Download citation
Download citation
link to html
Mol­ecular salts, often observed as cocrystals, play an important role in the fields of pharmaceutics and materials science, where salt formation is used to tune the properties of active pharmaceutical ingredients (APIs) and improve the stability of solid-state materials. Salt formation via a proton-transfer reaction typically alters hydrogen-bonding motifs and influences supra­molecular assembly patterns. We report here the mol­ecular salts formed by the pyridyl bis-urea macrocycle 3,5,13,15,21,22-hexa­aza­tri­cyclo­[15.3.1.17,11]docosa-1(21),7(22),8,10,17,19-hexa­ene-4,14-dione, (1), and naphthalene-1,5-di­sulfonic acid (H2NDS) as two salt cocrystal solvates, namely 4,14-dioxo-3,5,13,15,21,22-hexa­aza­tri­cyclo­[15.3.1.17,11]docosa-1(21),7(22),8,10,17,19-hexa­ene-21,22-diium naphthalene-1,5-di­sulfonate dimethyl sulfoxide disolvate, C16H20N6O22+·C10H6O6S22−·2C2H6OS, (2), and the corresponding monosolvate, C16H20N6O22+·C10H6O6S22−·C2H6OS, (3). This follows the ΔpKa rule such that there is a proton transfer from H2NDS to (1), forming the reported mol­ecular salts through hydrogen bonding. Prior to salt formation, (1) is relatively planar and assembles into columnar structures. The salt cocrystal solvates were obtained upon slow cooling of dimethyl sulfoxide–aceto­nitrile solutions of the mol­ecular components from two temperatures (363 and 393 K). The proton transfer to (1) significantly alters the conformation of the macrocycle, changing the formerly planar macrocycle into a step-shaped conformation with transcis urea groups in (2) or into a bowl-shape conformation with transtrans urea groups in (3).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617017600/fn3249sup1.cif
Contains datablocks js16, pbu_ndsa, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017600/fn3249js16sup2.hkl
Contains datablock js16

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617017600/fn3249pbu_ndsasup3.hkl
Contains datablock pbu_ndsa

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S2053229617017600/fn3249sup4.pdf
FT-IR spectrum and table of comparison of key peaks

CCDC references: 1590049; 1590048

Computing details top

Data collection: APEX2 (Bruker, 2014) for js16; APEX2 (Bruker, 2016) for pbu_ndsa. Cell refinement: SAINT (Bruker, 2013) for js16; SAINT (Bruker, 2015) for pbu_ndsa. Data reduction: SAINT (Bruker, 2013) for js16; SAINT (Bruker, 2015) for pbu_ndsa. For both structures, program(s) used to solve structure: SHELXT (Sheldrick, 2015a); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015b); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

4,14-Dioxo-3,5,13,15,21,22-hexaazatricyclo[15.3.1.17,11]docosa-1(21),7(22),8,10,17,19-hexaene-21,22-diium naphthalene-1,5-disulfonate dimethyl sulfoxide disolvate (js16) top
Crystal data top
C16H20N6O22+·C10H6O6S22·2C2H6OSZ = 1
Mr = 770.90F(000) = 404
Triclinic, P1Dx = 1.552 Mg m3
a = 8.5763 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.7305 (5) ÅCell parameters from 9898 reflections
c = 11.4194 (5) Åθ = 2.3–30.1°
α = 111.379 (1)°µ = 0.36 mm1
β = 108.656 (2)°T = 100 K
γ = 93.040 (2)°Prism, colourless
V = 825.08 (7) Å30.24 × 0.08 × 0.01 mm
Data collection top
Bruker D8 Quest
diffractometer
4807 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs4044 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.027
Detector resolution: 10.4 pixels mm-1θmax = 30.1°, θmin = 2.3°
ω and φ scansh = 1212
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
k = 1313
Tmin = 0.474, Tmax = 0.493l = 1616
24789 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0424P)2 + 0.5072P]
where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
4807 reflectionsΔρmax = 0.61 e Å3
240 parametersΔρmin = 0.41 e Å3
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. X-ray intensity data from a colorless triclinic prism were collected at 100 (2) K using a Bruker D8 QUEST diffractometer equipped with a PHOTON 100 CMOS area detector and an Incoatec microfocus source. The raw area detector data frames were reduced and corrected for absorption effects using the SAINT+ and SADABS programs. Final unit-cell parameters were determined by least-squares refinement of 9898 reflections taken from the data set. The structure was solved by direct methods with SHELXT. Subsequent difference Fourier calculations and full-matrix least-squares refinement against F2 were performed with SHELXL2014 using OLEX2. The compound crystallizes in the triclinic system. The space group P-1 (No. 2) was confirmed by structure solution. The asymmetric unit consists of half of one C16H20N6O22+ cationic cycle, half of one naphthalene-1,5- disulfonate (C10H6O6S22-) anion and one DMSO molecule. The cycle and naphthalene-1,5-disulfonate species are located on crystallographic inversion centers. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to carbon were located in Fourier difference maps before being placed in geometrically idealized positions included as riding atoms with d(C—H) = 0.95 A and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, d(C—H) = 0.99 A and Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms and d(C—H) = 0.98 A and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The methyl H atoms were allowed to rotate as a rigid group to the orientation of maximum observed electron density. Hydrogen atoms bonded to nitrogen were located in difference maps and refined freely. The largest residual electron density peak in the final difference map is 0.61 e-/A3, located 0.71 A from S1.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.81427 (12)0.36129 (11)0.38362 (10)0.01500 (19)
N10.87827 (14)0.49577 (13)0.60781 (11)0.0133 (2)
H10.965 (2)0.541 (2)0.6072 (18)0.020 (4)*
N20.65295 (14)0.29424 (13)0.48400 (12)0.0142 (2)
H20.631 (3)0.310 (2)0.555 (2)0.029 (5)*
N30.33561 (14)0.32659 (12)0.29475 (12)0.0118 (2)
H30.331 (3)0.343 (2)0.373 (2)0.035 (6)*
C10.78352 (16)0.38224 (14)0.48736 (13)0.0126 (2)
C20.54392 (16)0.17607 (15)0.35676 (13)0.0141 (2)
H2A0.46760.11330.37480.017*
H2B0.61330.11090.31540.017*
C30.44048 (16)0.23444 (14)0.25748 (13)0.0122 (2)
C40.44811 (17)0.19913 (15)0.13154 (14)0.0149 (3)
H40.51950.13390.10300.018*
C50.35117 (17)0.25905 (15)0.04628 (14)0.0164 (3)
H50.35610.23470.04080.020*
C60.24735 (17)0.35428 (15)0.08812 (14)0.0155 (3)
H60.18150.39650.03060.019*
C70.24068 (16)0.38719 (14)0.21494 (13)0.0125 (2)
C80.12751 (17)0.48889 (15)0.26287 (13)0.0144 (2)
H8A0.16510.58990.26870.017*
H8B0.01240.44980.19440.017*
S10.26651 (4)0.79161 (4)0.12772 (3)0.01500 (8)
O20.17885 (14)0.64608 (12)0.02100 (11)0.0253 (2)
O30.30892 (14)0.79425 (12)0.26315 (11)0.0223 (2)
O40.40943 (13)0.85619 (12)0.10967 (11)0.0199 (2)
C90.12016 (16)0.91552 (15)0.11696 (14)0.0142 (2)
C100.06926 (18)0.97755 (16)0.22374 (14)0.0172 (3)
H100.11030.95260.29970.021*
C110.04363 (18)1.07833 (16)0.22237 (14)0.0174 (3)
H110.07651.12150.29780.021*
C120.10551 (17)1.11383 (15)0.11345 (14)0.0155 (3)
H120.18131.18160.11370.019*
C130.05774 (16)0.94970 (14)0.00090 (13)0.0130 (2)
S20.23117 (4)0.30337 (4)0.59884 (4)0.01831 (9)
O50.36314 (14)0.33789 (13)0.54692 (11)0.0224 (2)
C140.2593 (2)0.12976 (18)0.61615 (18)0.0294 (4)
H14A0.23270.04880.52680.044*
H14B0.18470.10670.65870.044*
H14C0.37600.13880.67250.044*
C150.3084 (2)0.42181 (18)0.77460 (15)0.0249 (3)
H15A0.42080.40650.81790.037*
H15B0.23310.39690.81600.037*
H15C0.31360.52720.78660.037*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0130 (5)0.0175 (5)0.0149 (4)0.0026 (4)0.0074 (4)0.0051 (4)
N10.0114 (5)0.0149 (5)0.0143 (5)0.0022 (4)0.0066 (4)0.0050 (4)
N20.0133 (5)0.0167 (5)0.0129 (5)0.0018 (4)0.0060 (4)0.0053 (4)
N30.0122 (5)0.0119 (5)0.0136 (5)0.0026 (4)0.0072 (4)0.0054 (4)
C10.0105 (6)0.0131 (6)0.0161 (6)0.0057 (4)0.0063 (5)0.0061 (5)
C20.0134 (6)0.0127 (6)0.0166 (6)0.0032 (5)0.0056 (5)0.0060 (5)
C30.0103 (6)0.0097 (5)0.0164 (6)0.0008 (4)0.0055 (5)0.0045 (5)
C40.0138 (6)0.0134 (6)0.0173 (6)0.0025 (5)0.0080 (5)0.0039 (5)
C50.0171 (6)0.0184 (6)0.0155 (6)0.0023 (5)0.0094 (5)0.0061 (5)
C60.0151 (6)0.0177 (6)0.0167 (6)0.0039 (5)0.0069 (5)0.0090 (5)
C70.0109 (6)0.0120 (6)0.0154 (6)0.0016 (4)0.0059 (5)0.0056 (5)
C80.0144 (6)0.0164 (6)0.0148 (6)0.0057 (5)0.0072 (5)0.0070 (5)
S10.01379 (16)0.01361 (15)0.01839 (17)0.00426 (11)0.00511 (12)0.00773 (13)
O20.0254 (6)0.0132 (5)0.0276 (6)0.0039 (4)0.0005 (5)0.0054 (4)
O30.0213 (5)0.0270 (6)0.0227 (5)0.0066 (4)0.0067 (4)0.0155 (5)
O40.0160 (5)0.0232 (5)0.0233 (5)0.0066 (4)0.0096 (4)0.0099 (4)
C90.0123 (6)0.0129 (6)0.0179 (6)0.0017 (5)0.0061 (5)0.0064 (5)
C100.0184 (7)0.0180 (6)0.0165 (6)0.0026 (5)0.0080 (5)0.0073 (5)
C110.0197 (7)0.0176 (6)0.0162 (6)0.0028 (5)0.0110 (5)0.0046 (5)
C120.0152 (6)0.0137 (6)0.0185 (6)0.0025 (5)0.0092 (5)0.0049 (5)
C130.0114 (6)0.0108 (5)0.0162 (6)0.0003 (4)0.0053 (5)0.0050 (5)
S20.01513 (17)0.02561 (18)0.01969 (17)0.00682 (13)0.00699 (13)0.01418 (14)
O50.0223 (5)0.0352 (6)0.0233 (5)0.0148 (5)0.0155 (4)0.0191 (5)
C140.0322 (9)0.0221 (7)0.0281 (8)0.0005 (6)0.0007 (7)0.0131 (7)
C150.0345 (9)0.0268 (8)0.0210 (7)0.0112 (6)0.0155 (7)0.0127 (6)
Geometric parameters (Å, º) top
O1—C11.2426 (16)S1—O21.4486 (11)
N1—H10.845 (19)S1—O31.4611 (11)
N1—C11.3618 (17)S1—O41.4540 (11)
N1—C8i1.4465 (17)S1—C91.7928 (14)
N2—H20.85 (2)C9—C101.3688 (19)
N2—C11.3548 (17)C9—C131.4282 (19)
N2—C21.4514 (17)C10—H100.9500
N3—H30.86 (2)C10—C111.415 (2)
N3—C31.3587 (16)C11—H110.9500
N3—C71.3451 (17)C11—C121.363 (2)
C2—H2A0.9900C12—H120.9500
C2—H2B0.9900C12—C13ii1.4269 (18)
C2—C31.5081 (18)C13—C12ii1.4268 (18)
C3—C41.3759 (18)C13—C13ii1.430 (3)
C4—H40.9500S2—O51.5098 (11)
C4—C51.388 (2)S2—C141.7909 (17)
C5—H50.9500S2—C151.7825 (16)
C5—C61.3844 (19)C14—H14A0.9800
C6—H60.9500C14—H14B0.9800
C6—C71.3857 (18)C14—H14C0.9800
C7—C81.5059 (18)C15—H15A0.9800
C8—N1i1.4465 (17)C15—H15B0.9800
C8—H8A0.9900C15—H15C0.9800
C8—H8B0.9900
C1—N1—H1114.3 (12)H8A—C8—H8B107.5
C1—N1—C8i124.68 (11)O2—S1—O3113.47 (7)
C8i—N1—H1117.9 (12)O2—S1—O4113.56 (7)
C1—N2—H2120.7 (14)O2—S1—C9105.79 (6)
C1—N2—C2119.73 (11)O3—S1—C9105.06 (6)
C2—N2—H2119.5 (14)O4—S1—O3112.28 (6)
C3—N3—H3116.2 (14)O4—S1—C9105.75 (6)
C7—N3—H3120.8 (14)C10—C9—S1118.14 (11)
C7—N3—C3122.99 (12)C10—C9—C13120.40 (13)
O1—C1—N1121.17 (12)C13—C9—S1121.46 (10)
O1—C1—N2121.08 (12)C9—C10—H10119.6
N2—C1—N1117.74 (12)C9—C10—C11120.82 (13)
N2—C2—H2A108.9C11—C10—H10119.6
N2—C2—H2B108.9C10—C11—H11119.8
N2—C2—C3113.47 (11)C12—C11—C10120.40 (13)
H2A—C2—H2B107.7C12—C11—H11119.8
C3—C2—H2A108.9C11—C12—H12119.6
C3—C2—H2B108.9C11—C12—C13ii120.72 (13)
N3—C3—C2118.29 (11)C13ii—C12—H12119.6
N3—C3—C4118.70 (12)C9—C13—C13ii118.69 (15)
C4—C3—C2123.01 (12)C12ii—C13—C9122.36 (12)
C3—C4—H4120.1C12ii—C13—C13ii118.95 (15)
C3—C4—C5119.83 (12)O5—S2—C14105.65 (8)
C5—C4—H4120.1O5—S2—C15105.79 (7)
C4—C5—H5120.0C15—S2—C1497.01 (8)
C6—C5—C4120.00 (13)S2—C14—H14A109.5
C6—C5—H5120.0S2—C14—H14B109.5
C5—C6—H6120.4S2—C14—H14C109.5
C5—C6—C7119.13 (13)H14A—C14—H14B109.5
C7—C6—H6120.4H14A—C14—H14C109.5
N3—C7—C6119.34 (12)H14B—C14—H14C109.5
N3—C7—C8120.20 (12)S2—C15—H15A109.5
C6—C7—C8120.46 (12)S2—C15—H15B109.5
N1i—C8—C7114.95 (11)S2—C15—H15C109.5
N1i—C8—H8A108.5H15A—C15—H15B109.5
N1i—C8—H8B108.5H15A—C15—H15C109.5
C7—C8—H8A108.5H15B—C15—H15C109.5
C7—C8—H8B108.5
N2—C2—C3—N358.65 (15)C8i—N1—C1—O1167.63 (12)
N2—C2—C3—C4121.07 (13)C8i—N1—C1—N213.35 (19)
N3—C3—C4—C50.78 (19)S1—C9—C10—C11178.84 (11)
N3—C7—C8—N1i4.48 (18)S1—C9—C13—C12ii0.98 (18)
C1—N2—C2—C367.51 (15)S1—C9—C13—C13ii179.52 (12)
C2—N2—C1—O11.74 (19)O2—S1—C9—C10116.33 (12)
C2—N2—C1—N1177.28 (11)O2—S1—C9—C1363.79 (12)
C2—C3—C4—C5178.94 (12)O3—S1—C9—C103.98 (13)
C3—N3—C7—C60.62 (19)O3—S1—C9—C13175.90 (11)
C3—N3—C7—C8179.80 (12)O4—S1—C9—C10122.92 (11)
C3—C4—C5—C60.1 (2)O4—S1—C9—C1356.96 (12)
C4—C5—C6—C70.7 (2)C9—C10—C11—C120.9 (2)
C5—C6—C7—N30.31 (19)C10—C9—C13—C12ii179.15 (12)
C5—C6—C7—C8179.27 (12)C10—C9—C13—C13ii0.4 (2)
C6—C7—C8—N1i175.10 (12)C10—C11—C12—C13ii0.0 (2)
C7—N3—C3—C2178.57 (11)C13—C9—C10—C111.0 (2)
C7—N3—C3—C41.16 (19)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O1iii0.845 (19)2.029 (19)2.8712 (15)174.4 (18)
N2—H2···O3i0.85 (2)2.55 (2)3.2286 (16)136.9 (17)
N2—H2···O50.85 (2)2.30 (2)2.8118 (15)118.4 (16)
N3—H3···O50.86 (2)1.94 (2)2.7733 (15)163 (2)
Symmetry codes: (i) x+1, y+1, z+1; (iii) x+2, y+1, z+1.
4,14-Dioxo-3,5,13,15,21,22-hexaazatricyclo[15.3.1.17,11]docosa-1(21),7(22),8,10,17,19-hexaene-21,22-diium naphthalene-1,5-disulfonate dimethyl sulfoxide monosolvate (pbu_ndsa) top
Crystal data top
C16H20N6O22+·C10H6O6S22·C2H6OSF(000) = 1448
Mr = 692.77Dx = 1.537 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 8.9076 (4) ÅCell parameters from 9930 reflections
b = 25.5878 (11) Åθ = 2.6–27.1°
c = 13.6411 (6) ŵ = 0.31 mm1
β = 105.644 (2)°T = 200 K
V = 2994.0 (2) Å3Wedge, colourless
Z = 40.22 × 0.18 × 0.14 mm
Data collection top
Bruker D8 Quest
diffractometer
6634 independent reflections
Radiation source: microfocus sealed X-ray tube, Incoatec Iµs5142 reflections with I > 2σ(I)
Mirror optics monochromatorRint = 0.065
Detector resolution: 10.4 pixels mm-1θmax = 27.2°, θmin = 2.2°
ω and φ scansh = 1111
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
k = 3232
Tmin = 0.773, Tmax = 0.862l = 1717
52398 measured reflections
Refinement top
Refinement on F2Hydrogen site location: mixed
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.039 w = 1/[σ2(Fo2) + (0.031P)2 + 2.4238P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.091(Δ/σ)max = 0.001
S = 1.03Δρmax = 0.48 e Å3
6634 reflectionsΔρmin = 0.38 e Å3
442 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.00059 (16)
Primary atom site location: dual
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Crystals formed as clusters of colorless wedge-shaped crystals from which individual single crystals were cleaved apart. The crystals visibly fractured when placed in to the diffractometer cold stream at 100 K. Crystal integrity was maintained upon flash-cooling the crystals to 200 K, at which temperature data were collected. The temperature at which the material undergoes the crystallinity-destroying transition is not known. X-ray intensities were measured using a Bruker D8 QUEST diffractometer equipped with a PHOTON-100 CMOS area detector and an Incoatec microfocus source. The raw area detector data frames were reduced and corrected for absorption effects using the Bruker APEX3, SAINT+ and SADABS programs. Final unit-cell parameters were determined by least-squares refinement of 9930 reflections taken from the data set. The structure was solved with SHELXT. Subsequent difference Fourier calculations and full-matrix least-squares refinement against F2 were performed with SHELXL2017 using OLEX2. The compound crystallizes in the monoclinic system. The pattern of systematic absences in the intensity data was consistent with the space group P21/n, which was confirmed by structure solution. The asymmetric unit consists of one complete C16H20N6O22+ cation, half each of two C10H6O6S22- anions and one C2H6SO molecule. Both C10H6O6S2- anions are located on crystallographic inversion centers. All non-hydrogen atoms were refined with anisotropic displacement parameters. Hydrogen atoms bonded to carbon were located in Fourier difference maps before being placed in geometrically idealized positions and included as riding atoms with d(C—H) = 0.95 A and Uiso(H) = 1.2Ueq(C) for aromatic hydrogen atoms, d(C—H) = 0.99 A and Uiso(H) = 1.2Ueq(C) for methylene hydrogen atoms, and d(C—H) = 0.98 A and Uiso(H) = 1.5Ueq(C) for methyl H atoms. The methyl H atoms were allowed to rotate as a rigid group to the orientation of maximum observed electron density. The six unique hydrogen atoms bonded to nitrogen were located in difference maps and refined freely. The largest residual electron density peak in the final difference map is 0.48 e-/A3, located 1.01 A from C31.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.14704 (16)0.25475 (5)0.70006 (10)0.0273 (3)
O20.82446 (15)0.26036 (5)0.45086 (10)0.0256 (3)
N11.21232 (19)0.30250 (6)0.57785 (13)0.0212 (3)
H11.238 (3)0.3032 (8)0.5243 (17)0.028 (6)*
N21.19305 (19)0.21318 (6)0.56434 (13)0.0226 (4)
H21.221 (2)0.2161 (8)0.5102 (17)0.025 (6)*
N30.91563 (19)0.16183 (7)0.54030 (13)0.0237 (4)
H30.933 (3)0.1873 (10)0.504 (2)0.049 (8)*
N40.5996 (2)0.22025 (7)0.45905 (14)0.0286 (4)
H40.503 (3)0.2252 (9)0.4459 (17)0.029 (6)*
N50.6093 (2)0.30934 (7)0.44549 (14)0.0282 (4)
H50.514 (3)0.3082 (9)0.4360 (17)0.034 (7)*
N60.94343 (19)0.35932 (6)0.54606 (12)0.0211 (3)
H60.964 (3)0.3389 (10)0.5023 (19)0.044 (7)*
C11.1812 (2)0.25681 (7)0.61904 (14)0.0195 (4)
C21.1972 (2)0.16280 (8)0.61198 (17)0.0281 (5)
H2A1.2592250.1655290.6838830.034*
H2B1.2506080.1377060.5775510.034*
C31.0381 (2)0.14171 (7)0.60884 (15)0.0235 (4)
C41.0135 (3)0.10070 (8)0.66869 (16)0.0290 (5)
H4A1.0986680.0854260.7177420.035*
C50.8647 (3)0.08225 (8)0.65656 (17)0.0337 (5)
H5A0.8463300.0547570.6987070.040*
C60.7413 (3)0.10366 (8)0.58300 (18)0.0329 (5)
H6A0.6386570.0906070.5740750.040*
C70.7680 (2)0.14402 (8)0.52272 (16)0.0251 (4)
C80.6491 (2)0.16846 (8)0.43619 (17)0.0310 (5)
H8A0.6927620.1710520.3768750.037*
H8B0.5566440.1453600.4168190.037*
C90.6855 (2)0.26322 (8)0.44995 (14)0.0231 (4)
C100.6830 (2)0.35805 (8)0.43099 (15)0.0271 (4)
H10A0.6016590.3849450.4064480.032*
H10B0.7388820.3531880.3779840.032*
C110.7959 (2)0.37701 (7)0.52699 (14)0.0208 (4)
C120.7602 (2)0.41029 (7)0.59634 (16)0.0255 (4)
H120.6568790.4229940.5857320.031*
C130.8754 (2)0.42522 (8)0.68170 (16)0.0274 (5)
H130.8517480.4486370.7294850.033*
C141.0251 (2)0.40604 (7)0.69742 (15)0.0240 (4)
H141.1044080.4161250.7561810.029*
C151.0592 (2)0.37229 (7)0.62777 (14)0.0196 (4)
C161.2181 (2)0.35027 (7)0.63490 (15)0.0242 (4)
H16A1.2798370.3765160.6091740.029*
H16B1.2721320.3434750.7072720.029*
S21.15740 (6)0.41264 (2)0.36116 (4)0.02325 (12)
O211.05263 (18)0.37030 (5)0.37035 (11)0.0328 (4)
O221.31909 (18)0.39627 (6)0.38710 (12)0.0382 (4)
O231.10614 (18)0.44032 (6)0.26547 (11)0.0336 (4)
C221.1460 (2)0.45892 (7)0.45807 (14)0.0194 (4)
C231.2790 (2)0.47002 (7)0.53217 (15)0.0237 (4)
H231.3749490.4547860.5291510.028*
C241.2759 (2)0.50382 (7)0.61314 (15)0.0237 (4)
H241.3690490.5105690.6649930.028*
C251.1399 (2)0.52691 (7)0.61752 (14)0.0206 (4)
H251.1392560.5495980.6725370.025*
C261.0011 (2)0.48255 (7)0.45930 (14)0.0175 (4)
S11.12368 (6)0.09233 (2)0.35432 (4)0.02462 (12)
O111.00857 (19)0.13071 (6)0.36473 (12)0.0376 (4)
O121.27974 (18)0.11384 (6)0.37669 (12)0.0389 (4)
O131.07702 (18)0.06376 (6)0.25914 (11)0.0340 (4)
C171.1310 (2)0.04509 (7)0.45248 (14)0.0201 (4)
C181.2702 (2)0.03665 (7)0.52257 (15)0.0249 (4)
H181.3609050.0542720.5160460.030*
C191.2810 (2)0.00201 (8)0.60465 (16)0.0266 (4)
H191.3782350.0029630.6537880.032*
C201.1522 (2)0.02439 (7)0.61374 (15)0.0230 (4)
H201.1606840.0474380.6695700.028*
C210.9939 (2)0.01790 (7)0.45889 (13)0.0181 (4)
S30.22270 (6)0.27338 (2)0.28689 (4)0.02191 (12)
O310.29552 (15)0.26400 (5)0.40013 (10)0.0222 (3)
C310.2914 (3)0.22068 (9)0.22520 (16)0.0334 (5)
H31A0.4018870.2260880.2293230.050*
H31B0.2312530.2192560.1535970.050*
H31C0.2789570.1877320.2587800.050*
C320.0268 (2)0.25268 (9)0.26502 (17)0.0325 (5)
H32A0.0245490.2167900.2896770.049*
H32B0.0249380.2539710.1919080.049*
H32C0.0275640.2758040.3013710.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0262 (8)0.0349 (8)0.0232 (7)0.0004 (6)0.0105 (6)0.0017 (6)
O20.0157 (7)0.0343 (8)0.0264 (7)0.0012 (6)0.0047 (6)0.0016 (6)
N10.0225 (9)0.0208 (8)0.0217 (9)0.0030 (6)0.0081 (7)0.0010 (7)
N20.0236 (9)0.0218 (8)0.0229 (9)0.0023 (7)0.0071 (7)0.0014 (7)
N30.0241 (9)0.0248 (9)0.0224 (9)0.0058 (7)0.0067 (7)0.0009 (7)
N40.0145 (9)0.0362 (10)0.0338 (10)0.0034 (7)0.0042 (8)0.0010 (8)
N50.0129 (9)0.0369 (10)0.0332 (10)0.0004 (7)0.0035 (7)0.0024 (8)
N60.0208 (8)0.0229 (8)0.0195 (9)0.0036 (7)0.0053 (7)0.0001 (7)
C10.0118 (9)0.0254 (10)0.0199 (10)0.0004 (7)0.0019 (7)0.0005 (7)
C20.0244 (11)0.0219 (10)0.0349 (12)0.0021 (8)0.0024 (9)0.0010 (8)
C30.0267 (11)0.0209 (9)0.0223 (10)0.0013 (8)0.0054 (8)0.0046 (8)
C40.0390 (13)0.0239 (10)0.0264 (11)0.0022 (9)0.0130 (9)0.0011 (8)
C50.0447 (14)0.0254 (11)0.0397 (13)0.0003 (10)0.0266 (11)0.0016 (9)
C60.0329 (12)0.0292 (11)0.0443 (13)0.0084 (9)0.0236 (11)0.0075 (10)
C70.0227 (10)0.0260 (10)0.0290 (11)0.0063 (8)0.0112 (8)0.0095 (8)
C80.0222 (11)0.0361 (12)0.0325 (12)0.0091 (9)0.0035 (9)0.0073 (9)
C90.0171 (10)0.0363 (11)0.0142 (9)0.0011 (8)0.0012 (7)0.0025 (8)
C100.0198 (10)0.0350 (11)0.0245 (11)0.0049 (8)0.0029 (8)0.0050 (8)
C110.0174 (9)0.0216 (9)0.0244 (10)0.0024 (7)0.0073 (8)0.0066 (8)
C120.0225 (10)0.0225 (10)0.0356 (12)0.0026 (8)0.0149 (9)0.0051 (8)
C130.0351 (12)0.0205 (10)0.0323 (12)0.0021 (8)0.0189 (10)0.0038 (8)
C140.0285 (11)0.0203 (9)0.0231 (10)0.0042 (8)0.0064 (8)0.0015 (8)
C150.0202 (10)0.0171 (9)0.0207 (10)0.0013 (7)0.0042 (8)0.0025 (7)
C160.0194 (10)0.0215 (10)0.0283 (11)0.0013 (8)0.0007 (8)0.0014 (8)
S20.0278 (3)0.0196 (2)0.0266 (3)0.00356 (19)0.0147 (2)0.00263 (19)
O210.0459 (9)0.0216 (7)0.0386 (9)0.0057 (7)0.0245 (7)0.0083 (6)
O220.0314 (9)0.0393 (9)0.0464 (10)0.0119 (7)0.0148 (7)0.0107 (7)
O230.0452 (9)0.0344 (8)0.0270 (8)0.0073 (7)0.0196 (7)0.0032 (6)
C220.0231 (10)0.0141 (8)0.0228 (10)0.0014 (7)0.0090 (8)0.0011 (7)
C230.0212 (10)0.0189 (9)0.0318 (11)0.0047 (8)0.0089 (9)0.0022 (8)
C240.0208 (10)0.0205 (9)0.0270 (11)0.0007 (8)0.0016 (8)0.0004 (8)
C250.0241 (10)0.0165 (9)0.0215 (10)0.0002 (7)0.0068 (8)0.0001 (7)
C260.0210 (10)0.0127 (8)0.0201 (10)0.0002 (7)0.0079 (8)0.0029 (7)
S10.0303 (3)0.0232 (2)0.0222 (3)0.0048 (2)0.0103 (2)0.00447 (19)
O110.0530 (10)0.0253 (8)0.0387 (9)0.0093 (7)0.0196 (8)0.0107 (7)
O120.0385 (9)0.0396 (9)0.0382 (9)0.0182 (7)0.0097 (7)0.0092 (7)
O130.0386 (9)0.0431 (9)0.0238 (8)0.0107 (7)0.0144 (7)0.0022 (6)
C170.0243 (10)0.0162 (9)0.0214 (10)0.0011 (7)0.0086 (8)0.0006 (7)
C180.0223 (10)0.0218 (10)0.0311 (11)0.0054 (8)0.0082 (9)0.0006 (8)
C190.0203 (10)0.0273 (10)0.0285 (11)0.0006 (8)0.0000 (8)0.0035 (8)
C200.0256 (11)0.0208 (9)0.0212 (10)0.0020 (8)0.0041 (8)0.0057 (7)
C210.0227 (10)0.0145 (8)0.0180 (9)0.0002 (7)0.0071 (8)0.0008 (7)
S30.0214 (2)0.0215 (2)0.0217 (2)0.00154 (19)0.00384 (19)0.00153 (18)
O310.0168 (7)0.0297 (7)0.0193 (7)0.0008 (5)0.0032 (5)0.0016 (5)
C310.0376 (13)0.0402 (13)0.0249 (11)0.0056 (10)0.0128 (10)0.0030 (9)
C320.0192 (11)0.0386 (12)0.0351 (12)0.0003 (9)0.0008 (9)0.0035 (10)
Geometric parameters (Å, º) top
O1—C11.224 (2)C14—H140.9500
O2—C91.236 (2)C14—C151.377 (3)
N1—H10.82 (2)C15—C161.503 (3)
N1—C11.358 (2)C16—H16A0.9900
N1—C161.442 (2)C16—H16B0.9900
N2—H20.84 (2)S2—O211.4573 (15)
N2—C11.363 (2)S2—O221.4492 (15)
N2—C21.440 (2)S2—O231.4467 (15)
N3—H30.86 (3)S2—C221.7979 (19)
N3—C31.334 (3)C22—C231.364 (3)
N3—C71.350 (2)C22—C261.429 (3)
N4—H40.84 (2)C23—H230.9500
N4—C81.457 (3)C23—C241.409 (3)
N4—C91.364 (3)C24—H240.9500
N5—H50.83 (2)C24—C251.363 (3)
N5—C91.354 (3)C25—H250.9500
N5—C101.447 (3)C25—C26i1.423 (3)
N6—H60.85 (3)C26—C26i1.429 (4)
N6—C111.347 (2)S1—O111.4540 (16)
N6—C151.340 (2)S1—O121.4490 (15)
C2—H2A0.9900S1—O131.4500 (15)
C2—H2B0.9900S1—C171.7920 (19)
C2—C31.506 (3)C17—C181.364 (3)
C3—C41.383 (3)C17—C211.429 (3)
C4—H4A0.9500C18—H180.9500
C4—C51.375 (3)C18—C191.411 (3)
C5—H5A0.9500C19—H190.9500
C5—C61.386 (3)C19—C201.365 (3)
C6—H6A0.9500C20—H200.9500
C6—C71.380 (3)C20—C21ii1.417 (3)
C7—C81.494 (3)C21—C21ii1.429 (3)
C8—H8A0.9900S3—O311.5245 (14)
C8—H8B0.9900S3—C311.783 (2)
C10—H10A0.9900S3—C321.770 (2)
C10—H10B0.9900C31—H31A0.9800
C10—C111.500 (3)C31—H31B0.9800
C11—C121.372 (3)C31—H31C0.9800
C12—H120.9500C32—H32A0.9800
C12—C131.382 (3)C32—H32B0.9800
C13—H130.9500C32—H32C0.9800
C13—C141.383 (3)
C1—N1—H1121.5 (16)C15—C14—H14120.1
C1—N1—C16119.22 (17)N6—C15—C14117.78 (18)
C16—N1—H1118.9 (16)N6—C15—C16117.47 (16)
C1—N2—H2119.4 (15)C14—C15—C16124.72 (17)
C1—N2—C2118.86 (17)N1—C16—C15112.74 (16)
C2—N2—H2119.8 (15)N1—C16—H16A109.0
C3—N3—H3117.0 (18)N1—C16—H16B109.0
C3—N3—C7124.55 (18)C15—C16—H16A109.0
C7—N3—H3118.4 (18)C15—C16—H16B109.0
C8—N4—H4116.2 (15)H16A—C16—H16B107.8
C9—N4—H4115.4 (16)O21—S2—C22105.18 (8)
C9—N4—C8120.26 (17)O22—S2—O21112.42 (9)
C9—N5—H5117.4 (17)O22—S2—C22105.10 (9)
C9—N5—C10121.09 (17)O23—S2—O21112.83 (10)
C10—N5—H5119.6 (17)O23—S2—O22114.39 (9)
C11—N6—H6117.2 (17)O23—S2—C22105.92 (8)
C15—N6—H6118.1 (17)C23—C22—S2118.15 (14)
C15—N6—C11124.68 (17)C23—C22—C26120.66 (17)
O1—C1—N1122.61 (18)C26—C22—S2121.18 (14)
O1—C1—N2122.27 (18)C22—C23—H23119.6
N1—C1—N2115.11 (17)C22—C23—C24120.76 (18)
N2—C2—H2A108.9C24—C23—H23119.6
N2—C2—H2B108.9C23—C24—H24119.8
N2—C2—C3113.50 (17)C25—C24—C23120.41 (18)
H2A—C2—H2B107.7C25—C24—H24119.8
C3—C2—H2A108.9C24—C25—H25119.6
C3—C2—H2B108.9C24—C25—C26i120.82 (17)
N3—C3—C2117.84 (17)C26i—C25—H25119.6
N3—C3—C4118.49 (19)C22—C26—C26i118.4 (2)
C4—C3—C2123.55 (19)C25i—C26—C22122.67 (16)
C3—C4—H4A120.3C25i—C26—C26i118.9 (2)
C5—C4—C3119.4 (2)O11—S1—C17105.48 (9)
C5—C4—H4A120.3O12—S1—O11112.62 (10)
C4—C5—H5A119.9O12—S1—O13114.03 (9)
C4—C5—C6120.1 (2)O12—S1—C17105.04 (9)
C6—C5—H5A119.9O13—S1—O11112.87 (10)
C5—C6—H6A120.1O13—S1—C17105.83 (9)
C7—C6—C5119.8 (2)C18—C17—S1118.25 (14)
C7—C6—H6A120.1C18—C17—C21120.73 (17)
N3—C7—C6117.6 (2)C21—C17—S1121.00 (14)
N3—C7—C8116.61 (18)C17—C18—H18119.7
C6—C7—C8125.76 (19)C17—C18—C19120.68 (18)
N4—C8—C7113.76 (17)C19—C18—H18119.7
N4—C8—H8A108.8C18—C19—H19119.9
N4—C8—H8B108.8C20—C19—C18120.25 (18)
C7—C8—H8A108.8C20—C19—H19119.9
C7—C8—H8B108.8C19—C20—H20119.5
H8A—C8—H8B107.7C19—C20—C21ii120.94 (18)
O2—C9—N4122.41 (19)C21ii—C20—H20119.5
O2—C9—N5122.69 (19)C17—C21—C21ii118.3 (2)
N5—C9—N4114.80 (18)C20ii—C21—C17122.63 (17)
N5—C10—H10A109.1C20ii—C21—C21ii119.0 (2)
N5—C10—H10B109.1O31—S3—C31104.63 (9)
N5—C10—C11112.41 (16)O31—S3—C32104.74 (9)
H10A—C10—H10B107.9C32—S3—C3198.19 (11)
C11—C10—H10A109.1S3—C31—H31A109.5
C11—C10—H10B109.1S3—C31—H31B109.5
N6—C11—C10116.68 (17)S3—C31—H31C109.5
N6—C11—C12118.07 (18)H31A—C31—H31B109.5
C12—C11—C10125.25 (18)H31A—C31—H31C109.5
C11—C12—H12120.2H31B—C31—H31C109.5
C11—C12—C13119.68 (18)S3—C32—H32A109.5
C13—C12—H12120.2S3—C32—H32B109.5
C12—C13—H13120.1S3—C32—H32C109.5
C12—C13—C14119.89 (18)H32A—C32—H32B109.5
C14—C13—H13120.1H32A—C32—H32C109.5
C13—C14—H14120.1H32B—C32—H32C109.5
C15—C14—C13119.89 (19)
Symmetry codes: (i) x+2, y+1, z+1; (ii) x+2, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O31iii0.82 (2)2.15 (2)2.892 (2)151 (2)
N2—H2···O31iii0.84 (2)2.18 (2)2.940 (2)151 (2)
N3—H3···O20.86 (3)2.14 (3)2.823 (2)136 (2)
N3—H3···O110.86 (3)2.62 (3)2.851 (2)96.8 (19)
N4—H4···O310.84 (2)2.04 (2)2.839 (2)158 (2)
N5—H5···O310.83 (2)2.19 (2)2.934 (2)150 (2)
N6—H6···O20.85 (3)2.37 (3)2.912 (2)122 (2)
N6—H6···O210.85 (3)2.30 (3)2.833 (2)121 (2)
Symmetry code: (iii) x+1, y, z.
Geometrical data for hydrogen bonding in DMSO-solvated salts (2) and (3) top
Molecular saltD—H···AD—HH···AD···AD—H···A
(2)N1—H1···O1i0.845 (19)2.029 (19)2.8712 (15)174.4 (18)
N2—H2···O3ii0.85 (2)2.55 (2)3.2286 (16)136.9 (17)
N3—H3···O50.86 (2)1.94 (2)2.7733 (15)163.0 (2)
(3)N1—H1···O31iii0.82 (2)2.15 (2)2.892 (2)151.0 (2)
N2—H2···O31iii0.84 (2)2.18 (2)2.940 (2)151.0 (2)
N3—H3···O20.86 (3)2.14 (3)2.823 (2)136.0 (2)
N3—H3···O110.86 (3)2.62 (3)2.851 (2)96.8 (19)
N4—H4···O310.84 (2)2.04 (2)2.839 (2)158.0 (2)
N5—H5···O310.83 (2)2.19 (2)2.934 (2)150.0 (2)
N6—H6···O20.85 (3)2.37 (3)2.912 (2)122.0 (2)
N6—H6···O210.85 (3)2.30 (3)2.833 (2)121.0 (2)
Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1; (iii) x+1, y, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds