Download citation
Download citation
link to html
The crystal structures of three first-row transition metal–pyridine–sulfate com­plexes, namely catena-poly[[tetra­kis­(pyridine-κN)nickel(II)]-μ-sulfato-κ2O:O′], [Ni(SO4)(C5H5N)4]n, (1), di-μ-sulfato-κ4O:O-bis­[tris­(pyridine-κN)cop­per(II)], [Cu2(SO4)2(C5H5N)6], (2), and catena-poly[[tetra­kis­(pyridine-κN)zinc(II)]-μ-sulfato-κ2O:O′-[bis­(pyridine-κN)zinc(II)]-μ-sulfato-κ2O:O′], [Zn2(SO4)2(C5H5N)6]n, (3), are reported. Ni compound (1) displays a polymeric crystal structure, with infinite chains of NiII atoms adopting an octa­hedral N4O2 coordination environment that involves four pyridine ligands and two bridging sulfate ligands. Cu compound (2) features a dimeric molecular structure, with the CuII atoms possessing square-pyramidal N3O2 coordination environments that contain three pyridine ligands and two bridging sulfate ligands. Zn compound (3) exhibits a polymeric crystal structure of infinite chains, with two alternating zinc coordination environments, i.e. octa­hedral N4O2 coordination involving four pyridine ligands and two bridging sulfate ligands, and tetra­hedral N2O2 coordination containing two pyridine ligands and two bridging sulfate ligands. The observed coordination environments are consistent with those predicted by crystal field theory.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229618001547/fn3254sup1.cif
Contains datablocks UMD1285_a, UMD1091_a, UMD1296, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001547/fn3254UMD1285_asup2.hkl
Contains datablock UMD1285_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001547/fn3254UMD1091_asup3.hkl
Contains datablock UMD1091_a

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229618001547/fn3254UMD1296sup4.hkl
Contains datablock UMD1296

CCDC references: 1818915; 1818914; 1818913

Computing details top

Data collection: APEX3 (Bruker, 2016) for UMD1285_a, UMD1296; APEX2 (Bruker, 2016) for UMD1091_a. For all structures, cell refinement: SAINT (Bruker, 2016); data reduction: SAINT (Bruker, 2016); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2 (Dolomanov et al., 2009).

catena-Poly[[tetrakis(pyridine-κN)nickel(II)]-µ-sulfato-κ2O:O'] (UMD1285_a) top
Crystal data top
[Ni(SO4)(C5H5N)4]F(000) = 976
Mr = 471.17Dx = 1.533 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.6370 (9) ÅCell parameters from 9889 reflections
b = 18.0065 (18) Åθ = 2.9–25.4°
c = 12.4723 (13) ŵ = 1.09 mm1
β = 109.396 (3)°T = 200 K
V = 2041.5 (4) Å3Block, green
Z = 40.2 × 0.14 × 0.12 mm
Data collection top
Bruker APEXIII CMOS
diffractometer
3279 reflections with I > 2σ(I)
φ and ω scansRint = 0.047
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.4°, θmin = 3.2°
Tmin = 0.215, Tmax = 0.259h = 1111
72344 measured reflectionsk = 2121
3743 independent reflectionsl = 1515
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.093 w = 1/[σ2(Fo2) + (0.0225P)2 + 5.8638P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max < 0.001
3743 reflectionsΔρmax = 0.49 e Å3
271 parametersΔρmin = 0.39 e Å3
0 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.26956 (4)0.26345 (2)0.45601 (3)0.01793 (11)
S10.29287 (8)0.32844 (4)0.72492 (6)0.02024 (16)
O10.2542 (3)0.30017 (14)0.60842 (18)0.0348 (5)
O20.1988 (4)0.39076 (16)0.7252 (3)0.0624 (9)
O30.4477 (3)0.34843 (17)0.7677 (2)0.0521 (8)
O40.2661 (2)0.26674 (12)0.79449 (17)0.0279 (5)
N10.0612 (3)0.21403 (14)0.4261 (2)0.0260 (6)
N20.3731 (3)0.16598 (14)0.5388 (2)0.0236 (5)
N30.1622 (3)0.36269 (14)0.3767 (2)0.0213 (5)
N40.4713 (3)0.31862 (13)0.4862 (2)0.0214 (5)
C10.0255 (4)0.1842 (2)0.5115 (3)0.0387 (9)
H1A0.09510.18620.58620.046*
C20.1086 (4)0.1505 (2)0.4954 (4)0.0542 (12)
H2A0.12960.12870.55760.065*
C30.2116 (4)0.1490 (2)0.3879 (4)0.0499 (11)
H3A0.30480.12640.37500.060*
C40.1771 (4)0.1805 (2)0.3006 (4)0.0442 (10)
H4A0.24720.18130.22620.053*
C50.0392 (4)0.21147 (19)0.3214 (3)0.0334 (8)
H5A0.01470.23160.25960.040*
C60.4830 (4)0.1687 (2)0.6388 (3)0.0354 (8)
H6A0.51760.21580.67080.042*
C70.5475 (5)0.1056 (2)0.6968 (3)0.0535 (11)
H7A0.62760.10970.76590.064*
C80.4956 (5)0.0369 (2)0.6545 (4)0.0546 (12)
H8A0.53770.00710.69420.066*
C90.3813 (5)0.0334 (2)0.5534 (3)0.0434 (9)
H9A0.34160.01320.52230.052*
C100.3249 (4)0.09875 (18)0.4974 (3)0.0292 (7)
H10A0.24830.09570.42610.035*
C110.0596 (3)0.39587 (18)0.4104 (3)0.0280 (7)
H11A0.03850.37640.47410.034*
C120.0170 (4)0.45771 (18)0.3556 (3)0.0320 (7)
H12A0.09060.47960.38060.038*
C130.0147 (4)0.48711 (18)0.2643 (3)0.0328 (8)
H13A0.03670.52950.22540.039*
C140.1223 (4)0.45399 (19)0.2304 (3)0.0335 (7)
H14A0.14760.47360.16870.040*
C150.1929 (3)0.39138 (16)0.2885 (2)0.0243 (6)
H15A0.26600.36810.26440.029*
C160.4936 (3)0.38521 (17)0.5364 (3)0.0254 (6)
H16A0.41710.40660.55850.030*
C170.6236 (4)0.42406 (18)0.5575 (3)0.0325 (7)
H17A0.63580.47150.59280.039*
C180.7350 (4)0.3932 (2)0.5265 (3)0.0379 (8)
H18A0.82560.41870.54040.045*
C190.7128 (4)0.3245 (2)0.4749 (3)0.0369 (8)
H19A0.78820.30180.45300.044*
C200.5794 (3)0.28913 (19)0.4554 (3)0.0289 (7)
H20A0.56410.24210.41870.035*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01880 (19)0.01861 (19)0.01523 (18)0.00063 (14)0.00411 (14)0.00002 (14)
S10.0260 (4)0.0184 (3)0.0160 (3)0.0026 (3)0.0066 (3)0.0009 (3)
O10.0431 (14)0.0470 (14)0.0162 (11)0.0034 (11)0.0126 (10)0.0032 (10)
O20.101 (3)0.0413 (16)0.0538 (18)0.0445 (17)0.0369 (18)0.0113 (14)
O30.0381 (15)0.0672 (19)0.0368 (15)0.0282 (14)0.0065 (12)0.0153 (13)
O40.0370 (12)0.0287 (12)0.0176 (10)0.0058 (10)0.0084 (9)0.0046 (9)
N10.0202 (13)0.0265 (14)0.0286 (14)0.0009 (10)0.0044 (11)0.0028 (11)
N20.0286 (13)0.0232 (13)0.0204 (13)0.0010 (11)0.0098 (11)0.0014 (10)
N30.0208 (12)0.0229 (13)0.0185 (12)0.0011 (10)0.0042 (10)0.0017 (10)
N40.0231 (13)0.0224 (13)0.0179 (12)0.0015 (10)0.0057 (10)0.0011 (10)
C10.0264 (17)0.043 (2)0.043 (2)0.0011 (15)0.0064 (15)0.0189 (17)
C20.032 (2)0.051 (2)0.079 (3)0.0017 (18)0.019 (2)0.032 (2)
C30.0231 (18)0.0309 (19)0.090 (3)0.0023 (15)0.012 (2)0.000 (2)
C40.0277 (18)0.044 (2)0.049 (2)0.0011 (16)0.0029 (16)0.0178 (18)
C50.0285 (17)0.0376 (19)0.0285 (17)0.0011 (14)0.0021 (14)0.0081 (14)
C60.0376 (19)0.0387 (19)0.0242 (17)0.0105 (15)0.0028 (14)0.0006 (14)
C70.060 (3)0.059 (3)0.032 (2)0.028 (2)0.0030 (19)0.0065 (19)
C80.085 (3)0.043 (2)0.046 (2)0.035 (2)0.034 (2)0.0220 (19)
C90.067 (3)0.0248 (18)0.049 (2)0.0078 (17)0.034 (2)0.0058 (16)
C100.0370 (18)0.0257 (16)0.0284 (17)0.0000 (14)0.0155 (14)0.0017 (13)
C110.0276 (16)0.0291 (17)0.0303 (17)0.0011 (13)0.0136 (14)0.0014 (13)
C120.0294 (17)0.0302 (17)0.0353 (18)0.0077 (14)0.0095 (14)0.0051 (14)
C130.0370 (18)0.0257 (17)0.0286 (18)0.0096 (14)0.0016 (14)0.0022 (13)
C140.043 (2)0.0301 (17)0.0270 (17)0.0027 (15)0.0105 (15)0.0027 (14)
C150.0292 (16)0.0229 (15)0.0209 (15)0.0016 (12)0.0087 (13)0.0014 (12)
C160.0300 (16)0.0229 (15)0.0217 (15)0.0007 (13)0.0065 (13)0.0000 (12)
C170.0383 (19)0.0250 (16)0.0308 (18)0.0090 (14)0.0069 (15)0.0032 (13)
C180.0330 (18)0.043 (2)0.037 (2)0.0167 (16)0.0109 (15)0.0050 (16)
C190.0294 (17)0.046 (2)0.040 (2)0.0081 (16)0.0176 (15)0.0108 (16)
C200.0266 (16)0.0329 (17)0.0272 (16)0.0022 (13)0.0090 (13)0.0077 (14)
Geometric parameters (Å, º) top
Ni1—O12.064 (2)C6—H6A0.9500
Ni1—O4i2.076 (2)C6—C71.379 (5)
Ni1—N12.113 (3)C7—H7A0.9500
Ni1—N22.111 (3)C7—C81.373 (6)
Ni1—N32.136 (2)C8—H8A0.9500
Ni1—N42.103 (2)C8—C91.373 (6)
S1—O11.466 (2)C9—H9A0.9500
S1—O21.443 (3)C9—C101.385 (5)
S1—O31.454 (3)C10—H10A0.9500
S1—O41.484 (2)C11—H11A0.9500
O4—Ni1ii2.076 (2)C11—C121.385 (5)
N1—C11.337 (4)C12—H12A0.9500
N1—C51.342 (4)C12—C131.378 (5)
N2—C61.343 (4)C13—H13A0.9500
N2—C101.337 (4)C13—C141.378 (5)
N3—C111.337 (4)C14—H14A0.9500
N3—C151.335 (4)C14—C151.389 (4)
N4—C161.337 (4)C15—H15A0.9500
N4—C201.334 (4)C16—H16A0.9500
C1—H1A0.9500C16—C171.382 (4)
C1—C21.380 (5)C17—H17A0.9500
C2—H2A0.9500C17—C181.373 (5)
C2—C31.378 (6)C18—H18A0.9500
C3—H3A0.9500C18—C191.377 (5)
C3—C41.364 (6)C19—H19A0.9500
C4—H4A0.9500C19—C201.382 (5)
C4—C51.384 (5)C20—H20A0.9500
C5—H5A0.9500
O1—Ni1—O4i174.06 (9)N1—C5—H5A118.9
O1—Ni1—N186.73 (10)C4—C5—H5A118.9
O1—Ni1—N289.02 (10)N2—C6—H6A118.8
O1—Ni1—N389.21 (10)N2—C6—C7122.4 (4)
O1—Ni1—N491.65 (10)C7—C6—H6A118.8
O4i—Ni1—N190.57 (10)C6—C7—H7A120.1
O4i—Ni1—N296.28 (9)C8—C7—C6119.9 (4)
O4i—Ni1—N385.45 (9)C8—C7—H7A120.1
O4i—Ni1—N490.76 (9)C7—C8—H8A120.9
N1—Ni1—N389.12 (10)C7—C8—C9118.2 (3)
N2—Ni1—N190.19 (10)C9—C8—H8A120.9
N2—Ni1—N3178.14 (9)C8—C9—H9A120.5
N4—Ni1—N1176.69 (10)C8—C9—C10119.0 (4)
N4—Ni1—N292.68 (10)C10—C9—H9A120.5
N4—Ni1—N387.96 (9)N2—C10—C9123.2 (3)
O1—S1—O4106.45 (13)N2—C10—H10A118.4
O2—S1—O1108.63 (16)C9—C10—H10A118.4
O2—S1—O3112.1 (2)N3—C11—H11A118.9
O2—S1—O4110.42 (16)N3—C11—C12122.2 (3)
O3—S1—O1110.01 (16)C12—C11—H11A118.9
O3—S1—O4109.11 (14)C11—C12—H12A120.4
S1—O1—Ni1162.09 (16)C13—C12—C11119.3 (3)
S1—O4—Ni1ii144.43 (14)C13—C12—H12A120.4
C1—N1—Ni1120.6 (2)C12—C13—H13A120.6
C1—N1—C5117.9 (3)C12—C13—C14118.8 (3)
C5—N1—Ni1121.5 (2)C14—C13—H13A120.6
C6—N2—Ni1121.5 (2)C13—C14—H14A120.7
C10—N2—Ni1121.1 (2)C13—C14—C15118.7 (3)
C10—N2—C6117.2 (3)C15—C14—H14A120.7
C11—N3—Ni1121.6 (2)N3—C15—C14122.6 (3)
C15—N3—Ni1120.0 (2)N3—C15—H15A118.7
C15—N3—C11118.4 (3)C14—C15—H15A118.7
C16—N4—Ni1120.2 (2)N4—C16—H16A118.8
C20—N4—Ni1121.6 (2)N4—C16—C17122.5 (3)
C20—N4—C16118.2 (3)C17—C16—H16A118.8
N1—C1—H1A118.8C16—C17—H17A120.5
N1—C1—C2122.4 (4)C18—C17—C16119.1 (3)
C2—C1—H1A118.8C18—C17—H17A120.5
C1—C2—H2A120.4C17—C18—H18A120.7
C3—C2—C1119.2 (4)C17—C18—C19118.7 (3)
C3—C2—H2A120.4C19—C18—H18A120.7
C2—C3—H3A120.7C18—C19—H19A120.4
C4—C3—C2118.7 (3)C18—C19—C20119.2 (3)
C4—C3—H3A120.7C20—C19—H19A120.4
C3—C4—H4A120.3N4—C20—C19122.3 (3)
C3—C4—C5119.5 (4)N4—C20—H20A118.8
C5—C4—H4A120.3C19—C20—H20A118.8
N1—C5—C4122.2 (3)
Ni1—N1—C1—C2179.1 (3)C1—C2—C3—C40.4 (6)
Ni1—N1—C5—C4178.8 (3)C2—C3—C4—C51.6 (6)
Ni1—N2—C6—C7176.9 (3)C3—C4—C5—N12.5 (6)
Ni1—N2—C10—C9174.5 (3)C5—N1—C1—C20.8 (5)
Ni1—N3—C11—C12176.1 (2)C6—N2—C10—C91.0 (5)
Ni1—N3—C15—C14177.3 (2)C6—C7—C8—C91.1 (6)
Ni1—N4—C16—C17179.5 (2)C7—C8—C9—C101.1 (6)
Ni1—N4—C20—C19179.8 (3)C8—C9—C10—N22.3 (5)
O1—S1—O4—Ni1ii177.4 (2)C10—N2—C6—C71.4 (5)
O2—S1—O1—Ni1129.4 (5)C11—N3—C15—C140.2 (4)
O2—S1—O4—Ni1ii59.7 (3)C11—C12—C13—C140.1 (5)
O3—S1—O1—Ni16.4 (6)C12—C13—C14—C151.1 (5)
O3—S1—O4—Ni1ii63.9 (3)C13—C14—C15—N31.0 (5)
O4—S1—O1—Ni1111.7 (5)C15—N3—C11—C121.3 (5)
N1—C1—C2—C31.6 (6)C16—N4—C20—C190.8 (5)
N2—C6—C7—C82.5 (6)C16—C17—C18—C190.3 (5)
N3—C11—C12—C131.1 (5)C17—C18—C19—C200.3 (5)
N4—C16—C17—C180.5 (5)C18—C19—C20—N40.9 (5)
C1—N1—C5—C41.2 (5)C20—N4—C16—C170.1 (4)
Symmetry codes: (i) x, y+1/2, z1/2; (ii) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O10.952.522.985 (4)110
C5—H5A···O4i0.952.593.095 (4)113
C10—H10A···S1i0.953.013.559 (3)118
C10—H10A···O2i0.952.403.208 (5)143
C11—H11A···O10.952.593.083 (4)113
C15—H15A···O4i0.952.462.928 (4)111
C20—H20A···O3i0.952.463.354 (4)157
Symmetry code: (i) x, y+1/2, z1/2.
Di-µ-sulfato-κ4O:O-bis[tris(pyridine-κN)copper(II)] (UMD1091_a) top
Crystal data top
[Cu2(SO4)2(C5H5N)6]F(000) = 812
Mr = 793.80Dx = 1.723 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 9.0147 (4) ÅCell parameters from 9132 reflections
b = 18.5456 (7) Åθ = 2.9–25.7°
c = 9.6355 (4) ŵ = 1.59 mm1
β = 108.191 (1)°T = 200 K
V = 1530.38 (11) Å3Block, blue
Z = 20.24 × 0.2 × 0.2 mm
Data collection top
Bruker CMOS
diffractometer
2614 reflections with I > 2σ(I)
φ and ω scansRint = 0.041
Absorption correction: multi-scan
(SADABS; Bruker, 2014)
θmax = 25.7°, θmin = 3.1°
Tmin = 0.226, Tmax = 0.259h = 1011
37745 measured reflectionsk = 2222
2904 independent reflectionsl = 1111
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.022 w = 1/[σ2(Fo2) + (0.0215P)2 + 1.4607P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.055(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.28 e Å3
2904 reflectionsΔρmin = 0.31 e Å3
218 parametersExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 restraintsExtinction coefficient: 0.0123 (6)
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.33166 (2)0.54421 (2)0.46286 (2)0.01329 (9)
S10.30845 (5)0.41053 (2)0.62080 (5)0.01411 (11)
O10.42399 (14)0.45307 (6)0.56285 (13)0.0148 (3)
O20.38792 (16)0.39592 (8)0.77495 (14)0.0263 (3)
O30.17338 (15)0.45837 (7)0.59806 (16)0.0246 (3)
O40.26653 (16)0.34418 (7)0.53642 (15)0.0229 (3)
N10.23407 (18)0.49026 (8)0.27389 (16)0.0162 (3)
N20.22025 (17)0.63296 (8)0.35850 (16)0.0154 (3)
N30.40156 (18)0.60213 (8)0.65143 (16)0.0153 (3)
C10.2987 (2)0.49312 (10)0.1657 (2)0.0186 (4)
H1A0.39050.52110.17960.022*
C20.2366 (3)0.45686 (11)0.0349 (2)0.0246 (4)
H2A0.28460.45980.03990.030*
C30.1027 (3)0.41615 (11)0.0155 (2)0.0301 (5)
H3A0.05740.39060.07300.036*
C40.0359 (3)0.41311 (11)0.1261 (2)0.0287 (5)
H4A0.05570.38540.11470.034*
C50.1040 (2)0.45093 (10)0.2535 (2)0.0220 (4)
H5A0.05720.44910.32920.026*
C60.2702 (2)0.67040 (10)0.2625 (2)0.0198 (4)
H6A0.36740.65800.24990.024*
C70.1843 (2)0.72651 (11)0.1815 (2)0.0242 (4)
H7A0.22220.75190.11380.029*
C80.0431 (2)0.74542 (10)0.1995 (2)0.0237 (4)
H8A0.01790.78350.14430.028*
C90.0072 (2)0.70735 (11)0.3002 (2)0.0241 (4)
H9A0.10280.71960.31640.029*
C100.0832 (2)0.65144 (10)0.3767 (2)0.0195 (4)
H10A0.04730.62510.44450.023*
C110.3486 (2)0.58962 (10)0.7653 (2)0.0197 (4)
H11A0.27170.55340.75640.024*
C120.4023 (3)0.62778 (11)0.8945 (2)0.0251 (4)
H12A0.36460.61700.97390.030*
C130.5113 (2)0.68172 (11)0.9072 (2)0.0265 (5)
H13A0.55030.70830.99540.032*
C140.5625 (2)0.69626 (11)0.7891 (2)0.0242 (4)
H14A0.63500.73410.79380.029*
C150.5071 (2)0.65515 (10)0.6645 (2)0.0196 (4)
H15A0.54480.66460.58460.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01582 (13)0.01228 (12)0.01069 (12)0.00011 (8)0.00257 (8)0.00006 (8)
S10.0143 (2)0.0142 (2)0.0144 (2)0.00128 (16)0.00522 (17)0.00127 (17)
O10.0149 (6)0.0144 (6)0.0155 (6)0.0020 (5)0.0051 (5)0.0022 (5)
O20.0269 (8)0.0370 (8)0.0152 (7)0.0020 (6)0.0070 (6)0.0073 (6)
O30.0155 (7)0.0217 (7)0.0359 (8)0.0012 (6)0.0071 (6)0.0030 (6)
O40.0280 (8)0.0155 (7)0.0275 (8)0.0065 (6)0.0121 (6)0.0031 (6)
N10.0174 (8)0.0146 (7)0.0137 (8)0.0013 (6)0.0008 (6)0.0007 (6)
N20.0163 (8)0.0151 (7)0.0129 (7)0.0021 (6)0.0020 (6)0.0020 (6)
N30.0174 (8)0.0133 (7)0.0146 (8)0.0022 (6)0.0040 (6)0.0007 (6)
C10.0185 (9)0.0176 (9)0.0177 (9)0.0030 (8)0.0027 (8)0.0024 (8)
C20.0315 (11)0.0243 (10)0.0164 (10)0.0081 (9)0.0050 (8)0.0008 (8)
C30.0382 (12)0.0219 (10)0.0209 (11)0.0004 (9)0.0041 (9)0.0065 (9)
C40.0263 (11)0.0229 (10)0.0287 (11)0.0067 (9)0.0033 (9)0.0008 (9)
C50.0206 (10)0.0212 (10)0.0217 (10)0.0017 (8)0.0032 (8)0.0040 (8)
C60.0175 (9)0.0201 (9)0.0223 (10)0.0001 (8)0.0068 (8)0.0014 (8)
C70.0249 (10)0.0221 (10)0.0251 (11)0.0021 (8)0.0069 (8)0.0071 (8)
C80.0233 (10)0.0157 (9)0.0267 (11)0.0022 (8)0.0003 (8)0.0004 (8)
C90.0178 (10)0.0260 (10)0.0276 (11)0.0037 (8)0.0058 (8)0.0038 (8)
C100.0192 (10)0.0217 (10)0.0182 (9)0.0027 (8)0.0066 (8)0.0017 (8)
C110.0227 (10)0.0188 (9)0.0182 (10)0.0013 (8)0.0074 (8)0.0016 (8)
C120.0339 (12)0.0261 (11)0.0170 (10)0.0051 (9)0.0103 (9)0.0001 (8)
C130.0318 (11)0.0237 (10)0.0183 (10)0.0050 (9)0.0003 (9)0.0085 (8)
C140.0214 (10)0.0180 (10)0.0296 (11)0.0025 (8)0.0030 (9)0.0058 (8)
C150.0211 (10)0.0166 (9)0.0220 (10)0.0006 (7)0.0083 (8)0.0003 (8)
Geometric parameters (Å, º) top
Cu1—O11.9943 (12)C4—H4A0.9500
Cu1—O1i2.2927 (12)C4—C51.381 (3)
Cu1—N12.0224 (15)C5—H5A0.9500
Cu1—N22.0244 (15)C6—H6A0.9500
Cu1—N32.0341 (15)C6—C71.384 (3)
S1—O11.5434 (13)C7—H7A0.9500
S1—O21.4589 (14)C7—C81.383 (3)
S1—O31.4668 (14)C8—H8A0.9500
S1—O41.4581 (14)C8—C91.385 (3)
O1—Cu1i2.2927 (12)C9—H9A0.9500
N1—C11.345 (2)C9—C101.381 (3)
N1—C51.342 (2)C10—H10A0.9500
N2—C61.342 (2)C11—H11A0.9500
N2—C101.345 (2)C11—C121.382 (3)
N3—C111.346 (2)C12—H12A0.9500
N3—C151.346 (2)C12—C131.381 (3)
C1—H1A0.9500C13—H13A0.9500
C1—C21.383 (3)C13—C141.381 (3)
C2—H2A0.9500C14—H14A0.9500
C2—C31.386 (3)C14—C151.378 (3)
C3—H3A0.9500C15—H15A0.9500
C3—C41.379 (3)
O1—Cu1—O1i78.51 (5)C3—C4—H4A120.4
O1—Cu1—N190.82 (6)C3—C4—C5119.1 (2)
O1—Cu1—N2175.23 (6)C5—C4—H4A120.4
O1—Cu1—N392.86 (5)N1—C5—C4122.10 (19)
N1—Cu1—O1i94.37 (5)N1—C5—H5A119.0
N1—Cu1—N286.91 (6)C4—C5—H5A119.0
N1—Cu1—N3172.68 (6)N2—C6—H6A119.0
N2—Cu1—O1i105.83 (5)N2—C6—C7121.93 (18)
N2—Cu1—N388.95 (6)C7—C6—H6A119.0
N3—Cu1—O1i92.56 (5)C6—C7—H7A120.2
O2—S1—O1106.91 (8)C8—C7—C6119.67 (19)
O2—S1—O3112.66 (9)C8—C7—H7A120.2
O3—S1—O1105.02 (8)C7—C8—H8A120.9
O4—S1—O1108.45 (7)C7—C8—C9118.29 (18)
O4—S1—O2111.74 (9)C9—C8—H8A120.9
O4—S1—O3111.64 (8)C8—C9—H9A120.4
Cu1—O1—Cu1i101.49 (5)C10—C9—C8119.28 (18)
S1—O1—Cu1i146.09 (7)C10—C9—H9A120.4
S1—O1—Cu1112.40 (7)N2—C10—C9122.30 (18)
C1—N1—Cu1120.43 (13)N2—C10—H10A118.9
C5—N1—Cu1121.00 (13)C9—C10—H10A118.9
C5—N1—C1118.57 (16)N3—C11—H11A118.9
C6—N2—Cu1122.81 (13)N3—C11—C12122.17 (18)
C6—N2—C10118.52 (16)C12—C11—H11A118.9
C10—N2—Cu1118.41 (13)C11—C12—H12A120.3
C11—N3—Cu1123.16 (13)C13—C12—C11119.34 (19)
C11—N3—C15118.01 (16)C13—C12—H12A120.3
C15—N3—Cu1118.83 (12)C12—C13—H13A120.6
N1—C1—H1A118.7C12—C13—C14118.72 (18)
N1—C1—C2122.50 (18)C14—C13—H13A120.6
C2—C1—H1A118.7C13—C14—H14A120.5
C1—C2—H2A120.8C15—C14—C13119.08 (19)
C1—C2—C3118.3 (2)C15—C14—H14A120.5
C3—C2—H2A120.8N3—C15—C14122.63 (18)
C2—C3—H3A120.3N3—C15—H15A118.7
C4—C3—C2119.38 (19)C14—C15—H15A118.7
C4—C3—H3A120.3
Cu1—N1—C1—C2179.67 (14)C1—N1—C5—C40.6 (3)
Cu1—N1—C5—C4179.41 (15)C1—C2—C3—C40.1 (3)
Cu1—N2—C6—C7173.42 (15)C2—C3—C4—C50.1 (3)
Cu1—N2—C10—C9174.34 (15)C3—C4—C5—N10.5 (3)
Cu1—N3—C11—C12177.39 (14)C5—N1—C1—C20.3 (3)
Cu1—N3—C15—C14178.99 (15)C6—N2—C10—C90.0 (3)
O2—S1—O1—Cu1i54.46 (15)C6—C7—C8—C90.5 (3)
O2—S1—O1—Cu1127.34 (8)C7—C8—C9—C101.1 (3)
O3—S1—O1—Cu1i174.36 (12)C8—C9—C10—N20.9 (3)
O3—S1—O1—Cu17.45 (10)C10—N2—C6—C70.7 (3)
O4—S1—O1—Cu1i66.17 (15)C11—N3—C15—C140.3 (3)
O4—S1—O1—Cu1112.02 (8)C11—C12—C13—C140.5 (3)
N1—C1—C2—C30.0 (3)C12—C13—C14—C152.0 (3)
N2—C6—C7—C80.4 (3)C13—C14—C15—N31.6 (3)
N3—C11—C12—C131.5 (3)C15—N3—C11—C121.9 (3)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O1i0.952.573.163 (2)121
C1—H1A···O2i0.952.453.396 (2)174
C2—H2A···O2ii0.952.553.397 (3)149
C5—H5A···O30.952.483.183 (3)131
C6—H6A···O2i0.952.503.440 (2)170
C9—H9A···O4iii0.952.633.340 (2)132
C10—H10A···O3iii0.952.453.147 (2)130
C11—H11A···S10.953.023.576 (2)119
C11—H11A···O30.952.323.070 (2)136
C14—H14A···O4iv0.952.593.333 (2)135
C15—H15A···O4i0.952.353.222 (2)153
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y, z1; (iii) x, y+1, z+1; (iv) x+1, y+1/2, z+3/2.
catena-Poly[[tetrakis(pyridine-κN)zinc(II)]-µ-sulfato-κ2O:O'-[bis(pyridine-κN)zinc(II)]-µ-sulfato-κ2O:O'] (UMD1296) top
Crystal data top
[Zn2(SO4)2(C5H5N)6]Dx = 1.580 Mg m3
Mr = 797.46Mo Kα radiation, λ = 0.71073 Å
Trigonal, P3121Cell parameters from 9863 reflections
a = 10.5383 (10) Åθ = 3.2–25.6°
c = 26.135 (3) ŵ = 1.61 mm1
V = 2513.5 (5) Å3T = 200 K
Z = 3Block, colourless
F(000) = 12240.34 × 0.15 × 0.14 mm
Data collection top
Bruker APEX-III CMOS
diffractometer
3039 reflections with I > 2σ(I)
φ and ω scansRint = 0.036
Absorption correction: multi-scan
(SADABS; Bruker, 2016)
θmax = 25.7°, θmin = 3.2°
Tmin = 0.598, Tmax = 0.754h = 1212
68074 measured reflectionsk = 1212
3183 independent reflectionsl = 3131
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0267P)2 + 0.6802P]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.018(Δ/σ)max = 0.001
wR(F2) = 0.045Δρmax = 0.21 e Å3
S = 1.00Δρmin = 0.18 e Å3
3183 reflectionsExtinction correction: SHELXL2014 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
219 parametersExtinction coefficient: 0.0037 (6)
0 restraintsAbsolute structure: Flack x determined using 1240 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.004 (3)
Hydrogen site location: inferred from neighbouring sites
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn11.00001.01827 (3)0.16670.02079 (11)
Zn20.70511 (4)0.70511 (4)0.00000.02290 (12)
S10.70074 (7)0.90587 (6)0.08225 (2)0.02090 (14)
O10.8125 (2)0.9323 (2)0.12076 (7)0.0360 (5)
O20.6788 (3)1.0302 (2)0.07833 (8)0.0418 (5)
O30.5669 (2)0.7690 (2)0.09268 (8)0.0392 (5)
O40.7620 (2)0.8909 (2)0.03187 (6)0.0340 (4)
N11.0933 (2)1.2137 (2)0.11751 (8)0.0262 (4)
N21.1140 (2)0.9269 (2)0.12359 (7)0.0239 (4)
N30.6647 (2)0.5299 (2)0.04345 (8)0.0259 (5)
C11.0711 (3)1.2026 (3)0.06682 (10)0.0341 (6)
H1A1.01721.10770.05210.041*
C21.1231 (4)1.3230 (3)0.03504 (11)0.0440 (8)
H2A1.10771.31110.00090.053*
C31.1976 (4)1.4603 (4)0.05634 (12)0.0488 (8)
H3A1.23211.54510.03550.059*
C41.2217 (4)1.4735 (3)0.10865 (12)0.0452 (7)
H4A1.27401.56720.12430.054*
C51.1684 (3)1.3479 (3)0.13745 (10)0.0317 (6)
H5A1.18601.35710.17330.038*
C61.0686 (3)0.8642 (3)0.07773 (10)0.0321 (6)
H6A0.97950.85260.06450.039*
C71.1451 (3)0.8156 (3)0.04872 (10)0.0367 (7)
H7A1.10960.77230.01610.044*
C81.2737 (3)0.8306 (3)0.06768 (10)0.0341 (6)
H8A1.32880.79870.04830.041*
C91.3211 (3)0.8928 (3)0.11522 (11)0.0360 (7)
H9A1.40920.90410.12940.043*
C101.2382 (3)0.9381 (3)0.14183 (11)0.0346 (7)
H10A1.27060.97960.17480.042*
C110.5465 (3)0.4616 (3)0.07328 (11)0.0389 (7)
H11A0.48310.50110.07610.047*
C120.5128 (4)0.3360 (3)0.10020 (12)0.0458 (8)
H12A0.42760.29000.12110.055*
C130.6033 (4)0.2786 (3)0.09647 (12)0.0429 (7)
H13A0.58110.19110.11410.052*
C140.7278 (4)0.3497 (3)0.06660 (11)0.0431 (7)
H14A0.79350.31300.06400.052*
C150.7552 (3)0.4744 (3)0.04071 (10)0.0334 (6)
H15A0.84080.52310.02020.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.0203 (2)0.01975 (16)0.02253 (19)0.01013 (10)0.00147 (15)0.00074 (8)
Zn20.02289 (17)0.02289 (17)0.0266 (2)0.01424 (18)0.00146 (8)0.00146 (8)
S10.0219 (3)0.0200 (3)0.0246 (3)0.0133 (3)0.0017 (2)0.0000 (2)
O10.0302 (10)0.0353 (11)0.0328 (9)0.0091 (9)0.0110 (8)0.0057 (8)
O20.0542 (14)0.0363 (12)0.0524 (12)0.0359 (11)0.0089 (11)0.0083 (10)
O30.0236 (10)0.0303 (11)0.0557 (12)0.0075 (9)0.0017 (8)0.0039 (9)
O40.0487 (12)0.0295 (10)0.0264 (8)0.0213 (9)0.0051 (8)0.0007 (8)
N10.0229 (11)0.0254 (11)0.0287 (10)0.0109 (10)0.0016 (10)0.0016 (9)
N20.0232 (11)0.0237 (12)0.0261 (10)0.0127 (9)0.0004 (9)0.0016 (9)
N30.0315 (12)0.0235 (11)0.0269 (11)0.0169 (10)0.0037 (9)0.0007 (9)
C10.0327 (16)0.0318 (15)0.0298 (13)0.0101 (13)0.0017 (12)0.0015 (11)
C20.0425 (18)0.0429 (18)0.0325 (15)0.0108 (15)0.0018 (13)0.0103 (13)
C30.056 (2)0.0365 (17)0.0439 (16)0.0150 (17)0.0067 (15)0.0199 (14)
C40.0502 (19)0.0225 (14)0.0515 (17)0.0097 (15)0.0027 (15)0.0026 (13)
C50.0337 (15)0.0262 (13)0.0331 (13)0.0132 (13)0.0002 (12)0.0012 (11)
C60.0299 (14)0.0391 (17)0.0324 (13)0.0211 (13)0.0058 (11)0.0068 (12)
C70.0425 (18)0.0456 (18)0.0298 (13)0.0279 (15)0.0061 (12)0.0119 (13)
C80.0361 (16)0.0351 (15)0.0378 (15)0.0227 (14)0.0059 (13)0.0028 (12)
C90.0302 (15)0.0426 (17)0.0441 (16)0.0247 (14)0.0050 (12)0.0063 (13)
C100.0361 (16)0.0416 (17)0.0341 (14)0.0254 (14)0.0098 (12)0.0113 (12)
C110.0362 (16)0.0328 (16)0.0523 (17)0.0206 (13)0.0049 (14)0.0071 (14)
C120.0441 (19)0.0350 (16)0.0533 (18)0.0160 (15)0.0081 (16)0.0134 (14)
C130.057 (2)0.0286 (15)0.0456 (16)0.0228 (15)0.0049 (15)0.0087 (13)
C140.058 (2)0.0416 (18)0.0477 (17)0.0379 (17)0.0027 (15)0.0028 (14)
C150.0391 (17)0.0333 (15)0.0368 (15)0.0249 (14)0.0005 (12)0.0013 (11)
Geometric parameters (Å, º) top
Zn1—O1i2.0913 (18)C3—H3A0.9500
Zn1—O12.0913 (18)C3—C41.385 (4)
Zn1—N1i2.199 (2)C4—H4A0.9500
Zn1—N12.199 (2)C4—C51.375 (4)
Zn1—N22.190 (2)C5—H5A0.9500
Zn1—N2i2.190 (2)C6—H6A0.9500
Zn2—O41.9273 (18)C6—C71.379 (4)
Zn2—O4ii1.9273 (18)C7—H7A0.9500
Zn2—N3ii2.023 (2)C7—C81.375 (4)
Zn2—N32.023 (2)C8—H8A0.9500
S1—O11.4663 (18)C8—C91.377 (4)
S1—O21.4428 (19)C9—H9A0.9500
S1—O31.452 (2)C9—C101.376 (4)
S1—O41.5088 (18)C10—H10A0.9500
N1—C11.340 (3)C11—H11A0.9500
N1—C51.334 (3)C11—C121.380 (4)
N2—C61.336 (3)C12—H12A0.9500
N2—C101.341 (3)C12—C131.364 (5)
N3—C111.334 (4)C13—H13A0.9500
N3—C151.347 (3)C13—C141.382 (5)
C1—H1A0.9500C14—H14A0.9500
C1—C21.380 (4)C14—C151.374 (4)
C2—H2A0.9500C15—H15A0.9500
C2—C31.373 (5)
O1i—Zn1—O1175.52 (12)C3—C2—C1118.7 (3)
O1i—Zn1—N189.46 (9)C3—C2—H2A120.7
O1i—Zn1—N1i87.35 (7)C2—C3—H3A120.5
O1—Zn1—N1i89.46 (9)C2—C3—C4119.0 (3)
O1—Zn1—N187.35 (7)C4—C3—H3A120.5
O1i—Zn1—N286.23 (8)C3—C4—H4A120.7
O1—Zn1—N296.98 (8)C5—C4—C3118.6 (3)
O1i—Zn1—N2i96.98 (8)C5—C4—H4A120.7
O1—Zn1—N2i86.23 (8)N1—C5—C4123.2 (2)
N1—Zn1—N1i89.02 (11)N1—C5—H5A118.4
N2i—Zn1—N1i91.42 (8)C4—C5—H5A118.4
N2i—Zn1—N1173.55 (8)N2—C6—H6A118.5
N2—Zn1—N191.43 (8)N2—C6—C7123.1 (3)
N2—Zn1—N1i173.55 (8)C7—C6—H6A118.5
N2—Zn1—N2i88.86 (11)C6—C7—H7A120.5
O4—Zn2—O4ii96.86 (12)C8—C7—C6119.0 (3)
O4—Zn2—N3120.09 (8)C8—C7—H7A120.5
O4ii—Zn2—N3ii120.08 (8)C7—C8—H8A120.6
O4—Zn2—N3ii104.12 (8)C7—C8—C9118.8 (3)
O4ii—Zn2—N3104.12 (8)C9—C8—H8A120.6
N3—Zn2—N3ii111.67 (13)C8—C9—H9A120.7
O1—S1—O4105.90 (12)C10—C9—C8118.6 (3)
O2—S1—O1110.76 (13)C10—C9—H9A120.7
O2—S1—O3113.46 (13)N2—C10—C9123.4 (2)
O2—S1—O4107.67 (12)N2—C10—H10A118.3
O3—S1—O1110.42 (12)C9—C10—H10A118.3
O3—S1—O4108.29 (12)N3—C11—H11A118.7
S1—O1—Zn1166.23 (13)N3—C11—C12122.6 (3)
S1—O4—Zn2123.45 (11)C12—C11—H11A118.7
C1—N1—Zn1121.29 (18)C11—C12—H12A120.4
C5—N1—Zn1121.01 (16)C13—C12—C11119.1 (3)
C5—N1—C1117.6 (2)C13—C12—H12A120.4
C6—N2—Zn1122.62 (17)C12—C13—H13A120.5
C6—N2—C10117.1 (2)C12—C13—C14119.0 (3)
C10—N2—Zn1120.26 (17)C14—C13—H13A120.5
C11—N3—Zn2122.29 (18)C13—C14—H14A120.5
C11—N3—C15118.0 (2)C15—C14—C13119.0 (3)
C15—N3—Zn2119.64 (18)C15—C14—H14A120.5
N1—C1—H1A118.5N3—C15—C14122.2 (3)
N1—C1—C2122.9 (3)N3—C15—H15A118.9
C2—C1—H1A118.5C14—C15—H15A118.9
C1—C2—H2A120.7
Zn1—N1—C1—C2177.4 (2)C1—N1—C5—C40.8 (4)
Zn1—N1—C5—C4176.2 (2)C1—C2—C3—C41.9 (5)
Zn1—N2—C6—C7175.3 (2)C2—C3—C4—C50.8 (5)
Zn1—N2—C10—C9175.2 (2)C3—C4—C5—N10.6 (5)
Zn2—N3—C11—C12175.3 (2)C5—N1—C1—C20.4 (4)
Zn2—N3—C15—C14175.4 (2)C6—N2—C10—C91.9 (4)
O1—S1—O4—Zn2100.82 (15)C6—C7—C8—C90.5 (4)
O2—S1—O1—Zn147.1 (6)C7—C8—C9—C100.3 (4)
O2—S1—O4—Zn2140.65 (14)C8—C9—C10—N20.9 (5)
O3—S1—O1—Zn1173.6 (6)C10—N2—C6—C71.7 (4)
O3—S1—O4—Zn217.61 (17)C11—N3—C15—C141.3 (4)
O4—S1—O1—Zn169.4 (6)C11—C12—C13—C141.3 (5)
N1—C1—C2—C31.7 (5)C12—C13—C14—C151.3 (5)
N2—C6—C7—C80.5 (5)C13—C14—C15—N30.0 (5)
N3—C11—C12—C130.1 (5)C15—N3—C11—C121.4 (4)
Symmetry codes: (i) x+2, x+y+1, z+1/3; (ii) y, x, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···S10.953.033.602 (3)120
C1—H1A···O40.952.573.397 (3)146
C5—H5A···O2i0.952.593.460 (3)153
C6—H6A···O40.952.663.587 (3)166
C7—H7A···O2ii0.952.633.581 (3)174
C7—H7A···O4ii0.952.583.228 (3)126
C10—H10A···S1i0.953.003.830 (3)147
C10—H10A···O1i0.952.282.896 (3)122
C11—H11A···O30.952.543.178 (4)125
C14—H14A···O2iii0.952.623.157 (4)116
Symmetry codes: (i) x+2, x+y+1, z+1/3; (ii) y, x, z; (iii) x, y1, z.
Geometric parameters (Å, °) for complexes (I)–(III) top
NickelCopperZinc (octahedral)Zinc (tetrahedral)
M—ONi1—O12.064 (2)Cu1—O11.9943 (12)Zn1—O12.0913 (18)Zn2—O41.9273 (18)
Ni1—O4i2.076 (2)Cu1—O1ii2.2927 (12)
M–NNi1—N12.113 (3)Cu1—N12.0224 (15)Zn1—N12.199 (2)Zn2—N32.023 (2)
Ni1—N22.111 (3)Cu1—N22.0244 (15)Zn1—N22.190 (2)
Ni1—N32.136 (2)Cu1—N32.0341 (15)
Ni1—N42.103 (2)
O—M—OO1—Ni1—O4i174.06 (9)O1—Cu1—O1ii78.51 (5)O1—Zn1—O1iii175.52 (12)O4—Zn2—O4iv96.86 (12)
N—M—NN1—Ni1—N290.19 (10)N1—Cu1—N286.91 (6)N1—Zn1—N1iii89.02 (11)N3—Zn2—N3iv111.67 (13)
N1—Ni1—N389.12 (10)N1—Cu1—N3172.68 (6)N1—Zn1—N291.43 (8)
N1—Ni1—N4176.69 (10)N2—Cu1—N388.95 (6)N1—Zn1—N2iii173.55 (8)
N2—Ni1—N3178.14 (9)
N2—Ni1—N492.68 (10)
N3—Ni1—N487.96 (6)
Symmetry codes: (i) x, -y+1/2, z-1/2; (ii) -x+1, -y+1, -z+1; (iii) -x+2, -x+y+1, -z+1/3; (iv) x, y, -z.
Crystal field stabilization energy (CFSE) [units are Δq (Oh)] top
TetrahedralTrigonal bipyramidalSquare pyramidalOctahedral
Nickel (d8)3.566.271012
Copper (d9)1.787.099.146
Zinc (d10)0000
Observed geometries are highlighted in bold.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds