Supporting information
Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109005836/fg3076sup1.cif | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005836/fg3076Isup2.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005836/fg3076IIsup3.hkl | |
Structure factor file (CIF format) https://doi.org/10.1107/S0108270109005836/fg3076IIIsup4.hkl |
CCDC references: 730085; 730086; 730087
Diimizazole (1 mmol) and malonic, succinic or iminodiacetic acid (1 mmol) were dissolved in 10 ml of water by adding 0.7–0.9 ml of 2M HCl while stirring. The solutions were left standing at room temperature, and several days later, colorless crystals (I), (II) and (III) were obtained.
For compound (III), the systematic absences permitted P21 or P21/m as possible space groups; P21/m was selected, and confirmed by the structure analysis. H atoms attached to C atoms of (I), (II), and (III) were placed in geometrically idealized positions and refined with Uiso(H) values of 1.2Ueq(C). H atoms attached to N and O atoms were located from difference Fourier maps and refined using a riding model, with Uiso(H) values of 1.2Ueq(N) or 1.5Ueq(O) of their parent atoms.
For all compounds, data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL/PC (Version 6.10; Sheldrick, 2008); software used to prepare material for publication: SHELXTL/PC (Version 6.10; Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).
C6H8N42+·C3H2O42− | F(000) = 496 |
Mr = 238.21 | Dx = 1.518 Mg m−3 |
Monoclinic, P2/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yc | Cell parameters from 2156 reflections |
a = 15.663 (5) Å | θ = 2.6–26.6° |
b = 4.4319 (14) Å | µ = 0.12 mm−1 |
c = 18.221 (4) Å | T = 298 K |
β = 124.517 (18)° | Block, colorless |
V = 1042.2 (5) Å3 | 0.40 × 0.40 × 0.40 mm |
Z = 4 |
SMART 1K CCD area detector diffractometer | 1841 independent reflections |
Radiation source: fine-focus sealed tube | 1519 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.014 |
ω scans | θmax = 25.0°, θmin = 1.6° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −18→17 |
Tmin = 0.845, Tmax = 0.953 | k = −4→5 |
4027 measured reflections | l = −13→21 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.041 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.07 | w = 1/[σ2(Fo2) + (0.0737P)2 + 0.1574P] where P = (Fo2 + 2Fc2)/3 |
1841 reflections | (Δ/σ)max < 0.001 |
155 parameters | Δρmax = 0.28 e Å−3 |
0 restraints | Δρmin = −0.23 e Å−3 |
C6H8N42+·C3H2O42− | V = 1042.2 (5) Å3 |
Mr = 238.21 | Z = 4 |
Monoclinic, P2/c | Mo Kα radiation |
a = 15.663 (5) Å | µ = 0.12 mm−1 |
b = 4.4319 (14) Å | T = 298 K |
c = 18.221 (4) Å | 0.40 × 0.40 × 0.40 mm |
β = 124.517 (18)° |
SMART 1K CCD area detector diffractometer | 1841 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1519 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.953 | Rint = 0.014 |
4027 measured reflections |
R[F2 > 2σ(F2)] = 0.041 | 0 restraints |
wR(F2) = 0.122 | H-atom parameters constrained |
S = 1.07 | Δρmax = 0.28 e Å−3 |
1841 reflections | Δρmin = −0.23 e Å−3 |
155 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | Occ. (<1) | |
N1 | 0.38756 (10) | −0.0994 (3) | 0.50257 (10) | 0.0448 (4) | |
H1 | 0.4077 | −0.2324 | 0.5436 | 0.054* | |
N2 | 0.38848 (10) | 0.2261 (3) | 0.41376 (9) | 0.0447 (4) | |
H2A | 0.4095 | 0.3369 | 0.3882 | 0.054* | |
C1 | 0.44579 (11) | 0.0313 (4) | 0.47993 (10) | 0.0376 (4) | |
C2 | 0.29033 (12) | 0.0153 (5) | 0.44903 (12) | 0.0526 (5) | |
H2 | 0.2336 | −0.0370 | 0.4502 | 0.063* | |
C3 | 0.29036 (13) | 0.2176 (4) | 0.39402 (13) | 0.0524 (5) | |
H3 | 0.2340 | 0.3308 | 0.3506 | 0.063* | |
N3 | 0.11051 (10) | −0.0743 (3) | 0.61516 (10) | 0.0477 (4) | |
H3A | 0.0908 | −0.2065 | 0.6372 | 0.057* | |
N4 | 0.10929 (10) | 0.2374 (3) | 0.52270 (10) | 0.0467 (4) | |
H4 | 0.0886 | 0.3394 | 0.4753 | 0.056* | |
C4 | 0.05320 (11) | 0.0398 (4) | 0.53333 (11) | 0.0403 (4) | |
C5 | 0.20623 (13) | 0.0560 (5) | 0.65788 (13) | 0.0557 (5) | |
H5 | 0.2619 | 0.0181 | 0.7161 | 0.067* | |
C6 | 0.20550 (13) | 0.2493 (4) | 0.60057 (13) | 0.0547 (5) | |
H6 | 0.2605 | 0.3691 | 0.6119 | 0.066* | |
O1 | −0.07742 (9) | 0.4454 (3) | 0.29230 (8) | 0.0592 (4) | |
O2 | 0.08014 (10) | 0.6000 (4) | 0.39643 (9) | 0.0658 (4) | |
C7 | 0.00159 (12) | 0.5995 (4) | 0.31838 (11) | 0.0408 (4) | |
C8 | 0.0000 | 0.7940 (5) | 0.2500 | 0.0447 (6) | |
H8A | 0.0609 | 0.9224 | 0.2789 | 0.054* | 0.50 |
H8B | −0.0609 | 0.9224 | 0.2211 | 0.054* | 0.50 |
O3 | 0.58047 (9) | 0.4586 (3) | 0.37051 (9) | 0.0566 (4) | |
O4 | 0.42010 (10) | 0.5977 (4) | 0.31770 (10) | 0.0686 (5) | |
C9 | 0.49928 (12) | 0.6059 (4) | 0.31758 (11) | 0.0407 (4) | |
C10 | 0.5000 | 0.8000 (5) | 0.2500 | 0.0434 (6) | |
H10A | 0.5608 | 0.9285 | 0.2800 | 0.052* | 0.50 |
H10B | 0.4392 | 0.9285 | 0.2200 | 0.052* | 0.50 |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0378 (7) | 0.0500 (8) | 0.0458 (8) | −0.0010 (6) | 0.0232 (7) | 0.0005 (7) |
N2 | 0.0378 (7) | 0.0511 (8) | 0.0404 (8) | 0.0052 (6) | 0.0194 (6) | 0.0035 (6) |
C1 | 0.0323 (8) | 0.0425 (9) | 0.0350 (8) | −0.0004 (6) | 0.0172 (7) | −0.0048 (6) |
C2 | 0.0336 (9) | 0.0674 (12) | 0.0551 (11) | −0.0027 (8) | 0.0241 (8) | −0.0051 (9) |
C3 | 0.0334 (8) | 0.0626 (11) | 0.0480 (10) | 0.0092 (8) | 0.0151 (8) | 0.0009 (9) |
N3 | 0.0406 (8) | 0.0572 (9) | 0.0433 (8) | −0.0044 (6) | 0.0226 (7) | −0.0001 (7) |
N4 | 0.0391 (7) | 0.0549 (9) | 0.0469 (8) | −0.0069 (6) | 0.0249 (7) | −0.0025 (7) |
C4 | 0.0351 (8) | 0.0472 (9) | 0.0411 (9) | −0.0023 (7) | 0.0231 (8) | −0.0062 (7) |
C5 | 0.0365 (9) | 0.0726 (13) | 0.0455 (10) | −0.0029 (8) | 0.0157 (8) | −0.0012 (9) |
C6 | 0.0373 (9) | 0.0652 (12) | 0.0571 (12) | −0.0119 (8) | 0.0240 (9) | −0.0062 (9) |
O1 | 0.0486 (7) | 0.0735 (9) | 0.0468 (8) | −0.0200 (6) | 0.0218 (6) | −0.0017 (6) |
O2 | 0.0457 (7) | 0.0886 (10) | 0.0462 (8) | −0.0187 (7) | 0.0160 (6) | 0.0089 (7) |
C7 | 0.0361 (8) | 0.0439 (9) | 0.0435 (10) | −0.0018 (7) | 0.0232 (8) | −0.0071 (7) |
C8 | 0.0434 (13) | 0.0409 (12) | 0.0472 (14) | 0.000 | 0.0241 (11) | 0.000 |
O3 | 0.0428 (7) | 0.0682 (8) | 0.0576 (8) | 0.0090 (6) | 0.0277 (6) | 0.0194 (7) |
O4 | 0.0509 (8) | 0.0927 (11) | 0.0728 (10) | 0.0197 (7) | 0.0414 (8) | 0.0330 (8) |
C9 | 0.0383 (8) | 0.0430 (9) | 0.0381 (9) | −0.0016 (7) | 0.0200 (7) | −0.0069 (7) |
C10 | 0.0429 (12) | 0.0403 (12) | 0.0457 (14) | 0.000 | 0.0243 (11) | 0.000 |
N1—C1 | 1.328 (2) | C4—C4ii | 1.443 (3) |
N1—C2 | 1.359 (2) | C5—C6 | 1.346 (3) |
N1—H1 | 0.8600 | C5—H5 | 0.9300 |
N2—C1 | 1.333 (2) | C6—H6 | 0.9300 |
N2—C3 | 1.366 (2) | O1—C7 | 1.248 (2) |
N2—H2A | 0.8600 | O2—C7 | 1.246 (2) |
C1—C1i | 1.445 (3) | C7—C8 | 1.504 (2) |
C2—C3 | 1.345 (3) | C8—C7iii | 1.504 (2) |
C2—H2 | 0.9300 | C8—H8A | 0.9700 |
C3—H3 | 0.9300 | C8—H8B | 0.9700 |
N3—C4 | 1.330 (2) | O3—C9 | 1.258 (2) |
N3—C5 | 1.366 (2) | O4—C9 | 1.242 (2) |
N3—H3A | 0.8600 | C9—C10 | 1.508 (2) |
N4—C4 | 1.330 (2) | C10—C9iv | 1.508 (2) |
N4—C6 | 1.365 (2) | C10—H10A | 0.9700 |
N4—H4 | 0.8600 | C10—H10B | 0.9700 |
C1—N1—C2 | 107.55 (15) | C6—C5—N3 | 107.65 (16) |
C1—N1—H1 | 126.2 | C6—C5—H5 | 126.2 |
C2—N1—H1 | 126.2 | N3—C5—H5 | 126.2 |
C1—N2—C3 | 107.50 (15) | C5—C6—N4 | 107.51 (15) |
C1—N2—H2A | 126.3 | C5—C6—H6 | 126.2 |
C3—N2—H2A | 126.3 | N4—C6—H6 | 126.2 |
N1—C1—N2 | 109.53 (14) | O2—C7—O1 | 124.07 (17) |
N1—C1—C1i | 125.16 (19) | O2—C7—C8 | 119.12 (14) |
N2—C1—C1i | 125.31 (19) | O1—C7—C8 | 116.81 (14) |
C3—C2—N1 | 108.11 (16) | C7—C8—C7iii | 110.04 (19) |
C3—C2—H2 | 125.9 | C7—C8—H8A | 109.7 |
N1—C2—H2 | 125.9 | C7iii—C8—H8A | 109.7 |
C2—C3—N2 | 107.31 (15) | C7—C8—H8B | 109.7 |
C2—C3—H3 | 126.3 | C7iii—C8—H8B | 109.7 |
N2—C3—H3 | 126.3 | H8A—C8—H8B | 108.2 |
C4—N3—C5 | 107.68 (16) | O4—C9—O3 | 124.07 (16) |
C4—N3—H3A | 126.2 | O4—C9—C10 | 119.19 (14) |
C5—N3—H3A | 126.2 | O3—C9—C10 | 116.74 (13) |
C4—N4—C6 | 107.78 (15) | C9—C10—C9iv | 110.39 (19) |
C4—N4—H4 | 126.1 | C9—C10—H10A | 109.6 |
C6—N4—H4 | 126.1 | C9iv—C10—H10A | 109.6 |
N3—C4—N4 | 109.38 (14) | C9—C10—H10B | 109.6 |
N3—C4—C4ii | 125.1 (2) | C9iv—C10—H10B | 109.6 |
N4—C4—C4ii | 125.5 (2) | H10A—C10—H10B | 108.1 |
C2—N1—C1—N2 | 0.15 (19) | C6—N4—C4—N3 | −0.1 (2) |
C2—N1—C1—C1i | −179.1 (2) | C6—N4—C4—C4ii | −180.0 (2) |
C3—N2—C1—N1 | 0.01 (19) | C4—N3—C5—C6 | −0.1 (2) |
C3—N2—C1—C1i | 179.2 (2) | N3—C5—C6—N4 | 0.0 (2) |
C1—N1—C2—C3 | −0.3 (2) | C4—N4—C6—C5 | 0.0 (2) |
N1—C2—C3—N2 | 0.3 (2) | O2—C7—C8—C7iii | 113.09 (17) |
C1—N2—C3—C2 | −0.2 (2) | O1—C7—C8—C7iii | −66.74 (13) |
C5—N3—C4—N4 | 0.1 (2) | O4—C9—C10—C9iv | −110.35 (17) |
C5—N3—C4—C4ii | 180.0 (2) | O3—C9—C10—C9iv | 69.08 (14) |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, y, −z+1/2; (iv) −x+1, y, −z+1/2. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 1.78 | 2.612 (2) | 163 |
N2—H2A···O4 | 0.86 | 1.80 | 2.646 (2) | 166 |
N3—H3A···O1ii | 0.86 | 1.77 | 2.609 (2) | 166 |
N4—H4···O2 | 0.86 | 1.79 | 2.626 (2) | 164 |
C2—H2···O2v | 0.93 | 2.58 | 3.401 (2) | 148 |
C3—H3···O1iii | 0.93 | 2.41 | 3.292 (2) | 158 |
C5—H5···O4vi | 0.93 | 2.70 | 3.317 (2) | 125 |
C6—H6···O3vii | 0.93 | 2.45 | 3.345 (2) | 162 |
C7—O1···Cg2viii | 1.25 (1) | 3.49 (1) | 3.714 (3) | 90 |
C9—O3···Cg1vii | 1.26 (1) | 3.54 (1) | 3.796 (2) | 92 |
C9—O4···Cg1ix | 1.24 (1) | 3.68 (1) | 4.538 (3) | 127 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) −x, y, −z+1/2; (v) x, y−1, z; (vi) x, −y+1, z+1/2; (vii) −x+1, −y+1, −z+1; (viii) −x, −y+1, −z+1; (ix) x, y+1, z. |
C6H6N4·C4H6O4 | F(000) = 264 |
Mr = 252.24 | Dx = 1.457 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 903 reflections |
a = 4.906 (3) Å | θ = 2.8–23.3° |
b = 13.887 (8) Å | µ = 0.12 mm−1 |
c = 8.468 (5) Å | T = 298 K |
β = 94.839 (8)° | Block, colorless |
V = 574.9 (6) Å3 | 0.30 × 0.30 × 0.27 mm |
Z = 2 |
SMART 1K CCD area detector diffractometer | 1055 independent reflections |
Radiation source: fine-focus sealed tube | 868 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.026 |
ω scans | θmax = 25.5°, θmin = 2.8° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −5→3 |
Tmin = 0.845, Tmax = 0.970 | k = −15→16 |
2390 measured reflections | l = −9→10 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.046 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.054P)2 + 0.1478P] where P = (Fo2 + 2Fc2)/3 |
1055 reflections | (Δ/σ)max < 0.001 |
82 parameters | Δρmax = 0.19 e Å−3 |
0 restraints | Δρmin = −0.15 e Å−3 |
C6H6N4·C4H6O4 | V = 574.9 (6) Å3 |
Mr = 252.24 | Z = 2 |
Monoclinic, P21/c | Mo Kα radiation |
a = 4.906 (3) Å | µ = 0.12 mm−1 |
b = 13.887 (8) Å | T = 298 K |
c = 8.468 (5) Å | 0.30 × 0.30 × 0.27 mm |
β = 94.839 (8)° |
SMART 1K CCD area detector diffractometer | 1055 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 868 reflections with I > 2σ(I) |
Tmin = 0.845, Tmax = 0.970 | Rint = 0.026 |
2390 measured reflections |
R[F2 > 2σ(F2)] = 0.046 | 0 restraints |
wR(F2) = 0.117 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.19 e Å−3 |
1055 reflections | Δρmin = −0.15 e Å−3 |
82 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.7906 (3) | 0.39353 (12) | 0.44355 (19) | 0.0466 (5) | |
N2 | 1.1535 (3) | 0.39751 (11) | 0.61309 (19) | 0.0447 (5) | |
H2B | 1.2933 | 0.4191 | 0.6704 | 0.054* | |
C1 | 0.9846 (3) | 0.44912 (13) | 0.5131 (2) | 0.0390 (5) | |
C2 | 0.8420 (4) | 0.30310 (15) | 0.5024 (3) | 0.0569 (6) | |
H2A | 0.7393 | 0.2486 | 0.4740 | 0.068* | |
C3 | 1.0633 (4) | 0.30485 (15) | 0.6073 (3) | 0.0557 (6) | |
H3 | 1.1398 | 0.2529 | 0.6646 | 0.067* | |
O1 | 0.4082 (3) | 0.54988 (10) | 0.17524 (16) | 0.0513 (4) | |
O2 | 0.3784 (3) | 0.39482 (10) | 0.23405 (17) | 0.0573 (5) | |
H2 | 0.5124 | 0.4025 | 0.3028 | 0.086* | |
C4 | 0.2966 (4) | 0.47178 (14) | 0.1573 (2) | 0.0401 (5) | |
C5 | 0.0499 (4) | 0.45539 (14) | 0.0442 (2) | 0.0425 (5) | |
H5A | −0.0967 | 0.4305 | 0.1026 | 0.051* | |
H5B | 0.0929 | 0.4067 | −0.0321 | 0.051* |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0446 (10) | 0.0426 (10) | 0.0494 (10) | −0.0011 (7) | −0.0151 (8) | 0.0019 (7) |
N2 | 0.0421 (9) | 0.0427 (10) | 0.0460 (9) | 0.0028 (7) | −0.0160 (7) | 0.0019 (7) |
C1 | 0.0364 (10) | 0.0419 (10) | 0.0371 (10) | 0.0029 (8) | −0.0068 (8) | 0.0017 (8) |
C2 | 0.0585 (13) | 0.0397 (12) | 0.0678 (14) | −0.0041 (9) | −0.0214 (11) | 0.0030 (10) |
C3 | 0.0614 (13) | 0.0385 (11) | 0.0630 (13) | 0.0026 (9) | −0.0202 (10) | 0.0072 (10) |
O1 | 0.0479 (9) | 0.0457 (9) | 0.0559 (9) | −0.0044 (6) | −0.0222 (7) | −0.0007 (7) |
O2 | 0.0549 (9) | 0.0490 (9) | 0.0620 (9) | −0.0050 (6) | −0.0301 (7) | 0.0089 (7) |
C4 | 0.0361 (10) | 0.0440 (11) | 0.0388 (10) | 0.0009 (8) | −0.0047 (8) | −0.0006 (8) |
C5 | 0.0389 (10) | 0.0453 (11) | 0.0412 (10) | −0.0030 (8) | −0.0097 (8) | 0.0009 (8) |
N1—C1 | 1.324 (2) | C3—H3 | 0.9300 |
N1—C2 | 1.366 (3) | O1—C4 | 1.219 (2) |
N2—C1 | 1.341 (2) | O2—C4 | 1.297 (2) |
N2—C3 | 1.360 (3) | O2—H2 | 0.8475 |
N2—H2B | 0.8603 | C4—C5 | 1.497 (3) |
C1—C1i | 1.440 (4) | C5—C5ii | 1.507 (4) |
C2—C3 | 1.344 (3) | C5—H5A | 0.9700 |
C2—H2A | 0.9300 | C5—H5B | 0.9700 |
C1—N1—C2 | 105.66 (15) | N2—C3—H3 | 126.8 |
C1—N2—C3 | 107.51 (16) | C4—O2—H2 | 115.5 |
C1—N2—H2B | 126.2 | O1—C4—O2 | 123.67 (17) |
C3—N2—H2B | 126.3 | O1—C4—C5 | 123.09 (17) |
N1—C1—N2 | 110.60 (17) | O2—C4—C5 | 113.24 (16) |
N1—C1—C1i | 125.76 (19) | C4—C5—C5ii | 113.81 (19) |
N2—C1—C1i | 123.6 (2) | C4—C5—H5A | 108.8 |
C3—C2—N1 | 109.78 (18) | C5ii—C5—H5A | 108.8 |
C3—C2—H2A | 125.1 | C4—C5—H5B | 108.8 |
N1—C2—H2A | 125.1 | C5ii—C5—H5B | 108.8 |
C2—C3—N2 | 106.44 (17) | H5A—C5—H5B | 107.7 |
C2—C3—H3 | 126.8 | ||
C2—N1—C1—N2 | −0.4 (2) | N1—C2—C3—N2 | −0.6 (3) |
C2—N1—C1—C1i | 179.5 (2) | C1—N2—C3—C2 | 0.4 (2) |
C3—N2—C1—N1 | 0.0 (2) | O1—C4—C5—C5ii | −0.6 (3) |
C3—N2—C1—C1i | −179.9 (2) | O2—C4—C5—C5ii | 179.2 (2) |
C1—N1—C2—C3 | 0.6 (3) |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x, −y+1, −z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.85 | 1.74 | 2.575 (2) | 169 |
N2—H2B···O1i | 0.86 | 1.93 | 2.779 (2) | 170 |
C3—H3···O2iii | 0.93 | 2.41 | 3.309 (3) | 162 |
C4—O1···Cg1iv | 1.22 (1) | 3.37 (1) | 3.720 (3) | 97 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (iii) x+1, −y+1/2, z+1/2; (iv) −x+1, −y+1, −z+1. |
C6H8N42+·C4H6NO4−·Cl− | F(000) = 316 |
Mr = 303.71 | Dx = 1.526 Mg m−3 |
Monoclinic, P21/m | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2yb | Cell parameters from 1551 reflections |
a = 5.3095 (13) Å | θ = 3.6–26.6° |
b = 22.941 (6) Å | µ = 0.31 mm−1 |
c = 5.7023 (14) Å | T = 298 K |
β = 107.930 (3)° | Block, yellow |
V = 660.8 (3) Å3 | 0.40 × 0.40 × 0.40 mm |
Z = 2 |
SMART 1K CCD area detector diffractometer | 1158 independent reflections |
Radiation source: fine-focus sealed tube | 1027 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.017 |
ω scans | θmax = 25.0°, θmin = 3.9° |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | h = −6→5 |
Tmin = 0.747, Tmax = 0.886 | k = −20→26 |
3079 measured reflections | l = −6→6 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.064 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.05 | w = 1/[σ2(Fo2) + (0.0925P)2 + 0.8396P] where P = (Fo2 + 2Fc2)/3 |
1158 reflections | (Δ/σ)max < 0.001 |
94 parameters | Δρmax = 0.69 e Å−3 |
0 restraints | Δρmin = −0.32 e Å−3 |
C6H8N42+·C4H6NO4−·Cl− | V = 660.8 (3) Å3 |
Mr = 303.71 | Z = 2 |
Monoclinic, P21/m | Mo Kα radiation |
a = 5.3095 (13) Å | µ = 0.31 mm−1 |
b = 22.941 (6) Å | T = 298 K |
c = 5.7023 (14) Å | 0.40 × 0.40 × 0.40 mm |
β = 107.930 (3)° |
SMART 1K CCD area detector diffractometer | 1158 independent reflections |
Absorption correction: multi-scan (SADABS; Sheldrick, 2000) | 1027 reflections with I > 2σ(I) |
Tmin = 0.747, Tmax = 0.886 | Rint = 0.017 |
3079 measured reflections |
R[F2 > 2σ(F2)] = 0.064 | 0 restraints |
wR(F2) = 0.180 | H-atom parameters constrained |
S = 1.05 | Δρmax = 0.69 e Å−3 |
1158 reflections | Δρmin = −0.32 e Å−3 |
94 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
N1 | 0.2023 (5) | 0.49819 (11) | 0.2887 (5) | 0.0385 (7) | |
H1 | 0.2387 | 0.5310 | 0.2527 | 0.046* | |
N2 | 0.0893 (5) | 0.42347 (11) | 0.4647 (5) | 0.0416 (7) | |
H2A | 0.0247 | 0.4029 | 0.5492 | 0.050* | |
C1 | 0.0703 (5) | 0.48133 (12) | 0.4398 (5) | 0.0346 (7) | |
C2 | 0.2378 (7) | 0.40320 (14) | 0.3255 (6) | 0.0469 (8) | |
H2 | 0.2823 | 0.3645 | 0.3091 | 0.056* | |
C3 | 0.3078 (6) | 0.44979 (14) | 0.2159 (6) | 0.0445 (8) | |
H3 | 0.4100 | 0.4491 | 0.1096 | 0.053* | |
O1 | 0.3315 (5) | 0.59463 (9) | 0.1183 (5) | 0.0482 (7) | |
O2 | 0.1026 (6) | 0.65277 (10) | 0.2873 (6) | 0.0662 (9) | |
N3 | 0.2625 (12) | 0.7500 | 0.1448 (11) | 0.0686 (15) | |
H3A | 0.3034 | 0.7500 | 0.3101 | 0.082* | |
H3B | 0.0848 | 0.7500 | 0.0820 | 0.082* | |
C4 | 0.3658 (8) | 0.69548 (13) | 0.0673 (8) | 0.0532 (10) | |
H4A | 0.5576 | 0.6952 | 0.1294 | 0.064* | |
H4B | 0.3131 | 0.6934 | −0.1111 | 0.064* | |
C5 | 0.2559 (7) | 0.64376 (13) | 0.1683 (6) | 0.0442 (8) | |
Cl1 | 0.7269 (4) | 0.7500 | 0.6775 (3) | 0.0716 (6) |
U11 | U22 | U33 | U12 | U13 | U23 | |
N1 | 0.0461 (14) | 0.0283 (13) | 0.0448 (14) | −0.0015 (10) | 0.0197 (11) | −0.0002 (10) |
N2 | 0.0540 (16) | 0.0257 (13) | 0.0506 (15) | 0.0004 (11) | 0.0241 (12) | 0.0024 (11) |
C1 | 0.0385 (15) | 0.0265 (14) | 0.0396 (15) | −0.0005 (11) | 0.0132 (12) | −0.0016 (11) |
C2 | 0.0575 (19) | 0.0282 (16) | 0.059 (2) | 0.0077 (14) | 0.0236 (16) | −0.0040 (14) |
C3 | 0.0507 (18) | 0.0394 (18) | 0.0483 (18) | 0.0012 (14) | 0.0226 (15) | −0.0063 (14) |
O1 | 0.0655 (15) | 0.0243 (11) | 0.0662 (15) | 0.0022 (10) | 0.0370 (12) | 0.0005 (9) |
O2 | 0.097 (2) | 0.0305 (12) | 0.101 (2) | 0.0020 (12) | 0.0743 (18) | 0.0044 (12) |
N3 | 0.108 (4) | 0.0205 (19) | 0.115 (4) | 0.000 | 0.088 (3) | 0.000 |
C4 | 0.077 (2) | 0.0213 (17) | 0.081 (2) | 0.0016 (14) | 0.053 (2) | −0.0007 (14) |
C5 | 0.0587 (19) | 0.0276 (16) | 0.0560 (19) | −0.0009 (14) | 0.0318 (16) | 0.0001 (13) |
Cl1 | 0.1025 (12) | 0.0356 (7) | 0.0912 (11) | 0.000 | 0.0512 (9) | 0.000 |
N1—C1 | 1.324 (4) | O1—C5 | 1.258 (4) |
N1—C3 | 1.365 (4) | O2—C5 | 1.227 (4) |
N1—H1 | 0.8192 | N3—C4 | 1.486 (4) |
N2—C1 | 1.335 (4) | N3—C4ii | 1.486 (4) |
N2—C2 | 1.361 (4) | N3—H3A | 0.9000 |
N2—H2A | 0.8209 | N3—H3B | 0.9000 |
C1—C1i | 1.442 (6) | C4—C5 | 1.512 (4) |
C2—C3 | 1.347 (5) | C4—H4A | 0.9700 |
C2—H2 | 0.9300 | C4—H4B | 0.9700 |
C3—H3 | 0.9300 | ||
C1—N1—C3 | 108.0 (2) | C4—N3—C4ii | 114.6 (4) |
C1—N1—H1 | 130.1 | C4—N3—H3A | 108.6 |
C3—N1—H1 | 121.4 | C4ii—N3—H3A | 108.6 |
C1—N2—C2 | 108.4 (3) | C4—N3—H3B | 108.6 |
C1—N2—H2A | 127.0 | C4ii—N3—H3B | 108.6 |
C2—N2—H2A | 124.6 | H3A—N3—H3B | 107.6 |
N1—C1—N2 | 108.8 (3) | N3—C4—C5 | 109.0 (3) |
N1—C1—C1i | 126.3 (3) | N3—C4—H4A | 109.9 |
N2—C1—C1i | 124.9 (3) | C5—C4—H4A | 109.9 |
C3—C2—N2 | 106.9 (3) | N3—C4—H4B | 109.9 |
C3—C2—H2 | 126.5 | C5—C4—H4B | 109.9 |
N2—C2—H2 | 126.5 | H4A—C4—H4B | 108.3 |
C2—C3—N1 | 107.9 (3) | O2—C5—O1 | 126.1 (3) |
C2—C3—H3 | 126.1 | O2—C5—C4 | 118.5 (3) |
N1—C3—H3 | 126.1 | O1—C5—C4 | 115.4 (3) |
C3—N1—C1—N2 | 0.0 (3) | N2—C2—C3—N1 | 0.0 (4) |
C3—N1—C1—C1i | 179.6 (4) | C1—N1—C3—C2 | 0.0 (3) |
C2—N2—C1—N1 | 0.0 (4) | C4ii—N3—C4—C5 | 177.2 (3) |
C2—N2—C1—C1i | −179.6 (4) | N3—C4—C5—O2 | 1.5 (5) |
C1—N2—C2—C3 | 0.0 (4) | N3—C4—C5—O1 | −179.1 (4) |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x, −y+3/2, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.82 | 1.79 | 2.592 (3) | 167 |
N2—H2A···O2i | 0.82 | 1.83 | 2.643 (3) | 171 |
N3—H3A···Cl1 | 0.90 | 2.56 | 3.271 (7) | 137 |
N3—H3B···Cl1iii | 0.90 | 2.50 | 3.244 (7) | 141 |
C2—H2···Cl1iv | 0.93 | 2.63 | 3.520 (3) | 161 |
C3—H3···O1v | 0.93 | 2.38 | 3.253 (4) | 156 |
C5—O1···Cg1vi | 1.26 (1) | 3.33 (1) | 3.816 (4) | 103 |
C5—O1···Cg1vii | 1.26 (1) | 3.50 (1) | 4.029 (4) | 106 |
Symmetry codes: (i) −x, −y+1, −z+1; (iii) x−1, y, z−1; (iv) −x+1, y−1/2, −z+1; (v) −x+1, −y+1, −z; (vi) −x, −y+1, −z; (vii) −x+1, −y+1, −z+1. |
Experimental details
(I) | (II) | (III) | |
Crystal data | |||
Chemical formula | C6H8N42+·C3H2O42− | C6H6N4·C4H6O4 | C6H8N42+·C4H6NO4−·Cl− |
Mr | 238.21 | 252.24 | 303.71 |
Crystal system, space group | Monoclinic, P2/c | Monoclinic, P21/c | Monoclinic, P21/m |
Temperature (K) | 298 | 298 | 298 |
a, b, c (Å) | 15.663 (5), 4.4319 (14), 18.221 (4) | 4.906 (3), 13.887 (8), 8.468 (5) | 5.3095 (13), 22.941 (6), 5.7023 (14) |
β (°) | 124.517 (18) | 94.839 (8) | 107.930 (3) |
V (Å3) | 1042.2 (5) | 574.9 (6) | 660.8 (3) |
Z | 4 | 2 | 2 |
Radiation type | Mo Kα | Mo Kα | Mo Kα |
µ (mm−1) | 0.12 | 0.12 | 0.31 |
Crystal size (mm) | 0.40 × 0.40 × 0.40 | 0.30 × 0.30 × 0.27 | 0.40 × 0.40 × 0.40 |
Data collection | |||
Diffractometer | SMART 1K CCD area detector diffractometer | SMART 1K CCD area detector diffractometer | SMART 1K CCD area detector diffractometer |
Absorption correction | Multi-scan (SADABS; Sheldrick, 2000) | Multi-scan (SADABS; Sheldrick, 2000) | Multi-scan (SADABS; Sheldrick, 2000) |
Tmin, Tmax | 0.845, 0.953 | 0.845, 0.970 | 0.747, 0.886 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 4027, 1841, 1519 | 2390, 1055, 868 | 3079, 1158, 1027 |
Rint | 0.014 | 0.026 | 0.017 |
(sin θ/λ)max (Å−1) | 0.595 | 0.606 | 0.595 |
Refinement | |||
R[F2 > 2σ(F2)], wR(F2), S | 0.041, 0.122, 1.07 | 0.046, 0.117, 1.05 | 0.064, 0.180, 1.05 |
No. of reflections | 1841 | 1055 | 1158 |
No. of parameters | 155 | 82 | 94 |
H-atom treatment | H-atom parameters constrained | H-atom parameters constrained | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.28, −0.23 | 0.19, −0.15 | 0.69, −0.32 |
Computer programs: SMART (Bruker, 2000), SAINT (Bruker, 2000), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL/PC (Version 6.10; Sheldrick, 2008) and ORTEP-3 (Farrugia, 1997).
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O3i | 0.86 | 1.78 | 2.612 (2) | 163.0 |
N2—H2A···O4 | 0.86 | 1.80 | 2.646 (2) | 165.7 |
N3—H3A···O1ii | 0.86 | 1.77 | 2.609 (2) | 165.8 |
N4—H4···O2 | 0.86 | 1.79 | 2.626 (2) | 164.0 |
C2—H2···O2iii | 0.93 | 2.58 | 3.401 (2) | 148 |
C3—H3···O1iv | 0.93 | 2.41 | 3.292 (2) | 158 |
C5—H5···O4v | 0.93 | 2.70 | 3.317 (2) | 125 |
C6—H6···O3vi | 0.93 | 2.45 | 3.345 (2) | 162 |
C7—O1···Cg2vii | 1.248 (2) | 3.488 (2) | 3.714 (3) | 90 |
C9—O3···Cg1vi | 1.258 (2) | 3.543 (2) | 3.796 (2) | 92 |
C9—O4···Cg1viii | 1.242 (2) | 3.680 (2) | 4.538 (3) | 127 |
Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x, −y, −z+1; (iii) x, y−1, z; (iv) −x, y, −z+1/2; (v) x, −y+1, z+1/2; (vi) −x+1, −y+1, −z+1; (vii) −x, −y+1, −z+1; (viii) x, y+1, z. |
D—H···A | D—H | H···A | D···A | D—H···A |
O2—H2···N1 | 0.85 | 1.74 | 2.575 (2) | 169 |
N2—H2B···O1i | 0.86 | 1.93 | 2.779 (2) | 170 |
C3—H3···O2ii | 0.93 | 2.41 | 3.309 (3) | 162 |
C4—O1···Cg1iii | 1.219 (2) | 3.373 (3) | 3.720 (3) | 97 |
Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) x+1, −y+1/2, z+1/2; (iii) −x+1, −y+1, −z+1. |
D—H···A | D—H | H···A | D···A | D—H···A |
N1—H1···O1 | 0.82 | 1.79 | 2.592 (3) | 167 |
N2—H2A···O2i | 0.82 | 1.83 | 2.643 (3) | 171 |
N3—H3A···Cl1 | 0.90 | 2.56 | 3.271 (7) | 137 |
N3—H3B···Cl1ii | 0.90 | 2.50 | 3.244 (7) | 141 |
C2—H2···Cl1iii | 0.93 | 2.63 | 3.520 (3) | 161 |
C3—H3···O1iv | 0.93 | 2.38 | 3.253 (4) | 156 |
C5—O1···Cg1v | 1.258 (4) | 3.334 (3) | 3.816 (4) | 103 |
C5—O1···Cg1vi | 1.258 (4) | 3.498 (3) | 4.029 (4) | 106 |
Symmetry codes: (i) −x, −y+1, −z+1; (ii) x−1, y, z−1; (iii) −x+1, y−1/2, −z+1; (iv) −x+1, −y+1, −z; (v) −x, −y+1, −z; (vi) −x+1, −y+1, −z+1. |
Noncovalent weak interactions, such as C—H···O and C═O···π, have attracted much interest. These weak interactions have been widely discussed in realtion to the crystal packing of organic molecules and the determination of the folded structures of biological molecules (Derewenda et al., 1995; Desiraju, 1996; 2005; Khurram et al., 2006; Jain et al., 2007; Lu et al., 2007; Wan et al., 2008). However, self-assembled supramolecular architectures are often stabilized as a result of the synergy of a variety of weak interactions (Khurram et al., 2006; Shukla et al., 2007; Wan et al., 2008). It is difficult to distinguish the effect of an individual weak interaction. Desiraju (2005) suggested that weak interactions can be classified as innocuous, supportive or intrusive. We describe here the decisive role of carbonyl–π and C—H···O interactions in the assembly of the supramolecular architectures of three dicarboxylic acid–biimidazole compounds.
The asymmetric unit of (I) contains two independent malonate anions with their central C atoms on twofold axes and two biimidazolium cations each lying about independent inversion centres (Fig. 1). Strong N—H···O and hydrogen bonds (Fig. 1 and Table 1) link the malonate and biimidazolium moieties to form two distinct units, which further assemble into two different zigzag tapes designated as A and B respectively, as shown as Fig. 2. Four C—H···O interactions (Fig. 2 and Table 1) link two tapes into a three-dimensional network, and concomitantly there are three possible C═ O···π(imidazole ring) interactions, one of which takes part in the stacking of tapes A while the the other two link tapes B, as described in Table 1 (Cg1 and Cg2 are the centroids of the N1/C1/N2/C3/C2 and N3/C4/N4/C6/C5 rings, respectively) and shown as Fig. 3.
In (II), there is crystallographically imposed inversion symmetry with the succinic acid and biimidazole neutral molecules lying about inversion centres. The succinic acid and biimidazole molecules are linked by pairs of O—H···N and N—H···O hydrogen bonds (Fig. 4 and Table 2), leading to linear tapes which are further linked to form sheets in the (102) plane by a C3—H3···O2(x + 1, -y + 1/2, z + 1/2) interaction (Fig. 5 and Table 2). The sheets assemble into a three-dimensional structure by a C4═O1···π(imidazole ring)(-x + 1, -y + 1, -z + 1) interaction (Fig.6 and Table 2, where Cg3 is the centroid of the N1/C1/N2/C3/C2 ring).
In (III) (Fig. 7), the biimidazolium cation lies about an inversion centre, the iminodiacetate ion lies across a mirror plane and the chloride ion lies on a mirror plane. Iminodiacetate anions and biimidazolium cations are linked to form wave-like tapes by pairs of N—H···O hydrogen bonds (Fig. 8 and Table 3). These tapes are linked to form sheets by C3—H3···O1(1 - x,1 - y,-z) weak interactions (Fig. 8 and Table 3). The sheets are packed to form a three-dimensional network via two N—H···Cl hydrogen bonds and two C5═O1···π interactions to imidazole rings at (-x, -y + 1, -z) and (-x + 1, -y + 1, -z +1) (Fig. 9 and Table 3, where Cg4 is the centroid of the N1/C1/N2/C2/C3 ring).
The supramolecular structures of (I), (II) and (III) reveal that they are assembled by same process, namely that pairs of N—H···O or O—H···N hydrogen bonds link the dicarboxylates and biimidazoles to form tapes, which are stacked in parallel through lone-pair–aromatic interactions between carbonyl O atoms and biimidazole groups and are further linked via weak C—H···O interaction.