)0.3089 (3)0.0255 (2)0.0600 (8)
H150.04010.25590.04820.072*
C160.06126 (12)0.2615 (3)0.0545 (2)0.0686 (9)
H160.04450.17620.08530.082*
C170.08823 (12)0.3389 (3)0.0884 (2)0.0626 (8)
H170.08910.30790.14320.075*
C180.11411 (10)0.4634 (3)0.04077 (19)0.0484 (7)
H180.13310.51470.06330.058*
O1W0.00000.9839 (4)0.25000.1011 (13)
H1W0.0245 (17)0.920 (4)0.194 (3)0.160 (17)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0359 (9)0.0438 (10)0.0390 (10)0.0109 (8)0.0195 (8)0.0027 (8)
O20.0560 (11)0.0794 (14)0.0582 (12)0.0177 (11)0.0377 (11)0.0015 (11)
O30.0522 (11)0.0603 (12)0.0530 (11)0.0176 (9)0.0359 (10)0.0064 (9)
O40.0448 (11)0.0553 (11)0.0650 (13)0.0151 (10)0.0207 (10)0.0214 (10)
O50.0568 (12)0.0686 (13)0.0405 (11)0.0009 (10)0.0225 (10)0.0080 (9)
N10.0434 (13)0.0545 (14)0.0551 (15)0.0208 (11)0.0213 (12)0.0063 (11)
N20.0362 (12)0.0413 (13)0.0461 (14)0.0048 (10)0.0165 (11)0.0086 (11)
C10.079 (2)0.095 (2)0.076 (2)0.0282 (19)0.058 (2)0.0058 (18)
C20.0282 (13)0.0346 (14)0.0452 (16)0.0011 (11)0.0159 (13)0.0055 (11)
C30.0301 (12)0.0346 (14)0.0363 (14)0.0020 (11)0.0127 (11)0.0044 (11)
C40.0310 (13)0.0403 (13)0.0347 (14)0.0051 (11)0.0181 (12)0.0008 (11)
C50.0299 (13)0.0341 (13)0.0389 (14)0.0005 (10)0.0183 (12)0.0016 (11)
C60.0376 (14)0.0419 (14)0.0483 (16)0.0013 (11)0.0282 (14)0.0015 (12)
C70.0371 (14)0.0631 (17)0.0502 (17)0.0140 (13)0.0225 (14)0.0019 (14)
C80.0367 (14)0.0485 (16)0.0402 (14)0.0114 (12)0.0180 (12)0.0041 (12)
C90.0385 (14)0.0448 (15)0.0379 (15)0.0068 (12)0.0194 (13)0.0016 (11)
C100.0265 (12)0.0332 (13)0.0388 (15)0.0020 (10)0.0163 (12)0.0005 (11)
C110.0644 (19)0.0480 (18)0.074 (2)0.0139 (14)0.0411 (17)0.0114 (15)
C120.0567 (17)0.082 (2)0.0470 (17)0.0262 (16)0.0209 (15)0.0101 (16)
C130.0325 (13)0.0380 (14)0.0350 (13)0.0021 (11)0.0156 (11)0.0009 (11)
C140.0404 (14)0.0449 (15)0.0397 (15)0.0046 (12)0.0209 (13)0.0035 (12)
C150.0606 (18)0.0521 (17)0.073 (2)0.0190 (14)0.0402 (17)0.0077 (15)
C160.072 (2)0.0524 (18)0.084 (2)0.0207 (16)0.044 (2)0.0269 (17)
C170.068 (2)0.0635 (19)0.066 (2)0.0122 (16)0.0429 (18)0.0247 (16)
C180.0506 (16)0.0500 (16)0.0509 (17)0.0079 (13)0.0316 (14)0.0094 (14)
O1W0.171 (4)0.064 (2)0.0425 (19)0.0000.041 (2)0.000
Geometric parameters (Å, º) top
O1—C21.357 (3)C7—H7B0.9700
O1—C101.391 (2)C8—C121.526 (3)
O2—C61.215 (3)C8—C91.532 (3)
O3—C141.372 (3)C8—C111.534 (4)
O3—C11.426 (3)C9—C101.479 (3)
O4—N21.262 (2)C9—H9A0.9700
O5—N21.248 (2)C9—H9B0.9700
N1—C21.309 (3)C11—H11A0.9600
N1—H1A0.8600C11—H11B0.9600
N1—H1B0.8600C11—H11C0.9600
N2—C31.379 (3)C12—H12A0.9600
C1—H1C0.9600C12—H12B0.9600
C1—H1D0.9600C12—H12C0.9600
C1—H1E0.9600C13—C181.374 (3)
C2—C31.386 (3)C13—C141.395 (3)
C3—C41.497 (3)C14—C151.385 (3)
C4—C51.507 (3)C15—C161.385 (4)
C4—C131.527 (3)C15—H150.9300
C4—H40.9800C16—C171.365 (4)
C5—C101.330 (3)C16—H160.9300
C5—C61.468 (3)C17—C181.377 (4)
C6—C71.507 (3)C17—H170.9300
C7—C81.538 (3)C18—H180.9300
C7—H7A0.9700O1W—H1W0.99 (4)
C2—O1—C10119.85 (17)C9—C8—C7106.7 (2)
C14—O3—C1118.2 (2)C11—C8—C7110.1 (2)
C2—N1—H1A120.0C10—C9—C8112.10 (19)
C2—N1—H1B120.0C10—C9—H9A109.2
H1A—N1—H1B120.0C8—C9—H9A109.2
O5—N2—O4120.3 (2)C10—C9—H9B109.2
O5—N2—C3118.7 (2)C8—C9—H9B109.2
O4—N2—C3121.1 (2)H9A—C9—H9B107.9
O3—C1—H1C109.5C5—C10—O1122.3 (2)
O3—C1—H1D109.5C5—C10—C9126.7 (2)
H1C—C1—H1D109.5O1—C10—C9111.05 (19)
O3—C1—H1E109.5C8—C11—H11A109.5
H1C—C1—H1E109.5C8—C11—H11B109.5
H1D—C1—H1E109.5H11A—C11—H11B109.5
N1—C2—O1111.4 (2)C8—C11—H11C109.5
N1—C2—C3128.6 (2)H11A—C11—H11C109.5
O1—C2—C3120.0 (2)H11B—C11—H11C109.5
N2—C3—C2119.6 (2)C8—C12—H12A109.5
N2—C3—C4117.4 (2)C8—C12—H12B109.5
C2—C3—C4123.0 (2)H12A—C12—H12B109.5
C3—C4—C5109.13 (19)C8—C12—H12C109.5
C3—C4—C13113.87 (18)H12A—C12—H12C109.5
C5—C4—C13111.94 (18)H12B—C12—H12C109.5
C3—C4—H4107.2C18—C13—C14118.2 (2)
C5—C4—H4107.2C18—C13—C4119.8 (2)
C13—C4—H4107.2C14—C13—C4122.1 (2)
C10—C5—C6118.4 (2)O3—C14—C15123.5 (2)
C10—C5—C4122.4 (2)O3—C14—C13116.1 (2)
C6—C5—C4119.2 (2)C15—C14—C13120.4 (2)
O2—C6—C5121.3 (2)C16—C15—C14119.5 (3)
O2—C6—C7121.6 (2)C16—C15—H15120.3
C5—C6—C7117.0 (2)C14—C15—H15120.3
C6—C7—C8114.1 (2)C17—C16—C15120.6 (3)
C6—C7—H7A108.7C17—C16—H16119.7
C8—C7—H7A108.7C15—C16—H16119.7
C6—C7—H7B108.7C16—C17—C18119.3 (3)
C8—C7—H7B108.7C16—C17—H17120.3
H7A—C7—H7B107.6C18—C17—H17120.3
C12—C8—C9109.8 (2)C13—C18—C17122.0 (2)
C12—C8—C11109.8 (2)C13—C18—H18119.0
C9—C8—C11110.26 (19)C17—C18—H18119.0
C12—C8—C7110.0 (2)
C10—O1—C2—N1168.99 (19)C11—C8—C9—C1070.9 (3)
C10—O1—C2—C310.5 (3)C7—C8—C9—C1048.7 (3)
O5—N2—C3—C2178.1 (2)C6—C5—C10—O1176.51 (19)
O4—N2—C3—C22.0 (3)C4—C5—C10—O14.8 (3)
O5—N2—C3—C43.0 (3)C6—C5—C10—C93.5 (4)
O4—N2—C3—C4176.96 (19)C4—C5—C10—C9175.3 (2)
N1—C2—C3—N22.8 (4)C2—O1—C10—C510.6 (3)
O1—C2—C3—N2176.52 (19)C2—O1—C10—C9169.43 (19)
N1—C2—C3—C4176.1 (2)C8—C9—C10—C522.0 (3)
O1—C2—C3—C44.6 (3)C8—C9—C10—O1158.00 (18)
N2—C3—C4—C5163.82 (18)C3—C4—C13—C18117.0 (2)
C2—C3—C4—C517.3 (3)C5—C4—C13—C18118.6 (2)
N2—C3—C4—C1370.3 (3)C3—C4—C13—C1463.5 (3)
C2—C3—C4—C13108.6 (2)C5—C4—C13—C1460.8 (3)
C3—C4—C5—C1017.3 (3)C1—O3—C14—C155.9 (4)
C13—C4—C5—C10109.7 (2)C1—O3—C14—C13174.6 (2)
C3—C4—C5—C6163.98 (19)C18—C13—C14—O3178.5 (2)
C13—C4—C5—C669.0 (3)C4—C13—C14—O32.1 (3)
C10—C5—C6—O2179.8 (2)C18—C13—C14—C152.0 (4)
C4—C5—C6—O21.5 (3)C4—C13—C14—C15177.5 (2)
C10—C5—C6—C72.1 (3)O3—C14—C15—C16178.8 (3)
C4—C5—C6—C7179.1 (2)C13—C14—C15—C161.7 (4)
O2—C6—C7—C8149.1 (2)C14—C15—C16—C170.1 (5)
C5—C6—C7—C833.3 (3)C15—C16—C17—C181.6 (5)
C6—C7—C8—C12174.7 (2)C14—C13—C18—C170.4 (4)
C6—C7—C8—C955.6 (3)C4—C13—C18—C17179.0 (2)
C6—C7—C8—C1164.1 (3)C16—C17—C18—C131.4 (4)
C12—C8—C9—C10168.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O40.862.012.602 (3)125
N1—H1B···O4i0.862.283.052 (3)150
N1—H1A···O1Wi0.862.503.115 (3)129
O1W—H1W···O50.99 (4)1.99 (4)2.980 (3)179 (5)
O1W—H1W···O40.99 (4)2.55 (4)3.216 (3)125 (5)
Symmetry code: (i) x, y+2, z.

Experimental details

(II)(III)
Crystal data
Chemical formulaC19H20N2O3C18H20N2O5·0.5H2O
Mr324.37353.37
Crystal system, space groupMonoclinic, P21/nMonoclinic, C2/c
Temperature (K)153298
a, b, c (Å)8.7941 (18), 17.450 (4), 11.007 (2)28.461 (5), 9.456 (2), 15.860 (3)
α, β, γ (°)90, 98.174 (16), 9090, 122.819 (11), 90
V3)1671.9 (6)3587.1 (13)
Z48
Radiation typeMo KαMo Kα
µ (mm1)0.090.10
Crystal size (mm)0.45 × 0.30 × 0.250.40 × 0.35 × 0.30
Data collection
DiffractometerSiemens P3/PC
diffractometer
Enraf-Nonius CAD4
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
3105, 2907, 2562 3162, 3097, 1749
Rint0.0270.038
(sin θ/λ)max1)0.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.094, 1.04 0.055, 0.116, 1.05
No. of reflections29073097
No. of parameters220238
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.22, 0.200.13, 0.16

Computer programs: P3/PC (Siemens, 1989), CAD-4 Software (Enraf–Nonius, 1989), P3/PC, CAD-4 Software, SHELXTL-Plus (Sheldrick, 1994), SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus, SHELXL97.

Selected geometric parameters (Å, º) for (II) top
O1—C21.3749 (15)C1—C31.4162 (18)
O1—C101.3773 (16)C2—C31.3535 (18)
O2—C61.2232 (16)C4—C131.5246 (18)
N1—C21.3317 (17)C5—C101.3299 (18)
N2—C11.1514 (17)C5—C61.4679 (18)
C2—O1—C10118.38 (10)N2—C1—C3177.83 (14)
C14—O3—C19117.19 (11)
C19—O3—C14—C1515.06 (19)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N1—H1A···N2i0.882.183.041 (2)166
N1—H1B···O2ii0.882.072.943 (2)173
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1/2, y+1/2, z+1/2.
Selected geometric parameters (Å, º) for (III) top
O1—C21.357 (3)N2—C31.379 (3)
O1—C101.391 (2)C2—C31.386 (3)
O2—C61.215 (3)C4—C131.527 (3)
O4—N21.262 (2)C5—C101.330 (3)
O5—N21.248 (2)C5—C61.468 (3)
N1—C21.309 (3)
C2—O1—C10119.85 (17)C14—O3—C1118.2 (2)
C1—O3—C14—C155.9 (4)
Hydrogen-bond geometry (Å, º) for (III) top
D—H···AD—HH···AD···AD—H···A
N1—H1B···O40.862.012.602 (3)125
N1—H1B···O4i0.862.283.052 (3)150
N1—H1A···O1Wi0.862.503.115 (3)129
O1W—H1W···O50.99 (4)1.99 (4)2.980 (3)179 (5)
O1W—H1W···O40.99 (4)2.55 (4)3.216 (3)125 (5)
Symmetry code: (i) x, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds