Download citation
Download citation
link to html
The reaction of 0.67 molar equivalents of the O,N,O′-tri­dentate zwitterionic Schiff base (2Z,4E)-4-[(2-hydroxy­phenyl)iminio]pent-2-en-2-olate (H2L) with one equivalent of zinc(II) acetate in methanol affords a novel trinuclear ZnII cluster, di-μ-acetato-1:2κ2O:O′;2:3κ2O:O′-dimethanol-1κO,3κO-bis­{μ-2-[(2E,3Z)-4-oxidopent-3-en-2-yl­ideneamino]phenol­ato}-1:2κ4O2,N,O4:O4;2:3κ4O4:O2,N,O4-trizinc(II), [Zn3(C11H11NO2)2(C2H3O2)2(CH4O)2], (I), in which two bridging acetate ligands link the terminal square-based pyramidal ZnII ions to the approximately tetra­hedral ZnII ion at the core of the cluster. The ZnO4 coordination group of the central ZnII ion is established by two bridging phenolate and two bridging acetate O atoms. The remaining four coordination sites of each terminal ZnII ion are occupied by methanol and deprotonated H2L. Furthermore, the Zn-bound methanol hydroxyl groups are involved in complementary hydrogen bonding with the Zn-bound enolate O atom of a neighbouring mol­ecule, about an inversion centre in each case. The structure of (I) is therefore best described as an extended one-dimensional hydrogen-bonded chain of trinuclear ZnII clusters.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109027735/fn3029sup1.cif
Contains datablocks II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109027735/fn3029IIsup2.hkl
Contains datablock II

CCDC reference: 746049

Comment top

Schiff base ligands with O,N,O donor-atom sets may be prepared from several synthons depending on what structural, electronic or steric properties are required. One straightforward strategy for preparing resonance-stabilized nonplanar tridentate O,N,O Schiff base ligands based on the structure of (I) involves the condensation of pentane-2,4-dione and 2-aminophenol. In this ligand, nonbonded interactions between the aryl ring and closest methyl group distort the system from planarity (Kabak et al., 1998), a potentially useful tool for modulating the electronic properties of coordination compounds. There are three reported X-ray structures of the parent ligand system based on 2-aminophenol (Kabak et al., 1998; Chen et al., 1999; Rajnikant et al., 2006). Although there is some debate about the exact structure or resonance form of the ligand, it is best understood as a resonance hybrid with significant zwitterion character, as depicted in the scheme.

Coordination of (I), H2L, to a metal ion requires the loss of two H atoms to form the tridentate dianion 2-[(2E,3Z)-4-oxidopent-3-en-2-ylideneamino]phenolate, L. Examples of structurally characterized complexes of L include the centrosymmetric tetranuclear CuII cluster Cu4L4 (Barclay & Hoskins, 1965), the dinuclear organometallic complex Ga2(Me)2L2 (Shen et al., 2004), the unusual square-pyramidal SiIV complexes Si(NCO)2L2 and Si(NCS)2L2 (Seiler et al., 2005), a six-coordinate SiIV complex, SiL2 (Seiler et al., 2005), a centrosymmetric dinuclear CuII cluster, Cu2L2 (utilizing the p-chloro analogue of L; Tahir et al., 1996), and the mixed-ligand complexes SiLX, where X is the dianion of 2-hydroxybenzoic acid, (S)-lactic acid, or 2-hydroxyethanoic acid (Seiler et al., 2007). While these examples illustrate some of the coordination chemistry possible with (I), further development and application of this type of ligand in both coordination and supramolecular chemistry are warranted.

Reaction of (I) with ZnII in a 1:1 ratio in methanol should, in principle, generate the mononuclear ZnII complexes ZnL(OHCH3) or ZnL(OHCH3)2, due to the preference of ZnII for a four- or five-coordinate geometry, respectively. In this paper we describe the isolation and structure elucidation of the title novel trinuclear ZnII cluster, (II), generated from this reaction system when ZnII acetate is used for metallation. Since only a few colourless crystals of (II) were located in the bulk pale-yellow polycrystalline product, we surmise that (II) is a stable yet minor component of the product mixture resulting from a 2:3 ligand–metal reaction stoichiometry.

The structure of (II) has a central ZnO4 group with approximate tetrahedral (td) geometry forming the core of a trinuclear ZnII cluster (Fig. 1). The central ZnII ion is linked via bridging ligands (two acetate ions and two phenoxide O atoms) to two terminal ZnII ions with square-pyramidal (spy) coordination. The five-coordinate geometry of each terminal ZnII ion is brought about by ligation of the metal by a solvent-derived methanol molecule as the fifth ligand. The trinuclear cluster has approximate C2 symmetry by virtue of a pseudo-twofold rotation axis passing through the central ZnO4 core. The Zn(spy)—N and Zn(spy)—O(enolate) bonds average 2.054 (1) and 1.982 (14) Å, respectively. The Zn—O bonds involving the bridging phenoxide and acetate O atoms are short to the central ZnII ion and longer to the terminal ZnII ions, consistent with the geometrical constraints imposed by each tridentate Schiff base chelate in (II). More specifically, the Zn(spy)—O(phenoxide) bonds average 2.050 (5) Å within the five-membered chelate ring and 1.947 (6) Å outside the chelate ring to the central ZnII ion. The Zn(spy)—O(acetate) and Zn(td)—O(acetate) bonds are also distinct, averaging 2.032 (11) and 1.938 (2) Å, respectively. Collectively, the ZnO4 coordination group at the centre of the trinuclear cluster exhibits a mean Zn(td)—O distance of 1.942 (7) Å. The bonds to the axial methanol solvent molecules, Zn(spy)—O(methanol), average a fairly typical 2.021 (8) Å (Orpen et al., 1989).

Structurally characterized trinuclear ZnII clusters stabilized by bridging acetate ligands are well known in the literature. In most cases, anionic O-donors surround the central ZnII ion to give a six-coordinate nominally octahedral ZnO6 coordination group, as is the case when two tridentate pyridineimineenolate ligands (de Hoog et al., 2004; Majumder et al., 2006) or two tridentate phenolateiminephenolate ligands (Gembicky et al., 2000) serve as the capping groups for the cluster. Interestingly, even tetradentate salen-type ligands, when metallated with ZnII acetate, form trinuclear µ2-acetate-bridged clusters with square-pyramidal terminal ZnII ions and a central ZnO6 core (Ülkü et al., 2001). Trinuclear ZnII cluster formation is evidently favoured in the presence of acetate ions. What distinguishes compound (II) from previously described trinuclear ZnII clusters is the fact that it is the first compound to be based upon a nominally tetrahedral ZnO4 core.

Returning to the structure of (II), it is worth noting that the tridentate imineenolate ligands are nonplanar by virtue of the steric repulsion between the adjacent phenyl and methyl groups in the structure. The dihedral angles between the phenyl rings and imineenolate moieties in each ligand are 32.3 (3) and 28.3 (3)° for the ligands containing atoms N1 and N2, respectively. This dihedral angle is 32.9 (3)° in the free ligand (Kabak et al., 1998), suggesting that complexation of ZnII does not lead to any measurable distortion of the tridentate chelate. The terminal square-pyramidal ZnII ions Zn1 and Zn2 are displaced towards their axial methanol ligands from the four-atom mean planes passing through their equatorial ligand donor-atom sets by 0.423 (1) and 0.409 (1) Å, respectively. Furthermore, the angle between these latter two planes is 86.6 (3)°. The approximately orthogonal relative orientation of these two coordination group planes is a geometric manifestation of having two cis O-donor atoms in each plane as bridging groups, and thus cis ligands, to the central tetrahedral ZnO4 core of the cluster.

Finally, the unit cell for (II) comprises two trinuclear clusters in general positions (Fig. 2). More interesting, however, is the fact that each molecule is a member of an extended one-dimensional hydrogen-bonded chain enabled by complementary hydrogen-bond formation between Zn-bound methanol molecules belonging to neighbouring trinuclear clusters in the crystalline solid state (Table 2, Fig. 3). Each trinuclear cluster is therefore related to its immediate neighbour in the chain by an inversion centre. The metal-bound solvent molecules evidently direct the extended structure of (II) in the crystal structure. One other trinuclear ZnII cluster has been described with hydrogen bonding between metal-bound methanol molecules and neighbouring clusters and, consequently, extended chain formation in the crystalline solid state (Akine et al., 2007). The elegance and simplicity of the complementary hydrogen-bonding interactions displayed by (II) are, however, currently unmatched, at least for trinuclear clusters of the type presented here.

Experimental top

Compound (I) was prepared essentially as described in the literature (Kabak et al., 1998). Zinc acetate (1.000 g, 4.6 mmol) and (I) (0.871 g, 4.6 mmol) were weighed into a round-bottomed flask and dissolved in a minimum of methanol. The solution went bright yellow as it came to reflux. Triethylamine (0.920 g, 9.2 mmol) was added and the solution was left to reflux for 2 h. A yellow precipitate was filtered off and allowed to air dry. A crystal of (II) suitable for X-ray diffraction was grown by slow evaporation of the methanol solution. This crystal was a large colourless rectangular block amidst the bulk polycrystalline material (pale yellow).

Refinement top

The H atoms attached to methanol atoms O9 and O10 were located by difference Fourier synthesis and refined isotropically, with an O—H distance constraint of 0.82 (2) Å. The remaining H atoms were positioned geometrically and refined using a riding model, with C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methine H atoms, C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C) for aromatic H atoms, and C—H = 0.98 Å and Uiso(H) = 1.2Ueq(C) for methyl-group H atoms. For methyl H atoms, the torsion angle was optimized to fit the electron density.

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction, 2008); cell refinement: CrysAlis RED (Oxford Diffraction, 2008); data reduction: CrysAlis RED (Oxford Diffraction, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: WinGX (Farrugia, 1999) and OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The molecular structure of (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Ball-and-tube representation of part of the unit-cell contents of (II). All H atoms, except those involved in hydrogen bonding (dashed lines), have been omitted for clarity. Linkage of the trinuclear ZnII clusters to form an extended one-dimensional hydrogen-bonded chain is depicted for the lower molecule in the unit cell.
[Figure 3] Fig. 3. Partly labelled illustration of the inorganic core of three hydrogen-bonded molecules of (II). Displacement ellipsoids are drawn at the 40% probability level. H and C atoms have been omitted for clarity. Ct1 and Ct2 are the inversion centres, with coordinates [0,0,1/2] and [0,1/2,0], respectively. O atoms involved in complementary hydrogen bonding are linked by dashed bonds. [Symmetry codes: (i) -x, -y, -z + 1; (ii) -x, -y + 1, -z.]
di-µ-acetato-1:2κ2O:O';2:3κ2O:O'- dimethanol-1κO,2κO-bis{µ-2-[(2E,3Z)-4-oxidopent- 3-en-2-ylideneamino]phenolato}-1:2κ4O2,N, O4:O4;2:3κ4O4:O2,N, O4-trizinc(II) top
Crystal data top
[Zn3(C11H11NO2)2(C2H3O2)2(CH4O)2]Z = 2
Mr = 756.70F(000) = 776
Triclinic, P1Dx = 1.579 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 10.5348 (2) ÅCell parameters from 9497 reflections
b = 11.6175 (3) Åθ = 3.7–27.0°
c = 13.5918 (4) ŵ = 2.30 mm1
α = 88.768 (2)°T = 295 K
β = 79.582 (2)°Rhomb, colourless
γ = 76.594 (2)°0.50 × 0.40 × 0.30 mm
V = 1591.11 (7) Å3
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
6772 independent reflections
Radiation source: Enhance (Mo) X-ray Source4756 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.023
Detector resolution: 8.4190 pixels mm-1θmax = 27.0°, θmin = 3.7°
ω scansh = 1313
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
k = 1414
Tmin = 0.372, Tmax = 0.500l = 1717
17802 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0462P)2 + 0.9978P]
where P = (Fo2 + 2Fc2)/3
6772 reflections(Δ/σ)max < 0.001
404 parametersΔρmax = 0.47 e Å3
2 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Zn3(C11H11NO2)2(C2H3O2)2(CH4O)2]γ = 76.594 (2)°
Mr = 756.70V = 1591.11 (7) Å3
Triclinic, P1Z = 2
a = 10.5348 (2) ÅMo Kα radiation
b = 11.6175 (3) ŵ = 2.30 mm1
c = 13.5918 (4) ÅT = 295 K
α = 88.768 (2)°0.50 × 0.40 × 0.30 mm
β = 79.582 (2)°
Data collection top
Oxford Diffraction Xcalibur2 CCD
diffractometer
6772 independent reflections
Absorption correction: multi-scan
[CrysAlis RED (Oxford Diffraction, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
4756 reflections with I > 2σ(I)
Tmin = 0.372, Tmax = 0.500Rint = 0.023
17802 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0362 restraints
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.47 e Å3
6772 reflectionsΔρmin = 0.43 e Å3
404 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.21151 (3)0.03291 (3)0.42509 (3)0.0390 (1)
Zn20.18756 (4)0.45343 (3)0.07005 (3)0.0388 (1)
Zn30.18967 (4)0.23591 (3)0.24102 (3)0.0436 (1)
O10.3045 (2)0.11101 (19)0.30275 (16)0.0415 (7)
O20.1692 (2)0.0245 (2)0.56357 (16)0.0488 (8)
O30.2720 (2)0.36087 (18)0.18079 (15)0.0410 (7)
O40.1953 (2)0.4970 (2)0.07159 (16)0.0491 (8)
O50.0874 (3)0.1897 (2)0.47355 (18)0.0613 (9)
O60.0429 (3)0.3043 (3)0.3463 (2)0.0739 (10)
O70.1211 (3)0.3125 (2)0.03069 (19)0.0649 (10)
O80.1137 (3)0.1730 (2)0.1403 (2)0.0722 (11)
O90.0846 (3)0.0267 (3)0.3560 (2)0.0579 (9)
O100.0069 (3)0.5377 (3)0.14555 (19)0.0593 (10)
N10.3968 (2)0.0789 (2)0.40118 (18)0.0359 (8)
N20.3098 (2)0.5598 (2)0.09533 (19)0.0389 (8)
C10.4122 (3)0.0348 (3)0.2531 (2)0.0385 (10)
C20.4734 (4)0.0545 (3)0.1568 (2)0.0511 (11)
C30.5804 (4)0.0284 (4)0.1082 (3)0.0621 (14)
C40.6266 (4)0.1336 (4)0.1527 (3)0.0568 (14)
C50.5686 (3)0.1537 (3)0.2486 (3)0.0501 (12)
C60.4654 (3)0.0696 (3)0.3020 (2)0.0375 (10)
C70.6032 (3)0.1827 (3)0.4604 (3)0.0489 (11)
C80.4553 (3)0.1299 (3)0.4741 (2)0.0389 (10)
C90.3846 (3)0.1344 (3)0.5732 (2)0.0445 (11)
C100.2563 (3)0.0844 (3)0.6132 (2)0.0432 (11)
C110.2071 (4)0.0933 (4)0.7235 (3)0.0642 (16)
C120.3210 (3)0.4322 (3)0.2339 (2)0.0391 (10)
C130.3511 (3)0.4015 (3)0.3282 (3)0.0486 (12)
C140.3959 (4)0.4762 (4)0.3830 (3)0.0577 (14)
C150.4100 (4)0.5846 (4)0.3455 (3)0.0571 (12)
C160.3819 (3)0.6166 (3)0.2511 (3)0.0486 (11)
C170.3420 (3)0.5395 (3)0.1924 (2)0.0379 (10)
C180.4711 (4)0.6848 (3)0.0418 (3)0.0550 (12)
C190.3670 (3)0.6207 (3)0.0255 (2)0.0410 (10)
C200.3375 (3)0.6275 (3)0.0737 (3)0.0482 (11)
C210.2626 (3)0.5700 (3)0.1171 (2)0.0460 (11)
C220.2561 (4)0.5841 (4)0.2257 (3)0.0616 (14)
C230.0202 (4)0.2750 (3)0.4346 (3)0.0573 (12)
C240.1017 (6)0.3475 (6)0.4992 (4)0.132 (3)
C250.0883 (3)0.2227 (3)0.0620 (2)0.0436 (11)
C260.0129 (5)0.1654 (4)0.0015 (3)0.0696 (16)
C270.1182 (5)0.1028 (4)0.2725 (4)0.0862 (19)
C280.0246 (5)0.6086 (4)0.2313 (3)0.0822 (19)
H20.441700.124200.125100.0620*
H30.622000.013200.044500.0740*
H40.696500.190700.118100.0680*
H50.599400.225200.278200.0600*
H7A0.621600.263800.438400.0730*
H7B0.632500.178700.522800.0730*
H7C0.649100.139000.411200.0730*
H90.433700.178300.617400.0530*
H11A0.183500.015800.754200.0960*
H11B0.275800.143000.753200.0960*
H11C0.130700.126800.733400.0960*
H130.340500.328900.354300.0580*
H140.416700.453900.445300.0690*
H150.438200.636300.383200.0680*
H160.389800.690600.226900.0580*
H18A0.428700.760000.074200.0820*
H18B0.523200.696800.021500.0820*
H18C0.527700.638200.083100.0820*
H200.375900.679700.115000.0580*
H22A0.283900.507800.258700.0930*
H22B0.313700.633600.255000.0930*
H22C0.166700.619800.233100.0930*
H24A0.076200.392900.547200.1980*
H24B0.153500.295900.533500.1980*
H24C0.153500.399900.458100.1980*
H26A0.040000.224900.033700.1040*
H26B0.043800.124800.045300.1040*
H26C0.074200.109700.045700.1040*
H27A0.109100.057400.213200.1290*
H27B0.060200.156400.279300.1290*
H27C0.208300.147100.267300.1290*
H28A0.059600.566100.287100.1230*
H28B0.089900.678900.222200.1230*
H28C0.053700.630000.244100.1230*
H1000.007 (2)0.009 (4)0.382 (3)0.098 (18)*
H2000.061 (3)0.530 (4)0.128 (3)0.071 (13)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0340 (2)0.0464 (2)0.0379 (2)0.0101 (2)0.0104 (2)0.0143 (2)
Zn20.0398 (2)0.0425 (2)0.0393 (2)0.0165 (2)0.0134 (2)0.0130 (2)
Zn30.0421 (2)0.0467 (2)0.0457 (2)0.0158 (2)0.0132 (2)0.0212 (2)
O10.0385 (12)0.0424 (12)0.0418 (12)0.0070 (10)0.0070 (10)0.0148 (10)
O20.0365 (13)0.0682 (15)0.0412 (12)0.0099 (11)0.0106 (10)0.0207 (11)
O30.0511 (14)0.0403 (12)0.0399 (12)0.0207 (10)0.0187 (10)0.0177 (9)
O40.0461 (14)0.0689 (15)0.0420 (13)0.0285 (12)0.0156 (10)0.0194 (11)
O50.0641 (17)0.0580 (16)0.0498 (15)0.0042 (13)0.0041 (13)0.0098 (12)
O60.0540 (17)0.088 (2)0.0617 (17)0.0094 (15)0.0005 (13)0.0309 (15)
O70.101 (2)0.0525 (15)0.0600 (16)0.0395 (16)0.0367 (15)0.0154 (13)
O80.099 (2)0.0753 (19)0.0696 (18)0.0539 (17)0.0465 (17)0.0351 (15)
O90.0388 (15)0.0861 (19)0.0529 (15)0.0204 (14)0.0104 (12)0.0086 (14)
O100.0382 (15)0.091 (2)0.0512 (15)0.0168 (14)0.0108 (11)0.0133 (14)
N10.0350 (14)0.0341 (13)0.0419 (14)0.0102 (11)0.0136 (11)0.0088 (11)
N20.0353 (14)0.0404 (14)0.0454 (15)0.0139 (12)0.0138 (11)0.0133 (12)
C10.0330 (16)0.0481 (18)0.0387 (17)0.0153 (14)0.0108 (13)0.0062 (14)
C20.048 (2)0.066 (2)0.0421 (19)0.0169 (18)0.0122 (16)0.0137 (17)
C30.051 (2)0.098 (3)0.0384 (19)0.022 (2)0.0046 (17)0.000 (2)
C40.044 (2)0.072 (3)0.052 (2)0.0090 (19)0.0063 (17)0.016 (2)
C50.043 (2)0.050 (2)0.059 (2)0.0096 (16)0.0147 (16)0.0036 (17)
C60.0324 (16)0.0432 (17)0.0415 (17)0.0138 (14)0.0126 (13)0.0021 (14)
C70.0420 (19)0.0474 (19)0.062 (2)0.0111 (16)0.0223 (16)0.0117 (17)
C80.0388 (17)0.0348 (16)0.0489 (18)0.0134 (14)0.0177 (14)0.0100 (14)
C90.047 (2)0.0442 (18)0.0485 (19)0.0127 (15)0.0244 (16)0.0209 (15)
C100.049 (2)0.0448 (18)0.0431 (18)0.0197 (16)0.0176 (15)0.0173 (15)
C110.062 (3)0.084 (3)0.045 (2)0.011 (2)0.0154 (18)0.021 (2)
C120.0346 (17)0.0430 (18)0.0416 (17)0.0114 (14)0.0095 (13)0.0053 (14)
C130.052 (2)0.051 (2)0.049 (2)0.0172 (17)0.0199 (16)0.0150 (16)
C140.062 (2)0.073 (3)0.046 (2)0.022 (2)0.0226 (18)0.0063 (19)
C150.057 (2)0.067 (2)0.056 (2)0.026 (2)0.0165 (18)0.0076 (19)
C160.0439 (19)0.0454 (19)0.059 (2)0.0154 (16)0.0095 (16)0.0012 (16)
C170.0279 (15)0.0400 (17)0.0454 (18)0.0058 (13)0.0089 (13)0.0047 (14)
C180.054 (2)0.052 (2)0.067 (2)0.0280 (18)0.0133 (18)0.0156 (18)
C190.0341 (17)0.0361 (16)0.052 (2)0.0081 (13)0.0067 (14)0.0087 (14)
C200.0427 (19)0.0466 (19)0.056 (2)0.0131 (16)0.0097 (16)0.0255 (16)
C210.0328 (17)0.055 (2)0.0465 (19)0.0041 (15)0.0078 (14)0.0189 (16)
C220.059 (2)0.081 (3)0.049 (2)0.025 (2)0.0123 (18)0.024 (2)
C230.049 (2)0.061 (2)0.055 (2)0.0027 (19)0.0054 (18)0.0098 (19)
C240.122 (5)0.131 (5)0.080 (4)0.063 (4)0.022 (3)0.026 (3)
C250.0426 (19)0.0450 (19)0.0435 (19)0.0111 (15)0.0074 (15)0.0003 (15)
C260.094 (3)0.062 (2)0.068 (3)0.036 (2)0.031 (2)0.000 (2)
C270.069 (3)0.077 (3)0.114 (4)0.013 (2)0.022 (3)0.028 (3)
C280.066 (3)0.100 (4)0.080 (3)0.016 (3)0.012 (2)0.032 (3)
Geometric parameters (Å, º) top
Zn1—O12.075 (2)C14—C151.378 (6)
Zn1—O21.992 (2)C15—C161.392 (6)
Zn1—O52.024 (2)C16—C171.394 (5)
Zn1—O92.015 (3)C18—C191.510 (5)
Zn1—N12.053 (2)C19—C201.434 (5)
Zn2—O32.046 (2)C20—C211.359 (5)
Zn2—O41.972 (2)C21—C221.494 (5)
Zn2—O72.040 (3)C23—C241.501 (7)
Zn2—O102.027 (3)C25—C261.502 (6)
Zn2—N22.054 (2)C2—H20.9300
Zn3—O11.943 (2)C3—H30.9300
Zn3—O31.951 (2)C4—H40.9300
Zn3—O61.936 (3)C5—H50.9300
Zn3—O81.939 (3)C7—H7A0.9600
O1—C11.345 (4)C7—H7B0.9600
O2—C101.300 (4)C7—H7C0.9600
O3—C121.354 (4)C9—H90.9300
O4—C211.305 (4)C11—H11A0.9600
O5—C231.246 (4)C11—H11B0.9600
O6—C231.237 (5)C11—H11C0.9600
O7—C251.218 (4)C13—H130.9300
O8—C251.242 (4)C14—H140.9300
O9—C271.396 (6)C15—H150.9300
O10—C281.386 (5)C16—H160.9300
O9—H1000.81 (3)C18—H18A0.9600
O10—H2000.82 (3)C18—H18B0.9600
N1—C61.424 (4)C18—H18C0.9600
N1—C81.319 (4)C20—H200.9300
N2—C191.314 (4)C22—H22A0.9600
N2—C171.422 (4)C22—H22B0.9600
C1—C61.418 (5)C22—H22C0.9600
C1—C21.390 (4)C24—H24A0.9600
C2—C31.375 (6)C24—H24B0.9600
C3—C41.377 (6)C24—H24C0.9600
C4—C51.376 (6)C26—H26A0.9600
C5—C61.384 (5)C26—H26B0.9600
C7—C81.515 (5)C26—H26C0.9600
C8—C91.423 (4)C27—H27A0.9600
C9—C101.358 (5)C27—H27B0.9600
C10—C111.505 (5)C27—H27C0.9600
C12—C171.405 (5)C28—H28A0.9600
C12—C131.395 (5)C28—H28B0.9600
C13—C141.370 (6)C28—H28C0.9600
O1—Zn1—O2160.21 (9)N2—C19—C20121.8 (3)
O1—Zn1—O591.74 (9)C19—C20—C21130.5 (3)
O1—Zn1—O997.88 (10)O4—C21—C20124.9 (3)
O1—Zn1—N179.38 (9)O4—C21—C22114.4 (3)
O2—Zn1—O587.33 (9)C20—C21—C22120.6 (3)
O2—Zn1—O9101.87 (10)O5—C23—O6125.9 (4)
O2—Zn1—N191.97 (9)O5—C23—C24117.6 (4)
O5—Zn1—O996.62 (13)O6—C23—C24116.5 (4)
O5—Zn1—N1151.03 (11)O7—C25—C26118.3 (3)
O9—Zn1—N1111.82 (11)O8—C25—C26116.6 (3)
O3—Zn2—O4150.52 (9)O7—C25—O8125.1 (3)
O3—Zn2—O792.03 (9)C1—C2—H2120.00
O3—Zn2—O10102.11 (10)C3—C2—H2120.00
O3—Zn2—N280.33 (9)C2—C3—H3120.00
O4—Zn2—O785.31 (10)C4—C3—H3120.00
O4—Zn2—O10107.35 (10)C3—C4—H4120.00
O4—Zn2—N293.50 (10)C5—C4—H4120.00
O7—Zn2—O1093.45 (13)C4—C5—H5119.00
O7—Zn2—N2162.31 (11)C6—C5—H5119.00
O10—Zn2—N2103.71 (11)C8—C7—H7A109.00
O1—Zn3—O3115.38 (9)C8—C7—H7B109.00
O1—Zn3—O6105.92 (11)C8—C7—H7C109.00
O1—Zn3—O8111.55 (10)H7A—C7—H7B110.00
O3—Zn3—O6109.10 (12)H7A—C7—H7C109.00
O3—Zn3—O8108.13 (10)H7B—C7—H7C110.00
O6—Zn3—O8106.37 (13)C8—C9—H9115.00
Zn1—O1—Zn3115.71 (11)C10—C9—H9115.00
Zn1—O1—C1111.56 (18)C10—C11—H11A109.00
Zn3—O1—C1124.78 (18)C10—C11—H11B109.00
Zn1—O2—C10124.74 (19)C10—C11—H11C109.00
Zn2—O3—Zn3116.30 (11)H11A—C11—H11B110.00
Zn2—O3—C12110.36 (18)H11A—C11—H11C109.00
Zn3—O3—C12123.17 (18)H11B—C11—H11C109.00
Zn2—O4—C21125.10 (19)C12—C13—H13119.00
Zn1—O5—C23136.1 (2)C14—C13—H13119.00
Zn3—O6—C23129.0 (3)C13—C14—H14120.00
Zn2—O7—C25143.6 (2)C15—C14—H14120.00
Zn3—O8—C25125.8 (2)C14—C15—H15120.00
Zn1—O9—C27126.5 (3)C16—C15—H15120.00
Zn2—O10—C28129.2 (3)C15—C16—H16119.00
Zn1—O9—H100117 (3)C17—C16—H16120.00
C27—O9—H100117 (3)C19—C18—H18A110.00
Zn2—O10—H200121 (3)C19—C18—H18B110.00
C28—O10—H200110 (3)C19—C18—H18C109.00
C6—N1—C8123.6 (2)H18A—C18—H18B109.00
Zn1—N1—C6111.21 (19)H18A—C18—H18C110.00
Zn1—N1—C8123.3 (2)H18B—C18—H18C109.00
Zn2—N2—C19123.9 (2)C19—C20—H20115.00
C17—N2—C19125.4 (3)C21—C20—H20115.00
Zn2—N2—C17109.75 (19)C21—C22—H22A109.00
O1—C1—C2122.9 (3)C21—C22—H22B109.00
O1—C1—C6118.2 (2)C21—C22—H22C109.00
C2—C1—C6119.0 (3)H22A—C22—H22B109.00
C1—C2—C3120.4 (3)H22A—C22—H22C110.00
C2—C3—C4120.8 (4)H22B—C22—H22C110.00
C3—C4—C5119.6 (4)C23—C24—H24A109.00
C4—C5—C6121.3 (3)C23—C24—H24B109.00
N1—C6—C1114.1 (3)C23—C24—H24C109.00
N1—C6—C5127.1 (3)H24A—C24—H24B110.00
C1—C6—C5118.7 (3)H24A—C24—H24C110.00
C7—C8—C9114.8 (3)H24B—C24—H24C109.00
N1—C8—C9122.2 (3)C25—C26—H26A109.00
N1—C8—C7122.9 (3)C25—C26—H26B109.00
C8—C9—C10129.9 (3)C25—C26—H26C110.00
O2—C10—C11115.2 (3)H26A—C26—H26B109.00
C9—C10—C11119.9 (3)H26A—C26—H26C109.00
O2—C10—C9124.9 (3)H26B—C26—H26C109.00
O3—C12—C13121.6 (3)O9—C27—H27A110.00
O3—C12—C17118.8 (2)O9—C27—H27B110.00
C13—C12—C17119.6 (3)O9—C27—H27C110.00
C12—C13—C14121.2 (3)H27A—C27—H27B109.00
C13—C14—C15119.8 (4)H27A—C27—H27C109.00
C14—C15—C16120.0 (4)H27B—C27—H27C109.00
C15—C16—C17121.0 (3)O10—C28—H28A110.00
N2—C17—C12114.3 (3)O10—C28—H28B109.00
N2—C17—C16127.3 (3)O10—C28—H28C110.00
C12—C17—C16118.3 (3)H28A—C28—H28B109.00
C18—C19—C20115.0 (3)H28A—C28—H28C109.00
N2—C19—C18123.2 (3)H28B—C28—H28C109.00
O5—Zn1—O1—Zn337.35 (13)O1—Zn3—O6—C232.3 (4)
O9—Zn1—O1—Zn359.58 (14)Zn1—O1—C1—C2164.3 (3)
N1—Zn1—O1—Zn3170.42 (13)Zn3—O1—C1—C216.9 (4)
O5—Zn1—O1—C1172.1 (2)Zn1—O1—C1—C616.1 (3)
O9—Zn1—O1—C191.0 (2)Zn3—O1—C1—C6163.5 (2)
N1—Zn1—O1—C119.86 (19)Zn1—O2—C10—C912.1 (5)
N1—Zn1—O5—C23114.8 (4)Zn1—O2—C10—C11166.1 (2)
N1—Zn1—O2—C1016.0 (3)Zn2—O3—C12—C13162.6 (3)
O1—Zn1—N1—C620.25 (19)Zn3—O3—C12—C17161.4 (2)
O2—Zn1—N1—C6177.7 (2)Zn3—O3—C12—C1318.7 (4)
O5—Zn1—N1—C694.3 (3)Zn2—O3—C12—C1717.6 (3)
O9—Zn1—N1—C674.1 (2)Zn2—O4—C21—C22177.7 (2)
O5—Zn1—O2—C10135.0 (3)Zn2—O4—C21—C200.2 (5)
O9—Zn1—O2—C10128.8 (3)Zn1—O5—C23—C24153.2 (4)
O2—Zn1—N1—C817.5 (2)Zn1—O5—C23—O625.0 (7)
O1—Zn1—O9—C2757.4 (3)Zn3—O6—C23—O52.9 (6)
O2—Zn1—O9—C27121.3 (3)Zn3—O6—C23—C24178.8 (3)
O5—Zn1—O9—C27150.1 (3)Zn2—O7—C25—C26164.7 (3)
N1—Zn1—O9—C2724.3 (4)Zn2—O7—C25—O816.3 (7)
O2—Zn1—O5—C23155.9 (4)Zn3—O8—C25—C26172.0 (3)
O9—Zn1—O5—C2354.3 (4)Zn3—O8—C25—O78.9 (5)
O1—Zn1—N1—C8144.6 (2)Zn1—N1—C8—C914.9 (4)
O5—Zn1—N1—C870.6 (3)C8—N1—C6—C538.3 (5)
O9—Zn1—N1—C8121.1 (2)C6—N1—C8—C71.0 (5)
O1—Zn1—O5—C2343.8 (4)Zn1—N1—C8—C7162.0 (2)
N2—Zn2—O3—C1221.28 (19)C6—N1—C8—C9178.0 (3)
O4—Zn2—O7—C25176.7 (4)Zn1—N1—C6—C118.0 (3)
O3—Zn2—O7—C2526.1 (4)C8—N1—C6—C1146.8 (3)
O10—Zn2—O3—C1280.8 (2)Zn1—N1—C6—C5156.9 (3)
O7—Zn2—O10—C28145.6 (3)Zn2—N2—C17—C1218.8 (3)
N2—Zn2—O10—C2830.0 (4)C19—N2—C17—C12150.0 (3)
O10—Zn2—O4—C21105.8 (3)Zn2—N2—C19—C206.6 (4)
N2—Zn2—O4—C210.3 (3)C17—N2—C19—C20173.9 (3)
O10—Zn2—O7—C2576.2 (4)Zn2—N2—C19—C18171.2 (2)
O4—Zn2—O3—C12101.2 (2)C17—N2—C19—C183.9 (5)
O7—Zn2—O3—C12174.8 (2)C19—N2—C17—C1634.8 (5)
O4—Zn2—O10—C28128.2 (3)Zn2—N2—C17—C16156.4 (3)
O10—Zn2—N2—C19112.4 (2)C2—C1—C6—C56.2 (5)
O3—Zn2—O4—C2176.2 (3)O1—C1—C6—C5174.2 (3)
O4—Zn2—O3—Zn3112.29 (18)C2—C1—C6—N1178.4 (3)
O7—Zn2—O3—Zn328.22 (13)C6—C1—C2—C32.8 (5)
O10—Zn2—O3—Zn365.75 (14)O1—C1—C6—N11.2 (4)
N2—Zn2—O3—Zn3167.83 (13)O1—C1—C2—C3177.7 (3)
O3—Zn2—O10—C2852.8 (4)C1—C2—C3—C41.8 (6)
O4—Zn2—N2—C193.6 (2)C2—C3—C4—C52.9 (6)
O3—Zn2—N2—C1721.62 (19)C3—C4—C5—C60.8 (6)
O4—Zn2—N2—C17172.59 (19)C4—C5—C6—N1180.0 (3)
O7—Zn2—O4—C21162.0 (3)C4—C5—C6—C15.2 (5)
O3—Zn2—N2—C19147.4 (3)C7—C8—C9—C10171.9 (3)
O10—Zn2—N2—C1778.6 (2)N1—C8—C9—C105.3 (6)
O8—Zn3—O6—C23116.5 (4)C8—C9—C10—C11174.7 (4)
O8—Zn3—O1—Zn187.47 (14)C8—C9—C10—O23.4 (6)
O6—Zn3—O1—Zn127.85 (15)C13—C12—C17—N2178.9 (3)
O3—Zn3—O6—C23127.1 (4)O3—C12—C17—C16174.7 (3)
O3—Zn3—O1—C165.2 (3)O3—C12—C17—N20.9 (4)
O6—Zn3—O1—C1174.0 (2)O3—C12—C13—C14177.5 (3)
O8—Zn3—O1—C158.7 (3)C13—C12—C17—C165.4 (5)
O1—Zn3—O8—C25146.3 (3)C17—C12—C13—C142.6 (5)
O3—Zn3—O8—C2518.4 (3)C12—C13—C14—C150.9 (6)
O8—Zn3—O3—C12172.3 (2)C13—C14—C15—C161.6 (6)
O6—Zn3—O8—C2598.7 (3)C14—C15—C16—C171.3 (6)
O1—Zn3—O3—Zn2156.06 (10)C15—C16—C17—C124.8 (5)
O6—Zn3—O3—Zn284.89 (14)C15—C16—C17—N2179.8 (3)
O8—Zn3—O3—Zn230.39 (14)N2—C19—C20—C216.8 (6)
O1—Zn3—O3—C1262.1 (2)C18—C19—C20—C21171.2 (4)
O6—Zn3—O3—C1257.0 (3)C19—C20—C21—O43.2 (6)
O3—Zn3—O1—Zn1148.63 (10)C19—C20—C21—C22174.6 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H100···O2i0.81 (2)1.83 (2)2.633 (2)176 (1)
O10—H200···O4ii0.81 (2)1.82 (2)2.627 (2)176 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Zn3(C11H11NO2)2(C2H3O2)2(CH4O)2]
Mr756.70
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)10.5348 (2), 11.6175 (3), 13.5918 (4)
α, β, γ (°)88.768 (2), 79.582 (2), 76.594 (2)
V3)1591.11 (7)
Z2
Radiation typeMo Kα
µ (mm1)2.30
Crystal size (mm)0.50 × 0.40 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur2 CCD
diffractometer
Absorption correctionMulti-scan
[CrysAlis RED (Oxford Diffraction, 2008). Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm]
Tmin, Tmax0.372, 0.500
No. of measured, independent and
observed [I > 2σ(I)] reflections
17802, 6772, 4756
Rint0.023
(sin θ/λ)max1)0.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.096, 1.02
No. of reflections6772
No. of parameters404
No. of restraints2
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.43

Computer programs: CrysAlis CCD (Oxford Diffraction, 2008), CrysAlis RED (Oxford Diffraction, 2008), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), WinGX (Farrugia, 1999) and OLEX2 (Dolomanov et al., 2009), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) top
Zn1—O12.075 (2)Zn2—O72.040 (3)
Zn1—O21.992 (2)Zn2—O102.027 (3)
Zn1—O52.024 (2)Zn2—N22.054 (2)
Zn1—O92.015 (3)Zn3—O11.943 (2)
Zn1—N12.053 (2)Zn3—O31.951 (2)
Zn2—O32.046 (2)Zn3—O61.936 (3)
Zn2—O41.972 (2)Zn3—O81.939 (3)
O1—Zn1—O2160.21 (9)O4—Zn2—O785.31 (10)
O1—Zn1—O591.74 (9)O4—Zn2—O10107.35 (10)
O1—Zn1—O997.88 (10)O4—Zn2—N293.50 (10)
O1—Zn1—N179.38 (9)O7—Zn2—O1093.45 (13)
O2—Zn1—O587.33 (9)O7—Zn2—N2162.31 (11)
O2—Zn1—O9101.87 (10)O10—Zn2—N2103.71 (11)
O2—Zn1—N191.97 (9)O1—Zn3—O3115.38 (9)
O5—Zn1—O996.62 (13)O1—Zn3—O6105.92 (11)
O5—Zn1—N1151.03 (11)O1—Zn3—O8111.55 (10)
O9—Zn1—N1111.82 (11)O3—Zn3—O6109.10 (12)
O3—Zn2—O4150.52 (9)O3—Zn3—O8108.13 (10)
O3—Zn2—O792.03 (9)O6—Zn3—O8106.37 (13)
O3—Zn2—O10102.11 (10)Zn1—O1—Zn3115.71 (11)
O3—Zn2—N280.33 (9)Zn2—O3—Zn3116.30 (11)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H100···O2i0.81 (2)1.83 (2)2.633 (2)176 (1)
O10—H200···O4ii0.81 (2)1.82 (2)2.627 (2)176 (1)
Symmetry codes: (i) x, y, z+1; (ii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds