Download citation
Download citation
link to html
Because of their versatile coordination modes and strong coordination ability for metals, triazole ligands can provide a wide range of possibilities for the construction of metal–organic frameworks. Three transition-metal complexes, namely bis(μ-1,2,4-triazol-4-ide-3-carboxylato)-κ3N2,O:N13N1:N2,O-bis[triamminenickel(II)] tetrahydrate, [Ni2(C3HN3O2)2(NH3)6]·4H2O, (I), catena-poly[[[diamminediaquacopper(II)]-μ-1,2,4-triazol-4-ide-3-carboxylato-κ3N1:N4,O-[diamminecopper(II)]-μ-1,2,4-triazol-4-ide-3-carboxylato-κ3N4,O:N1] dihydrate], {[Cu2(C3HN3O2)2(NH3)4(H2O)2]·2H2O}n, (II), (μ-5-amino-1,2,4-triazol-1-ide-3-car­boxylato-κ2N1:N2)di-μ-hydroxido-κ4O:O-bis[triamminecobalt(III)] nitrate hy­droxide trihydrate, [Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2O, (III), with different structural forms have been prepared by the reaction of transition metal salts, i.e. NiCl2, CuCl2 and Co(NO3)2, with 1,2,4-triazole-3-carb­oxy­lic acid or 3-amino-1,2,4-triazole-5-carb­oxy­lic acid hemihydrate in aqueous ammonia at room temperature. Compound (I) is a dinuclear complex. Extensive O—H...O, O—H...N and N—H...O hydrogen bonds and π–π stacking inter­actions between the centroids of the triazole rings contribute to the formation of the three-dimensional supra­molecular structure. Compound (II) exhibits a one-dimensional chain structure, with O—H...O hydrogen bonds and weak O—H...N, N—H...O and C—H...O hydrogen bonds linking anions and lattice water mol­ecules into the three-dimensional supra­molecular structure. Com­pared with compound (I), compound (III) is a structurally different dinuclear complex. Extensive N—H...O, N—H...N, O—H...N and O—H...O hydrogen bonding occurs in the structure, leading to the formation of the three-dimensional supra­molecular structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2053229617012943/fp3038sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617012943/fp3038Isup3.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617012943/fp3038IIsup5.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2053229617012943/fp3038IIIsup6.hkl
Contains datablock III

CCDC references: 1400042; 1400043; 1400044

Computing details top

For all structures, data collection: CrystalStructure (Rigaku/MSC, 2006); cell refinement: CrystalStructure; data reduction: CrystalStructure; program(s) used to solve structure: SHELXL2014/7 (Sheldrick, 2015). Program(s) used to refine structure: SHELXL2014/7 (Sheldrick, 2015) for (I), (III); SHELXL2014/7 (Sheldrick, 2015)' for (II). For all structures, molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Bis(µ-1,2,4-triazol-4-ide-3-carboxylato)-κ3N2,O:N1;κ3N1:N2,O-bis[triamminenickel(II)] tetrahydrate (I) top
Crystal data top
[Ni2(C3HN3O2)2(NH3)6]·4H2OZ = 1
Mr = 513.78F(000) = 268
Triclinic, P1Dx = 1.698 Mg m3
a = 7.1226 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 9.0134 (18) ÅCell parameters from 4751 reflections
c = 9.1203 (18) Åθ = 3.2–25.0°
α = 103.16 (3)°µ = 1.94 mm1
β = 107.48 (3)°T = 293 K
γ = 106.69 (3)°Block, green
V = 502.4 (2) Å30.30 × 0.27 × 0.25 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1641 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.034
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
SADABS
h = 88
Tmin = 0.565, Tmax = 0.616k = 1010
3780 measured reflectionsl = 1010
1767 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.071H atoms treated by a mixture of independent and constrained refinement
S = 1.06 w = 1/[σ2(Fo2) + (0.0418P)2]
where P = (Fo2 + 2Fc2)/3
1767 reflections(Δ/σ)max < 0.001
166 parametersΔρmax = 0.37 e Å3
15 restraintsΔρmin = 0.34 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXTL

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.15773 (4)0.70968 (3)0.19786 (3)0.01892 (12)
N10.2355 (3)0.60104 (19)0.0094 (2)0.0205 (4)
N20.1393 (3)0.4702 (2)0.1341 (2)0.0215 (4)
N30.0181 (3)0.8213 (2)0.0404 (2)0.0273 (4)
H3A0.038 (4)0.752 (3)0.054 (2)0.033*
H3B0.085 (3)0.844 (3)0.049 (3)0.033*
H3C0.111 (3)0.907 (2)0.057 (3)0.033*
N40.4447 (3)0.6379 (2)0.1301 (2)0.0303 (4)
N50.1380 (3)0.8683 (2)0.3970 (2)0.0313 (4)
H5A0.069 (4)0.823 (3)0.454 (3)0.038*
H5B0.069 (4)0.926 (3)0.368 (3)0.038*
H5C0.260 (3)0.937 (3)0.471 (3)0.038*
N60.3062 (3)0.5928 (2)0.3453 (3)0.0322 (4)
H6A0.219 (4)0.511 (3)0.356 (3)0.039*
H6B0.377 (4)0.553 (3)0.299 (3)0.039*
H6C0.397 (4)0.659 (3)0.442 (2)0.039*
O10.7153 (3)0.94905 (19)0.1455 (2)0.0432 (5)
O20.4696 (2)0.88761 (18)0.25157 (18)0.0277 (4)
O3W0.9480 (3)0.7541 (2)0.6383 (2)0.0469 (5)
H3WA1.070 (3)0.820 (3)0.694 (4)0.070*
H3WB0.847 (3)0.775 (4)0.652 (4)0.070*
O4W0.6083 (3)0.8219 (2)0.6953 (2)0.0375 (4)
H4WA0.579 (5)0.769 (3)0.754 (3)0.056*
H4WB0.571 (5)0.902 (3)0.700 (4)0.056*
C10.4131 (3)0.6969 (2)0.0054 (2)0.0222 (4)
C20.2697 (4)0.4977 (3)0.2127 (3)0.0294 (5)
H20.24220.42650.31500.035*
C30.5471 (3)0.8585 (3)0.1445 (3)0.0262 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01801 (18)0.01723 (18)0.01874 (17)0.00398 (13)0.00777 (12)0.00403 (12)
N10.0178 (8)0.0180 (8)0.0221 (8)0.0042 (7)0.0081 (7)0.0036 (7)
N20.0221 (9)0.0172 (9)0.0222 (8)0.0041 (8)0.0100 (7)0.0041 (7)
N30.0258 (10)0.0259 (10)0.0300 (10)0.0099 (9)0.0112 (8)0.0090 (8)
N40.0259 (10)0.0270 (9)0.0333 (10)0.0026 (8)0.0174 (8)0.0039 (8)
N50.0363 (11)0.0268 (10)0.0278 (10)0.0079 (9)0.0165 (9)0.0046 (8)
N60.0311 (11)0.0284 (11)0.0303 (10)0.0077 (9)0.0072 (9)0.0094 (9)
O10.0260 (9)0.0289 (9)0.0577 (11)0.0060 (8)0.0245 (8)0.0050 (8)
O20.0229 (8)0.0233 (7)0.0293 (8)0.0036 (7)0.0110 (6)0.0014 (6)
O3W0.0462 (11)0.0399 (10)0.0430 (10)0.0044 (9)0.0217 (9)0.0032 (8)
O4W0.0473 (10)0.0311 (9)0.0383 (9)0.0131 (8)0.0229 (8)0.0133 (7)
C10.0187 (10)0.0207 (10)0.0261 (10)0.0062 (9)0.0102 (8)0.0059 (8)
C20.0285 (12)0.0261 (11)0.0287 (11)0.0041 (10)0.0163 (10)0.0021 (9)
C30.0200 (11)0.0216 (10)0.0303 (11)0.0060 (9)0.0077 (9)0.0022 (9)
Geometric parameters (Å, º) top
Ni1—N2i2.0745 (19)N5—H5A0.904 (17)
Ni1—N12.0825 (18)N5—H5B0.848 (17)
Ni1—N32.106 (2)N5—H5C0.863 (17)
Ni1—N52.110 (2)N6—H6A0.861 (17)
Ni1—N62.114 (2)N6—H6B0.857 (17)
Ni1—O22.1651 (18)N6—H6C0.864 (17)
N1—C11.327 (3)O1—C31.237 (3)
N1—N21.367 (2)O2—C31.272 (3)
N2—C21.337 (3)O3W—H3WA0.814 (17)
N2—Ni1i2.0745 (19)O3W—H3WB0.835 (17)
N3—H3A0.831 (16)O4W—H4WA0.827 (17)
N3—H3B0.833 (17)O4W—H4WB0.833 (17)
N3—H3C0.805 (16)C1—C31.508 (3)
N4—C11.341 (3)C2—H20.9300
N4—C21.348 (3)
N2i—Ni1—N199.08 (7)H3B—N3—H3C107 (3)
N2i—Ni1—N390.35 (8)C1—N4—C2101.33 (18)
N1—Ni1—N386.20 (8)Ni1—N5—H5A118.3 (16)
N2i—Ni1—N593.72 (9)Ni1—N5—H5B112.4 (18)
N1—Ni1—N5166.82 (7)H5A—N5—H5B101 (2)
N3—Ni1—N590.62 (8)Ni1—N5—H5C113.6 (17)
N2i—Ni1—N690.82 (8)H5A—N5—H5C104 (2)
N1—Ni1—N690.24 (8)H5B—N5—H5C106 (2)
N3—Ni1—N6176.38 (8)Ni1—N6—H6A114.2 (19)
N5—Ni1—N692.72 (9)Ni1—N6—H6B107.5 (19)
N2i—Ni1—O2176.40 (6)H6A—N6—H6B106 (2)
N1—Ni1—O277.32 (7)Ni1—N6—H6C113.8 (18)
N3—Ni1—O289.58 (8)H6A—N6—H6C108 (3)
N5—Ni1—O289.88 (8)H6B—N6—H6C106 (2)
N6—Ni1—O289.05 (8)C3—O2—Ni1115.74 (12)
C1—N1—N2106.05 (17)H3WA—O3W—H3WB120 (3)
C1—N1—Ni1114.02 (13)H4WA—O4W—H4WB116 (3)
N2—N1—Ni1138.46 (13)N1—C1—N4113.83 (17)
C2—N2—N1104.97 (16)N1—C1—C3118.14 (18)
C2—N2—Ni1i133.02 (14)N4—C1—C3127.96 (19)
N1—N2—Ni1i121.86 (14)N2—C2—N4113.81 (18)
Ni1—N3—H3A106.7 (17)N2—C2—H2123.1
Ni1—N3—H3B118.6 (19)N4—C2—H2123.1
H3A—N3—H3B101 (3)O1—C3—O2126.26 (18)
Ni1—N3—H3C106.5 (19)O1—C3—C1119.6 (2)
H3A—N3—H3C117 (3)O2—C3—C1114.12 (18)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3B···O1ii0.83 (2)2.20 (2)3.010 (3)163 (2)
N3—H3C···O4Wiii0.81 (2)2.65 (2)3.307 (3)139 (2)
N5—H5A···O3Wii0.90 (2)2.23 (2)3.123 (3)168 (2)
N5—H5C···O2iii0.86 (2)2.47 (2)3.286 (3)157 (2)
N6—H6A···O3Wiv0.86 (2)2.37 (2)3.193 (3)161 (3)
N6—H6C···O4W0.86 (2)2.21 (2)3.067 (3)175 (3)
O3W—H3WA···O1v0.81 (2)2.07 (2)2.805 (3)151 (3)
O3W—H3WB···O4W0.84 (2)1.99 (2)2.821 (3)177 (4)
O4W—H4WA···N4vi0.83 (2)1.99 (2)2.802 (3)168 (3)
O4W—H4WB···O2iii0.83 (2)1.97 (2)2.795 (2)169 (3)
Symmetry codes: (ii) x1, y, z; (iii) x+1, y+2, z+1; (iv) x+1, y+1, z+1; (v) x+2, y+2, z+1; (vi) x, y, z+1.
catena-Poly[[[diamminediaquacopper(II)]-µ-1,2,4-triazol-4-ide-3-carboxylato-κ3N1:N4,O-[diamminecopper(II)]-µ-1,2,4-triazol-4-ide-3-carboxylato-κ3N4,O:N1] dihydrate] (II) top
Crystal data top
[Cu(C3HN3O2)(NH3)2(H2O)]·H2OZ = 2
Mr = 244.72F(000) = 250
Triclinic, P1Dx = 1.880 Mg m3
a = 7.2183 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 7.4079 (15) ÅCell parameters from 4227 reflections
c = 9.887 (2) Åθ = 3.1–25.0°
α = 72.45 (3)°µ = 2.52 mm1
β = 68.82 (3)°T = 293 K
γ = 62.74 (3)°Block, blue
V = 432.3 (2) Å30.31 × 0.28 × 0.26 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
1248 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.055
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.1°
Absorption correction: multi-scan
SADABS
h = 88
Tmin = 0.509, Tmax = 0.560k = 88
3353 measured reflectionsl = 1111
1500 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.052Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.094P)2]
where P = (Fo2 + 2Fc2)/3
1500 reflections(Δ/σ)max < 0.001
123 parametersΔρmax = 1.40 e Å3
0 restraintsΔρmin = 0.67 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXTL

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.0203 (3)
Cu21.00000.00000.00000.0256 (3)
N10.8601 (6)0.0948 (5)0.1951 (4)0.0275 (8)
N20.8583 (6)0.0372 (5)0.3266 (4)0.0262 (8)
N31.1397 (6)0.2126 (6)0.0815 (4)0.0377 (9)
H3A1.04380.33430.11100.056*
H3B1.25340.17170.15740.056*
H3C1.18220.22360.01140.056*
N40.6732 (5)0.2867 (5)0.3698 (4)0.0210 (7)
N50.7753 (5)0.5002 (6)0.5067 (5)0.0391 (10)
H5A0.78650.45970.59880.059*
H5B0.77360.62680.47440.059*
H5C0.88770.41430.44980.059*
O10.7837 (6)0.1767 (5)0.6347 (4)0.0396 (9)
O20.5882 (5)0.1518 (5)0.6707 (3)0.0312 (7)
O3W1.3282 (5)0.2432 (5)0.1031 (4)0.0441 (9)
H3WA1.43560.29440.03890.066*
H3WB1.32170.17990.16300.066*
O4W0.2790 (7)0.3937 (6)0.1034 (4)0.0468 (10)
H4WA0.31100.27470.14950.070*
H4WB0.27560.48720.13440.070*
C10.7449 (6)0.0841 (6)0.4283 (4)0.0221 (9)
C20.7486 (6)0.2854 (7)0.2241 (5)0.0272 (10)
H20.72550.40300.15280.033*
C30.7024 (7)0.0138 (7)0.5917 (5)0.0257 (9)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0205 (4)0.0178 (4)0.0216 (5)0.0045 (3)0.0007 (3)0.0129 (3)
Cu20.0368 (5)0.0207 (5)0.0150 (4)0.0105 (3)0.0022 (3)0.0097 (3)
N10.0379 (19)0.0169 (17)0.0193 (18)0.0053 (15)0.0025 (16)0.0069 (14)
N20.0356 (19)0.0199 (17)0.0173 (17)0.0071 (14)0.0006 (15)0.0090 (14)
N30.042 (2)0.040 (2)0.034 (2)0.0165 (18)0.0026 (18)0.0167 (18)
N40.0249 (16)0.0171 (16)0.0167 (16)0.0040 (14)0.0012 (14)0.0094 (14)
N50.0250 (18)0.035 (2)0.063 (3)0.0070 (16)0.0108 (18)0.025 (2)
O10.061 (2)0.0268 (18)0.0216 (17)0.0126 (16)0.0044 (16)0.0059 (15)
O20.0408 (16)0.0273 (16)0.0186 (14)0.0091 (13)0.0001 (13)0.0113 (13)
O3W0.051 (2)0.044 (2)0.0364 (19)0.0145 (16)0.0108 (16)0.0119 (17)
O4W0.066 (2)0.041 (2)0.031 (2)0.0219 (19)0.0108 (19)0.0029 (17)
C10.029 (2)0.0179 (19)0.017 (2)0.0095 (16)0.0018 (17)0.0053 (16)
C20.036 (2)0.022 (2)0.020 (2)0.0079 (18)0.0001 (19)0.0125 (17)
C30.030 (2)0.026 (2)0.022 (2)0.0106 (18)0.0021 (18)0.0100 (19)
Geometric parameters (Å, º) top
Cu1—N4i1.992 (3)N3—H3B0.8900
Cu1—N41.992 (3)N3—H3C0.8900
Cu1—N52.013 (3)N4—C21.345 (5)
Cu1—N5i2.013 (3)N4—C11.355 (5)
Cu1—O2i2.560 (3)N5—H5A0.8900
Cu1—O22.560 (3)N5—H5B0.8900
Cu2—N11.999 (3)N5—H5C0.8900
Cu2—N1ii1.999 (3)O1—C31.256 (6)
Cu2—N32.061 (4)O2—C31.256 (5)
Cu2—N3ii2.061 (4)O3W—H3WA0.8171
Cu2—O3W2.574 (3)O3W—H3WB0.8365
Cu2—O3Wii2.574 (3)O4W—H4WA0.8282
N1—C21.327 (5)O4W—H4WB0.8248
N1—N21.370 (5)C1—C31.502 (6)
N2—C11.329 (5)C2—H20.9300
N3—H3A0.8900
N4i—Cu1—N4180.00 (16)N2—N1—Cu2123.3 (3)
N4i—Cu1—N590.48 (14)C1—N2—N1104.9 (3)
N4—Cu1—N589.52 (14)Cu2—N3—H3A109.5
N4i—Cu1—N5i89.52 (14)Cu2—N3—H3B109.5
N4—Cu1—N5i90.48 (14)H3A—N3—H3B109.5
N5—Cu1—N5i180.0Cu2—N3—H3C109.5
N4i—Cu1—O2i73.78 (12)H3A—N3—H3C109.5
N4—Cu1—O2i106.22 (12)H3B—N3—H3C109.5
N5—Cu1—O2i92.24 (14)C2—N4—C1103.3 (3)
N5i—Cu1—O2i87.76 (14)C2—N4—Cu1136.3 (3)
N4i—Cu1—O2106.22 (12)C1—N4—Cu1120.4 (3)
N4—Cu1—O273.78 (12)Cu1—N5—H5A109.5
N5—Cu1—O287.76 (14)Cu1—N5—H5B109.5
N5i—Cu1—O292.24 (14)H5A—N5—H5B109.5
O2i—Cu1—O2180.0Cu1—N5—H5C109.5
N1—Cu2—N1ii180.0H5A—N5—H5C109.5
N1—Cu2—N391.79 (15)H5B—N5—H5C109.5
N1ii—Cu2—N388.21 (15)C3—O2—Cu1107.8 (2)
N1—Cu2—N3ii88.21 (15)Cu2—O3W—H3WA112.1
N1ii—Cu2—N3ii91.79 (15)Cu2—O3W—H3WB103.6
N3—Cu2—N3ii180.0H3WA—O3W—H3WB125.4
N1—Cu2—O3W86.07 (13)H4WA—O4W—H4WB121.7
N1ii—Cu2—O3W93.93 (13)N2—C1—N4112.7 (3)
N3—Cu2—O3W87.72 (13)N2—C1—C3125.8 (3)
N3ii—Cu2—O3W92.28 (13)N4—C1—C3121.4 (3)
N1—Cu2—O3Wii93.93 (13)N1—C2—N4111.3 (4)
N1ii—Cu2—O3Wii86.07 (13)N1—C2—H2124.4
N3—Cu2—O3Wii92.28 (13)N4—C2—H2124.4
N3ii—Cu2—O3Wii87.72 (13)O1—C3—O2127.0 (4)
O3W—Cu2—O3Wii180.0O1—C3—C1116.5 (4)
C2—N1—N2107.8 (3)O2—C3—C1116.5 (4)
C2—N1—Cu2128.8 (3)
C2—N1—N2—C10.4 (4)Cu2—N1—C2—N4177.8 (3)
Cu2—N1—N2—C1177.9 (3)C1—N4—C2—N10.4 (4)
N1—N2—C1—N40.1 (4)Cu1—N4—C2—N1179.5 (3)
N1—N2—C1—C3177.7 (4)Cu1—O2—C3—O1177.6 (4)
C2—N4—C1—N20.1 (4)Cu1—O2—C3—C12.9 (4)
Cu1—N4—C1—N2179.8 (3)N2—C1—C3—O10.7 (6)
C2—N4—C1—C3178.1 (4)N4—C1—C3—O1177.0 (4)
Cu1—N4—C1—C31.8 (5)N2—C1—C3—O2178.9 (4)
N2—N1—C2—N40.5 (5)N4—C1—C3—O23.5 (6)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+2, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O4Wiii0.892.273.115 (6)158
N3—H3B···O2iv0.892.373.207 (5)157
N3—H3C···O4Wv0.892.373.194 (5)154
N5—H5B···O1vi0.892.493.057 (5)122
N5—H5C···O1vii0.892.253.106 (5)162
O3W—H3WA···O4Wii0.821.982.783 (6)169
O3W—H3WB···O2vii0.842.072.844 (4)154
O4W—H4WA···O1viii0.832.002.608 (5)129
O4W—H4WB···O3Wix0.822.112.869 (5)152
C2—H2···O4Wiii0.932.533.401 (7)156
Symmetry codes: (ii) x+2, y, z; (iii) x+1, y+1, z; (iv) x+1, y, z1; (v) x+1, y, z; (vi) x, y+1, z; (vii) x+2, y, z+1; (viii) x+1, y, z+1; (ix) x1, y+1, z.
(µ-5-Amino-1,2,4-triazol-1-ide-3-carboxylato-κ2N1:N2)di-µ-hydroxido-κ4O:O-bis[triamminecobalt(III)] nitrate hydroxide trihydrate (III) top
Crystal data top
[Co2(C3H2N4O2)(OH)2(NH3)6](NO3)(OH)·3H2OF(000) = 1064
Mr = 513.23Dx = 1.867 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 7.0765 (14) ÅCell parameters from 17515 reflections
b = 12.676 (3) Åθ = 3.2–25.0°
c = 20.591 (4) ŵ = 1.89 mm1
β = 98.70 (3)°T = 293 K
V = 1825.8 (6) Å3Block, red
Z = 40.31 × 0.28 × 0.26 mm
Data collection top
Rigaku MM007-HF CCD (Saturn 724+)
diffractometer
2940 reflections with I > 2σ(I)
Radiation source: rotating anodeRint = 0.043
ω scans at fixed χ = 45°θmax = 25.0°, θmin = 3.2°
Absorption correction: multi-scan
SADABS
h = 88
Tmin = 0.561, Tmax = 0.611k = 1515
13577 measured reflectionsl = 2424
3212 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.031Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084Only H-atom coordinates refined
S = 1.06 w = 1/[σ2(Fo2) + (0.0482P)2 + 1.1006P]
where P = (Fo2 + 2Fc2)/3
3212 reflections(Δ/σ)max = 0.001
332 parametersΔρmax = 0.53 e Å3
31 restraintsΔρmin = 0.50 e Å3
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. SHELXTL

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.33049 (4)0.79322 (2)0.06762 (2)0.02144 (12)
Co20.33651 (4)0.60722 (3)0.14051 (2)0.02182 (12)
N10.2789 (3)0.67233 (16)0.01205 (10)0.0232 (4)
N20.2814 (3)0.57823 (16)0.04587 (10)0.0226 (4)
N30.2088 (4)0.7206 (2)0.10064 (12)0.0387 (6)
H3A0.188 (5)0.695 (3)0.1392 (11)0.046*
H3B0.227 (5)0.7861 (16)0.0923 (17)0.046*
N40.2058 (3)0.54445 (17)0.06113 (10)0.0270 (5)
N50.1132 (4)0.87067 (19)0.02078 (12)0.0318 (5)
H5A0.149 (5)0.907 (2)0.0110 (13)0.038*
H5B0.016 (4)0.828 (2)0.0091 (16)0.038*
H5C0.068 (4)0.913 (2)0.0483 (14)0.038*
N60.5164 (3)0.84978 (19)0.01593 (11)0.0294 (5)
H6A0.459 (4)0.875 (2)0.0207 (11)0.035*
H6B0.587 (4)0.800 (2)0.0073 (16)0.035*
H6C0.591 (4)0.897 (2)0.0371 (15)0.035*
N70.3866 (4)0.90708 (19)0.13095 (12)0.0308 (5)
H7A0.291 (3)0.943 (2)0.1391 (15)0.037*
H7B0.471 (4)0.953 (2)0.1272 (16)0.037*
H7C0.443 (4)0.887 (2)0.1675 (11)0.037*
N80.3956 (3)0.6511 (2)0.23194 (11)0.0302 (5)
H8A0.302 (3)0.678 (2)0.2467 (15)0.036*
H8B0.476 (4)0.7030 (19)0.2360 (16)0.036*
H8C0.448 (4)0.604 (2)0.2595 (14)0.036*
N90.5203 (3)0.4948 (2)0.15522 (12)0.0308 (5)
H9A0.611 (4)0.508 (2)0.1343 (14)0.037*
H9B0.570 (4)0.485 (2)0.1949 (10)0.037*
H9C0.471 (4)0.4377 (18)0.1417 (15)0.037*
N100.1319 (3)0.51865 (19)0.16301 (11)0.0298 (5)
H10A0.076 (4)0.549 (2)0.1921 (13)0.036*
H10B0.163 (4)0.4578 (17)0.1761 (15)0.036*
H10C0.052 (4)0.504 (2)0.1293 (12)0.036*
N110.8447 (4)0.0130 (2)0.13634 (13)0.0446 (6)
O10.2654 (4)0.35777 (16)0.07150 (10)0.0466 (5)
O20.1859 (3)0.32897 (15)0.03610 (10)0.0376 (5)
O30.1700 (2)0.72718 (14)0.12350 (9)0.0249 (4)
H30.075 (3)0.706 (2)0.1033 (15)0.037*
O40.5190 (2)0.70912 (14)0.12014 (9)0.0251 (4)
H40.596 (5)0.688 (3)0.0980 (17)0.038*
O90.7091 (3)0.03208 (18)0.09060 (10)0.0467 (5)
O100.8116 (4)0.00371 (19)0.19519 (10)0.0519 (6)
O111.0152 (3)0.0116 (2)0.12508 (16)0.0673 (8)
O5W0.2034 (4)0.6831 (2)0.75766 (12)0.0513 (6)
H5WA0.294 (5)0.727 (3)0.755 (2)0.077*
H5WB0.216 (6)0.625 (2)0.738 (2)0.077*
O6W0.9492 (4)0.6341 (2)0.26977 (13)0.0634 (7)
H6WA1.028 (6)0.656 (4)0.3010 (18)0.095*
H6WB0.867 (5)0.591 (3)0.277 (2)0.095*
O7W0.3576 (4)0.3604 (2)0.26183 (13)0.0573 (6)
H7WA0.378 (6)0.311 (2)0.2906 (18)0.086*
H7WB0.433 (6)0.415 (2)0.274 (2)0.089 (16)*
O80.2846 (4)0.1600 (2)0.11963 (18)0.0751 (9)
H80.176 (4)0.141 (4)0.118 (3)0.113*
C10.2316 (4)0.6490 (2)0.05156 (12)0.0251 (5)
C20.2390 (3)0.5042 (2)0.00024 (12)0.0241 (5)
C30.2281 (4)0.3871 (2)0.01313 (14)0.0286 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02478 (19)0.0212 (2)0.01836 (19)0.00119 (13)0.00348 (13)0.00048 (12)
Co20.02290 (19)0.0251 (2)0.01751 (19)0.00129 (13)0.00339 (13)0.00115 (12)
N10.0297 (11)0.0215 (10)0.0184 (10)0.0016 (8)0.0038 (8)0.0013 (8)
N20.0260 (10)0.0212 (10)0.0212 (10)0.0026 (8)0.0052 (8)0.0018 (8)
N30.0650 (17)0.0313 (13)0.0187 (12)0.0036 (12)0.0024 (11)0.0007 (10)
N40.0321 (11)0.0279 (11)0.0211 (11)0.0001 (9)0.0044 (8)0.0037 (9)
N50.0364 (13)0.0314 (13)0.0272 (12)0.0081 (10)0.0034 (10)0.0037 (10)
N60.0356 (12)0.0267 (12)0.0273 (12)0.0008 (10)0.0094 (10)0.0029 (9)
N70.0330 (12)0.0291 (12)0.0301 (12)0.0025 (10)0.0037 (10)0.0067 (10)
N80.0324 (12)0.0376 (13)0.0205 (11)0.0004 (10)0.0035 (9)0.0014 (10)
N90.0323 (12)0.0338 (13)0.0271 (12)0.0061 (10)0.0066 (10)0.0057 (10)
N100.0315 (12)0.0315 (12)0.0268 (12)0.0039 (10)0.0058 (9)0.0004 (10)
N110.0459 (15)0.0354 (14)0.0518 (17)0.0039 (11)0.0048 (13)0.0054 (12)
O10.0716 (15)0.0281 (11)0.0386 (12)0.0008 (11)0.0038 (11)0.0066 (9)
O20.0411 (11)0.0277 (10)0.0435 (12)0.0003 (8)0.0050 (9)0.0099 (9)
O30.0232 (8)0.0288 (9)0.0232 (9)0.0009 (7)0.0048 (7)0.0013 (7)
O40.0237 (9)0.0299 (10)0.0219 (9)0.0004 (7)0.0038 (7)0.0015 (7)
O90.0481 (12)0.0513 (13)0.0352 (11)0.0065 (10)0.0109 (10)0.0101 (10)
O100.0730 (16)0.0571 (14)0.0247 (11)0.0018 (12)0.0050 (10)0.0097 (10)
O110.0359 (13)0.0616 (16)0.109 (2)0.0006 (11)0.0262 (13)0.0167 (15)
O5W0.0575 (15)0.0589 (15)0.0378 (13)0.0175 (12)0.0080 (11)0.0011 (11)
O6W0.0737 (19)0.0684 (18)0.0539 (16)0.0044 (14)0.0288 (13)0.0037 (14)
O7W0.0602 (15)0.0557 (16)0.0575 (16)0.0088 (13)0.0134 (12)0.0070 (13)
O80.0528 (15)0.0547 (17)0.118 (3)0.0005 (13)0.0132 (17)0.0362 (17)
C10.0283 (12)0.0277 (13)0.0192 (12)0.0026 (10)0.0033 (10)0.0011 (10)
C20.0210 (11)0.0261 (13)0.0258 (12)0.0011 (10)0.0053 (9)0.0018 (10)
C30.0257 (13)0.0227 (13)0.0386 (16)0.0013 (10)0.0088 (11)0.0024 (11)
Geometric parameters (Å, º) top
Co1—O41.9103 (18)N7—H7B0.844 (18)
Co1—N11.914 (2)N7—H7C0.838 (18)
Co1—O31.9261 (19)N8—H8A0.842 (18)
Co1—N71.945 (2)N8—H8B0.867 (18)
Co1—N61.950 (2)N8—H8C0.870 (18)
Co1—N51.952 (2)N9—H9A0.844 (18)
Co2—O41.9174 (18)N9—H9B0.849 (18)
Co2—N91.922 (2)N9—H9C0.833 (18)
Co2—O31.9231 (18)N10—H10A0.858 (18)
Co2—N101.943 (2)N10—H10B0.835 (18)
Co2—N81.947 (2)N10—H10C0.847 (18)
Co2—N21.963 (2)N11—O91.262 (3)
N1—C11.335 (3)N11—O111.263 (3)
N1—N21.380 (3)N11—O101.286 (3)
N2—C21.330 (3)O1—C31.248 (4)
N3—C11.350 (4)O2—C31.252 (3)
N3—H3A0.848 (18)O3—H30.783 (18)
N3—H3B0.855 (18)O4—H40.81 (4)
N4—C11.348 (3)O5W—H5WA0.859 (19)
N4—C21.350 (3)O5W—H5WB0.849 (19)
N5—H5A0.869 (18)O6W—H6WA0.830 (19)
N5—H5B0.880 (18)O6W—H6WB0.833 (19)
N5—H5C0.878 (18)O7W—H7WA0.859 (18)
N6—H6A0.863 (18)O7W—H7WB0.885 (19)
N6—H6B0.845 (18)O8—H80.81 (2)
N6—H6C0.875 (18)C2—C31.512 (3)
N7—H7A0.848 (18)
O4—Co1—N186.87 (8)Co1—N6—H6C113 (2)
O4—Co1—O381.01 (8)H6A—N6—H6C110 (3)
N1—Co1—O386.14 (8)H6B—N6—H6C107 (3)
O4—Co1—N788.87 (9)Co1—N7—H7A116 (2)
N1—Co1—N7174.69 (10)Co1—N7—H7B122 (2)
O3—Co1—N790.06 (10)H7A—N7—H7B104 (3)
O4—Co1—N692.47 (9)Co1—N7—H7C113 (2)
N1—Co1—N692.95 (10)H7A—N7—H7C106 (3)
O3—Co1—N6173.46 (9)H7B—N7—H7C93 (3)
N7—Co1—N690.41 (11)Co2—N8—H8A114 (2)
O4—Co1—N5172.28 (10)Co2—N8—H8B111 (2)
N1—Co1—N592.43 (10)H8A—N8—H8B101 (3)
O3—Co1—N591.27 (10)Co2—N8—H8C116 (2)
N7—Co1—N591.36 (11)H8A—N8—H8C109 (3)
N6—Co1—N595.24 (11)H8B—N8—H8C105 (3)
O4—Co2—N994.12 (10)Co2—N9—H9A109 (2)
O4—Co2—O380.90 (8)Co2—N9—H9B116 (2)
N9—Co2—O3175.01 (9)H9A—N9—H9B106 (3)
O4—Co2—N10172.94 (9)Co2—N9—H9C111 (2)
N9—Co2—N1092.57 (11)H9A—N9—H9C109 (3)
O3—Co2—N1092.41 (9)H9B—N9—H9C107 (3)
O4—Co2—N888.05 (9)Co2—N10—H10A111 (2)
N9—Co2—N891.04 (11)Co2—N10—H10B116 (2)
O3—Co2—N889.22 (9)H10A—N10—H10B108 (3)
N10—Co2—N889.60 (10)Co2—N10—H10C111 (2)
O4—Co2—N287.02 (8)H10A—N10—H10C111 (3)
N9—Co2—N292.61 (10)H10B—N10—H10C99 (3)
O3—Co2—N286.73 (8)O9—N11—O11120.4 (3)
N10—Co2—N294.90 (9)O9—N11—O10120.6 (3)
N8—Co2—N2174.07 (10)O11—N11—O10119.1 (3)
C1—N1—N2106.60 (19)Co2—O3—Co192.99 (8)
C1—N1—Co1139.54 (18)Co2—O3—H3106 (2)
N2—N1—Co1113.79 (15)Co1—O3—H3112 (3)
C2—N2—N1105.60 (19)Co1—O4—Co293.66 (8)
C2—N2—Co2145.40 (18)Co1—O4—H4110 (2)
N1—N2—Co2108.95 (14)Co2—O4—H4116 (2)
C1—N3—H3A116 (2)H5WA—O5W—H5WB113 (3)
C1—N3—H3B120 (2)H6WA—O6W—H6WB118 (3)
H3A—N3—H3B124 (3)H7WA—O7W—H7WB110 (3)
C1—N4—C2103.5 (2)N1—C1—N4111.7 (2)
Co1—N5—H5A110 (2)N1—C1—N3124.7 (2)
Co1—N5—H5B110 (2)N4—C1—N3123.6 (2)
H5A—N5—H5B115 (3)N2—C2—N4112.6 (2)
Co1—N5—H5C109 (2)N2—C2—C3125.5 (2)
H5A—N5—H5C110 (3)N4—C2—C3121.9 (2)
H5B—N5—H5C102 (3)O1—C3—O2126.5 (2)
Co1—N6—H6A110 (2)O1—C3—C2116.9 (2)
Co1—N6—H6B108 (2)O2—C3—C2116.6 (2)
H6A—N6—H6B108 (3)
C1—N1—N2—C21.1 (3)N1—N2—C2—N41.1 (3)
Co1—N1—N2—C2178.61 (15)Co2—N2—C2—N4175.8 (2)
C1—N1—N2—Co2176.96 (16)N1—N2—C2—C3178.7 (2)
Co1—N1—N2—Co20.51 (19)Co2—N2—C2—C34.4 (5)
N2—N1—C1—N40.9 (3)C1—N4—C2—N20.5 (3)
Co1—N1—C1—N4177.30 (19)C1—N4—C2—C3179.3 (2)
N2—N1—C1—N3178.1 (3)N2—C2—C3—O11.3 (4)
Co1—N1—C1—N31.6 (4)N4—C2—C3—O1178.5 (2)
C2—N4—C1—N10.2 (3)N2—C2—C3—O2180.0 (2)
C2—N4—C1—N3178.7 (3)N4—C2—C3—O20.2 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···O5Wi0.85 (2)2.15 (2)2.951 (3)158 (3)
N3—H3B···O9ii0.86 (2)2.35 (2)3.190 (3)169 (3)
N5—H5A···O9ii0.87 (2)2.19 (2)3.039 (3)166 (3)
N5—H5B···O2iii0.88 (2)2.56 (2)3.344 (3)149 (3)
N5—H5C···O11iv0.88 (2)2.09 (2)2.955 (4)168 (3)
N6—H6A···O9ii0.86 (2)2.09 (2)2.922 (3)163 (3)
N6—H6B···O2ii0.85 (2)2.30 (2)3.079 (3)153 (3)
N6—H6C···O9v0.88 (2)2.13 (2)2.988 (3)166 (3)
N7—H7A···O11iv0.85 (2)2.12 (2)2.929 (3)159 (3)
N7—H7A···O7Wvi0.85 (2)2.65 (3)3.060 (4)111 (3)
N7—H7B···O9v0.84 (2)2.19 (2)2.997 (3)160 (3)
N7—H7B···O10v0.84 (2)2.66 (3)3.297 (4)134 (3)
N7—H7C···O5Wvii0.84 (2)2.57 (2)3.372 (4)161 (3)
N8—H8A···O7Wvi0.84 (2)2.56 (3)3.215 (4)135 (3)
N8—H8B···O5Wvii0.87 (2)2.16 (2)3.016 (3)171 (3)
N8—H8C···N11viii0.87 (2)2.67 (2)3.506 (4)162 (3)
N8—H8C···O10viii0.87 (2)2.27 (2)3.075 (3)154 (3)
N8—H8C···O11viii0.87 (2)2.62 (2)3.411 (4)151 (3)
N9—H9A···N4ii0.84 (2)2.23 (2)2.982 (3)148 (3)
N9—H9B···O10viii0.85 (2)2.30 (2)3.130 (3)167 (3)
N9—H9C···O10.83 (2)2.14 (2)2.881 (3)148 (3)
N10—H10A···O6Wix0.86 (2)2.23 (2)3.083 (4)176 (3)
N10—H10B···O7W0.84 (2)2.41 (2)3.120 (4)143 (3)
N10—H10C···N4iii0.85 (2)2.21 (2)3.039 (3)165 (3)
O3—H3···O2iii0.78 (2)2.18 (2)2.952 (3)170 (3)
O4—H4···O2ii0.81 (4)2.15 (4)2.947 (3)166 (3)
O5W—H5WA···O6Wx0.86 (2)2.07 (2)2.886 (4)157 (4)
O5W—H5WB···O10xi0.85 (2)1.95 (2)2.776 (3)165 (4)
O6W—H6WA···O8viii0.83 (2)1.94 (3)2.746 (4)162 (5)
O6W—H6WB···N11viii0.83 (2)2.68 (3)3.411 (4)148 (4)
O6W—H6WB···O10viii0.83 (2)1.89 (2)2.717 (4)174 (5)
O7W—H7WA···O3xii0.86 (2)2.13 (3)2.933 (3)155 (5)
O7W—H7WB···N11viii0.89 (2)2.56 (3)3.353 (4)149 (4)
O7W—H7WB···O10viii0.89 (2)2.10 (3)2.933 (4)158 (4)
O7W—H7WB···O11viii0.89 (2)2.39 (4)3.045 (4)131 (4)
O8—H8···O11ix0.81 (2)2.01 (4)2.693 (4)142 (6)
Symmetry codes: (i) x, y, z1; (ii) x+1, y+1, z; (iii) x, y+1, z; (iv) x1, y+1, z; (v) x, y+1, z; (vi) x+1/2, y+1/2, z+1/2; (vii) x+1/2, y+3/2, z1/2; (viii) x+3/2, y+1/2, z+1/2; (ix) x1, y, z; (x) x1/2, y+3/2, z+1/2; (xi) x1/2, y+1/2, z+1/2; (xii) x+1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds