Download citation
Download citation
link to html
o-Benzene­dicarb­aldehyde (systematic name: benzene-1,2-dicarb­aldehyde), C8H6O2, exhibits a weak intramolecular hydrogen bond between an aldehyde H atom and the O atom of the adjacent aldehyde group, with a C...O distance of 2.852 (2) Å. m-Benzene­dicarb­aldehyde (systematic name: benzene-1,3-dicarb­aldehyde), C8H6O2, occurs as two different isomorphs. In all three crystals, there are intermolecular C—­H...O contacts involving both aldehyde and ring H atoms.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270102015597/fr1394sup1.cif
Contains datablocks global, I, IIA, IIB

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015597/fr1394Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015597/fr1394IIAsup3.hkl
Contains datablock IIA

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270102015597/fr1394IIBsup4.hkl
Contains datablock IIB

CCDC references: 199418; 199419; 199420

Comment top

In the structure of p-benzenedicarbaldehyde (Britton, 1998), there are short intermolecular C—H···OC contacts involving the aldehyde H atoms. The structures of o- and m-benzenedicarbaldehyde, (I) and (II), respectively, have been determined, to look for further examples of such contacts, and the results are presented here. \sch

Views of (I) and the two isomorphs, A and B, of (II) are shown in Fig. 1. The bond lengths and angles are in the normal ranges. At the ring C atoms bonded to the aldehyde groups, the external C—C—C angles are not equal. In the ortho compound, (I), C7—C1—C2 [123.0 (2)°] and C8—C2—C1 [123.2 (2)°] are both 5–6° larger than C7—C1—C6 [117.1 (2)°] and C8—C2—C3 [117.8 (2)°]. This is consistent with the intramolecular hydrogen bonding forcing the groups apart (see below). In both polymorphs of the meta compound, (IIA) and (IIB), the external angles on the O side are about 2° larger than those on the H side. This can be attributed to the greater crowding between the O and ring H atoms than between the aldehyde H and ring H atoms.

There is one intramolecular C—H···OC contact in the ortho compound, (I) (Fig. 2), with C8—H2···O1 112 (2)°, C8—H2 0.95 (2) Å, H2···O1 2.36 (2) Å, H2···O1C7 98 (2)° and C8···O1 2.852 (2) Å. The corresponding values in naphthalene-2,3-dicarbaldehyde are 116 (2)°, 1.00 (2) Å, 2.30 (2) Å, 100 (2)° and 2.884 (2) Å (Britton, 1999). The two aldehyde groups are rotated by 13.3 (2) and 25.1 (2)° out of the plane of the benzene ring, compared with 7.2 (2) and 22.7 (2)° in the naphthalene compound. These rotations are both in the direction which increases the H···O distance, which is presumably the reason for the rotations. The smaller angles in the naphthalene compound are consistent with the longer C1—C2 length, 1.441 (2) versus. 1.411 (2) Å.

In the meta compound, (II), where there is less intramolecular crowding, the aldehyde groups are rotated 6.1 (2) and 6.6 (2)° in polymorph A, and 4.5 (2) and 10.1 (2)° in polymorph B.

The intermolecular H···O contacts of less than 2.82 Å are listed in Table 1 for both compounds, as well as for the para isomer (Britton, 1998) for comparison. If approximate linearity for the C—H···O angle and an approximate trigonal angle for H···OC are taken as expected for a good C—H···O interaction, then none of the interactions in the ortho and meta compounds are as favorable as those in the para compound, although there are a number of H···O distances that are as short as those in the para compound. Overall, the contacts involving the aldehyde H atoms are no shorter than those involving the ring H atoms, suggesting there is no noticeable difference in their abilities to form C—H···O interactions. For an extended discussion of C—H···X interactions, see Desiraju & Steiner (1999).

Experimental top

Both compounds were obtained from Aldrich Chemical Co. Inc. Recrystallization of the ortho compound, (I), from acetone, benzene, dichloromethane or chloroform all gave similar crystals; the crystal used here was obtained from chloroform. Two polymorphs were found for the meta compound, (II). Sublimation, or recrystallization from benzene, dichloromethane or diethylether, gave polymorph A; the crystal used here was obtained from benzene. Recrystallization from acetone or chloroform gave polymorph B; the crystal used here was obtained from chloroform. Both polymorphs had the same melting points to within experimental error.

Refinement top

In every case, the H atoms were included at idealized positions, with C—H = 0.95 Å and Uiso(H) = 1.2 times larger than the Uav for the attached C atom. This was done to improve the data-to-parameter ratio for the ortho crystal, (I), and for the sake of consistency with the meta crystals, (II). The ortho crystals, (I), are noncentrosymmetric, but with no atoms heavier than O, the correct polarity could not be determined. The Friedel pairs were averaged for the final refinement.

Computing details top

For all compounds, data collection: SMART (Siemens, 1995); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. Views of the molecules of (a) (I), (b) polymorph A of (II) and (c) polymorph B of (II), showing the atom-numbering schemes. Displacement ellipsoids are shown at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The contacts in (I). H···O contacts are shown as dotted lines and the intramolecular contact is shown as a double line.
[Figure 3] Fig. 3. The H···O contacts in polymorph A of (II), shown as dotted lines.
[Figure 4] Fig. 4. The H···O contacts in polymorph B of (II), shown as dotted lines.
(I) benzene-1,2-dicarbaldehyde top
Crystal data top
C8H6O2Dx = 1.377 Mg m3
Mr = 134.13Melting point = 328–331 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2907 reflections
a = 7.282 (2) Åθ = 3.1–26.8°
b = 13.140 (3) ŵ = 0.10 mm1
c = 6.760 (2) ÅT = 174 K
V = 646.8 (3) Å3Irregular prism, colorless
Z = 40.5 × 0.2 × 0.1 mm
F(000) = 280
Data collection top
Siemens SMART area-detector
diffractometer
802 independent reflections
Radiation source: fine-focus sealed tube752 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.032
ω scansθmax = 27.5°, θmin = 3.1°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 99
Tmin = 0.97, Tmax = 0.99k = 1717
7182 measured reflectionsl = 88
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.051P)2 + 0.045P]
where P = (Fo2 + 2Fc2)/3
802 reflections(Δ/σ)max = 0.004
91 parametersΔρmax = 0.19 e Å3
1 restraintΔρmin = 0.16 e Å3
Crystal data top
C8H6O2V = 646.8 (3) Å3
Mr = 134.13Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 7.282 (2) ŵ = 0.10 mm1
b = 13.140 (3) ÅT = 174 K
c = 6.760 (2) Å0.5 × 0.2 × 0.1 mm
Data collection top
Siemens SMART area-detector
diffractometer
802 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
752 reflections with I > 2σ(I)
Tmin = 0.97, Tmax = 0.99Rint = 0.032
7182 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0271 restraint
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.19 e Å3
802 reflectionsΔρmin = 0.16 e Å3
91 parameters
Special details top

Refinement. Since there are no atoms heavier than O, the Friedel pairs were averaged and no attempt was made to find the correct polarity.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.13957 (18)0.52733 (9)0.3704 (3)0.0512 (4)
O20.28771 (18)0.66817 (10)0.1058 (2)0.0481 (4)
C70.0869 (2)0.60272 (13)0.4565 (3)0.0384 (4)
H10.02660.59290.57960.046*
C80.1907 (2)0.65608 (12)0.0352 (3)0.0373 (4)
H20.12570.59370.04640.045*
C10.10846 (18)0.70859 (11)0.3865 (3)0.0294 (3)
C20.16637 (19)0.73320 (11)0.1939 (2)0.0287 (3)
C30.1924 (2)0.83533 (12)0.1442 (3)0.0345 (4)
H30.23020.85300.01420.041*
C40.1634 (2)0.91086 (13)0.2830 (3)0.0401 (4)
H40.18380.98000.24850.048*
C50.1047 (2)0.88642 (13)0.4721 (3)0.0423 (5)
H50.08390.93870.56660.051*
C60.0764 (2)0.78546 (13)0.5229 (3)0.0373 (4)
H60.03470.76880.65210.045*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0605 (7)0.0325 (6)0.0605 (9)0.0011 (5)0.0066 (8)0.0079 (7)
O20.0584 (7)0.0524 (8)0.0336 (6)0.0010 (6)0.0068 (6)0.0028 (7)
C70.0364 (8)0.0404 (8)0.0384 (9)0.0059 (7)0.0049 (7)0.0109 (7)
C80.0458 (9)0.0319 (8)0.0343 (9)0.0042 (6)0.0018 (8)0.0005 (7)
C10.0250 (6)0.0324 (7)0.0306 (7)0.0019 (5)0.0025 (6)0.0031 (7)
C20.0252 (7)0.0286 (7)0.0323 (8)0.0019 (5)0.0035 (6)0.0016 (6)
C30.0317 (7)0.0337 (8)0.0382 (9)0.0032 (6)0.0046 (7)0.0080 (7)
C40.0377 (9)0.0260 (7)0.0567 (11)0.0010 (6)0.0080 (8)0.0015 (8)
C50.0382 (9)0.0378 (9)0.0510 (11)0.0065 (7)0.0018 (8)0.0151 (9)
C60.0321 (7)0.0460 (9)0.0337 (8)0.0013 (7)0.0001 (7)0.0020 (8)
Geometric parameters (Å, º) top
O1—C71.211 (2)C2—C31.396 (2)
O2—C81.197 (2)C3—C41.382 (3)
C7—C11.478 (2)C3—H30.9500
C7—H10.9500C4—C51.386 (3)
C8—C21.486 (2)C4—H40.9500
C8—H20.9500C5—C61.386 (3)
C1—C61.387 (2)C5—H50.9500
C1—C21.407 (2)C6—H60.9500
O1—C7—C1125.64 (18)C4—C3—C2120.42 (18)
O1—C7—H1117.2C4—C3—H3119.8
C1—C7—H1117.2C2—C3—H3119.8
O2—C8—C2123.70 (14)C3—C4—C5120.46 (16)
O2—C8—H2118.2C3—C4—H4119.8
C2—C8—H2118.2C5—C4—H4119.8
C6—C1—C2119.88 (13)C6—C5—C4119.75 (18)
C6—C1—C7117.07 (16)C6—C5—H5120.1
C2—C1—C7122.99 (15)C4—C5—H5120.1
C3—C2—C1118.97 (15)C5—C6—C1120.49 (17)
C3—C2—C8117.76 (16)C5—C6—H6119.8
C1—C2—C8123.17 (14)C1—C6—H6119.8
O1—C7—C1—C6166.24 (17)C1—C2—C3—C40.6 (2)
O1—C7—C1—C211.0 (3)C8—C2—C3—C4176.99 (14)
C6—C1—C2—C30.7 (2)C2—C3—C4—C51.3 (2)
C7—C1—C2—C3176.57 (14)C3—C4—C5—C60.5 (3)
C6—C1—C2—C8175.48 (14)C4—C5—C6—C10.8 (3)
C7—C1—C2—C87.3 (2)C2—C1—C6—C51.4 (2)
O2—C8—C2—C326.8 (2)C7—C1—C6—C5176.01 (15)
O2—C8—C2—C1157.06 (16)
(IIA) benzene-1,3-dicarboxaldehyde, polymorph A top
Crystal data top
C8H6O2F(000) = 280
Mr = 134.13Dx = 1.392 Mg m3
Monoclinic, P21/nMelting point: 360-362 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 3.776 (1) ÅCell parameters from 1982 reflections
b = 11.171 (3) Åθ = 2.7–25.3°
c = 15.229 (4) ŵ = 0.10 mm1
β = 94.98 (1)°T = 174 K
V = 640.0 (3) Å3Needle, colorless
Z = 40.50 × 0.15 × 0.10 mm
Data collection top
Siemens SMART area-detector
diffractometer
1461 independent reflections
Radiation source: fine-focus sealed tube1138 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ω scansθmax = 27.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 44
Tmin = 0.98, Tmax = 0.99k = 1414
7258 measured reflectionsl = 1919
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.038P)2 + 0.185P]
where P = (Fo2 + 2Fc2)/3
1461 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C8H6O2V = 640.0 (3) Å3
Mr = 134.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 3.776 (1) ŵ = 0.10 mm1
b = 11.171 (3) ÅT = 174 K
c = 15.229 (4) Å0.50 × 0.15 × 0.10 mm
β = 94.98 (1)°
Data collection top
Siemens SMART area-detector
diffractometer
1461 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
1138 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.040
7258 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.099H-atom parameters constrained
S = 1.05Δρmax = 0.21 e Å3
1461 reflectionsΔρmin = 0.19 e Å3
91 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.5734 (3)0.90024 (10)0.80041 (7)0.0430 (3)
O30.8064 (3)0.89332 (9)0.38797 (6)0.0369 (3)
C10.5787 (3)0.82684 (12)0.65384 (8)0.0260 (3)
C20.6535 (3)0.85677 (12)0.56903 (9)0.0249 (3)
H20.75930.93180.55790.030*
C30.5726 (3)0.77623 (11)0.50021 (9)0.0254 (3)
C40.4192 (4)0.66585 (12)0.51721 (9)0.0291 (3)
H40.36060.61160.47010.035*
C50.3517 (4)0.63477 (12)0.60246 (10)0.0312 (3)
H50.25220.55890.61390.037*
C60.4300 (4)0.71482 (12)0.67039 (9)0.0295 (3)
H60.38300.69400.72870.035*
C70.6546 (4)0.91429 (13)0.72568 (9)0.0314 (3)
H10.77440.98610.71260.038*
C80.6506 (4)0.80486 (13)0.40942 (9)0.0303 (3)
H30.57270.74970.36440.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0589 (8)0.0430 (7)0.0280 (6)0.0027 (5)0.0100 (5)0.0015 (5)
O30.0472 (7)0.0354 (6)0.0293 (6)0.0051 (5)0.0103 (5)0.0044 (4)
C10.0243 (7)0.0276 (7)0.0263 (7)0.0060 (5)0.0034 (5)0.0027 (5)
C20.0236 (6)0.0228 (7)0.0286 (7)0.0029 (5)0.0046 (5)0.0030 (5)
C30.0234 (7)0.0264 (7)0.0268 (7)0.0042 (5)0.0037 (5)0.0024 (5)
C40.0292 (7)0.0254 (7)0.0329 (7)0.0002 (6)0.0044 (6)0.0018 (6)
C50.0313 (7)0.0237 (7)0.0394 (8)0.0003 (6)0.0081 (6)0.0059 (6)
C60.0293 (7)0.0313 (7)0.0291 (7)0.0044 (6)0.0084 (6)0.0080 (6)
C70.0330 (8)0.0328 (8)0.0284 (7)0.0040 (6)0.0026 (6)0.0016 (6)
C80.0339 (8)0.0306 (7)0.0270 (7)0.0001 (6)0.0057 (6)0.0016 (6)
Geometric parameters (Å, º) top
O1—C71.2143 (17)C3—C81.4736 (18)
O3—C81.2094 (17)C4—C51.389 (2)
C1—C21.3867 (19)C4—H40.9500
C1—C61.4033 (19)C5—C61.380 (2)
C1—C71.4761 (19)C5—H50.9500
C2—C31.3948 (19)C6—H60.9500
C2—H20.9500C7—H10.9500
C3—C41.3961 (19)C8—H30.9500
C2—C1—C6119.95 (13)C6—C5—C4119.61 (13)
C2—C1—C7119.26 (12)C6—C5—H5120.2
C6—C1—C7120.80 (12)C4—C5—H5120.2
C1—C2—C3119.69 (12)C5—C6—C1120.42 (13)
C1—C2—H2120.2C5—C6—H6119.8
C3—C2—H2120.2C1—C6—H6119.8
C2—C3—C4119.84 (12)O1—C7—C1124.10 (14)
C2—C3—C8121.10 (12)O1—C7—H1118.0
C4—C3—C8119.05 (12)C1—C7—H1118.0
C5—C4—C3120.46 (13)O3—C8—C3124.91 (13)
C5—C4—H4119.8O3—C8—H3117.5
C3—C4—H4119.8C3—C8—H3117.5
C6—C1—C2—C31.48 (19)C4—C5—C6—C10.3 (2)
C7—C1—C2—C3178.01 (12)C2—C1—C6—C51.1 (2)
C1—C2—C3—C40.41 (19)C7—C1—C6—C5178.36 (13)
C1—C2—C3—C8179.60 (12)C2—C1—C7—O1174.03 (14)
C2—C3—C4—C51.0 (2)C6—C1—C7—O15.5 (2)
C8—C3—C4—C5178.17 (13)C2—C3—C8—O35.0 (2)
C3—C4—C5—C61.4 (2)C4—C3—C8—O3174.23 (14)
(IIB) benzene-1,3-dicarbaldehyde, polymorph B top
Crystal data top
C8H6O2F(000) = 280
Mr = 134.13Dx = 1.395 Mg m3
Monoclinic, P21/nMelting point: 361-363 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 11.374 (3) ÅCell parameters from 3560 reflections
b = 3.811 (1) Åθ = 2.7–27.4°
c = 15.721 (4) ŵ = 0.10 mm1
β = 110.419 (10)°T = 173 K
V = 638.6 (3) Å3Needle, colorless
Z = 40.45 × 0.20 × 0.10 mm
Data collection top
Siemens SMART area-detector
diffractometer
1452 independent reflections
Radiation source: fine-focus sealed tube1237 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 27.5°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
h = 1414
Tmin = 0.98, Tmax = 0.99k = 44
6965 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.118H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.063P)2 + 0.146P]
where P = (Fo2 + 2Fc2)/3
1452 reflections(Δ/σ)max = 0.001
91 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.14 e Å3
Crystal data top
C8H6O2V = 638.6 (3) Å3
Mr = 134.13Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.374 (3) ŵ = 0.10 mm1
b = 3.811 (1) ÅT = 173 K
c = 15.721 (4) Å0.45 × 0.20 × 0.10 mm
β = 110.419 (10)°
Data collection top
Siemens SMART area-detector
diffractometer
1452 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
1237 reflections with I > 2σ(I)
Tmin = 0.98, Tmax = 0.99Rint = 0.022
6965 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.118H-atom parameters constrained
S = 1.08Δρmax = 0.23 e Å3
1452 reflectionsΔρmin = 0.14 e Å3
91 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.35851 (11)0.5573 (3)0.62691 (8)0.0277 (3)
C20.36368 (11)0.6242 (3)0.54146 (8)0.0276 (3)
H20.43460.73930.53560.033*
C30.26449 (11)0.5219 (3)0.46424 (8)0.0283 (3)
C40.16007 (12)0.3563 (3)0.47298 (9)0.0312 (3)
H40.09290.28450.42030.037*
C50.15386 (12)0.2957 (3)0.55856 (9)0.0327 (3)
H50.08180.18760.56440.039*
C60.25272 (12)0.3931 (3)0.63500 (9)0.0304 (3)
H60.24900.34850.69350.036*
C70.46497 (12)0.6640 (4)0.70790 (9)0.0338 (3)
H10.53160.78980.69860.041*
C80.26791 (13)0.5905 (4)0.37271 (9)0.0348 (3)
H30.20500.48580.32240.042*
O10.47326 (10)0.6023 (3)0.78532 (6)0.0459 (3)
O30.34604 (10)0.7722 (3)0.35779 (7)0.0467 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0301 (6)0.0258 (6)0.0274 (6)0.0036 (5)0.0102 (5)0.0002 (5)
C20.0281 (6)0.0272 (6)0.0291 (6)0.0020 (5)0.0121 (5)0.0012 (5)
C30.0309 (6)0.0272 (6)0.0272 (6)0.0056 (5)0.0108 (5)0.0016 (5)
C40.0286 (6)0.0308 (7)0.0316 (6)0.0016 (5)0.0072 (5)0.0032 (5)
C50.0308 (6)0.0300 (7)0.0401 (7)0.0014 (5)0.0160 (5)0.0008 (5)
C60.0365 (7)0.0289 (7)0.0298 (6)0.0030 (5)0.0166 (5)0.0022 (5)
C70.0343 (7)0.0372 (7)0.0295 (6)0.0020 (5)0.0109 (5)0.0020 (5)
C80.0368 (7)0.0395 (8)0.0273 (6)0.0081 (6)0.0101 (5)0.0023 (5)
O10.0472 (6)0.0622 (7)0.0262 (5)0.0001 (5)0.0101 (4)0.0001 (5)
O30.0534 (7)0.0560 (7)0.0358 (6)0.0003 (5)0.0219 (5)0.0087 (5)
Geometric parameters (Å, º) top
C1—C21.3886 (17)C4—H40.9500
C1—C61.4009 (18)C5—C61.3797 (19)
C1—C71.4754 (18)C5—H50.9500
C2—C31.3938 (18)C6—H60.9500
C2—H20.9500C7—O11.2106 (16)
C3—C41.3934 (18)C7—H10.9500
C3—C81.4764 (17)C8—O31.2122 (18)
C4—C51.3910 (18)C8—H30.9500
C2—C1—C6119.83 (11)C6—C5—C4119.80 (12)
C2—C1—C7119.03 (11)C6—C5—H5120.1
C6—C1—C7121.14 (11)C4—C5—H5120.1
C1—C2—C3119.78 (11)C5—C6—C1120.39 (11)
C1—C2—H2120.1C5—C6—H6119.8
C3—C2—H2120.1C1—C6—H6119.8
C4—C3—C2119.98 (11)O1—C7—C1124.52 (13)
C4—C3—C8119.30 (11)O1—C7—H1117.7
C2—C3—C8120.72 (11)C1—C7—H1117.7
C5—C4—C3120.21 (11)O3—C8—C3124.06 (12)
C5—C4—H4119.9O3—C8—H3118.0
C3—C4—H4119.9C3—C8—H3118.0
C6—C1—C2—C31.13 (18)C4—C5—C6—C10.95 (19)
C7—C1—C2—C3179.34 (11)C2—C1—C6—C50.34 (18)
C1—C2—C3—C40.64 (18)C7—C1—C6—C5179.86 (12)
C1—C2—C3—C8179.96 (11)C2—C1—C7—O1175.92 (13)
C2—C3—C4—C50.65 (19)C6—C1—C7—O14.6 (2)
C8—C3—C4—C5178.68 (12)C4—C3—C8—O3169.90 (13)
C3—C4—C5—C61.45 (19)C2—C3—C8—O39.4 (2)

Experimental details

(I)(IIA)(IIB)
Crystal data
Chemical formulaC8H6O2C8H6O2C8H6O2
Mr134.13134.13134.13
Crystal system, space groupOrthorhombic, Pna21Monoclinic, P21/nMonoclinic, P21/n
Temperature (K)174174173
a, b, c (Å)7.282 (2), 13.140 (3), 6.760 (2)3.776 (1), 11.171 (3), 15.229 (4)11.374 (3), 3.811 (1), 15.721 (4)
α, β, γ (°)90, 90, 9090, 94.98 (1), 9090, 110.419 (10), 90
V3)646.8 (3)640.0 (3)638.6 (3)
Z444
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.100.100.10
Crystal size (mm)0.5 × 0.2 × 0.10.50 × 0.15 × 0.100.45 × 0.20 × 0.10
Data collection
DiffractometerSiemens SMART area-detector
diffractometer
Siemens SMART area-detector
diffractometer
Siemens SMART area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Multi-scan
(SADABS; Sheldrick, 1996; Blessing, 1995)
Tmin, Tmax0.97, 0.990.98, 0.990.98, 0.99
No. of measured, independent and
observed [I > 2σ(I)] reflections
7182, 802, 752 7258, 1461, 1138 6965, 1452, 1237
Rint0.0320.0400.022
(sin θ/λ)max1)0.6490.6490.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.078, 1.05 0.039, 0.099, 1.05 0.042, 0.118, 1.08
No. of reflections80214611452
No. of parameters919191
No. of restraints100
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.19, 0.160.21, 0.190.23, 0.14

Computer programs: SMART (Siemens, 1995), SAINT (Siemens, 1995), SAINT, SHELXTL (Sheldrick, 1997), SHELXTL.

Distances and angles(Å, °) in the C-H···O=C contacts. top
CHOC-H···OH···OH···O=CC···O
ortho
C7iH1iO11532.801323.670 (3)
C8iiH2iiO11442.77923.583 (3)
C3iiiH3iiiO11312.661303.360 (2)
C4ivH4ivO21442.671033.482 (2)
C6vH6vO21162.80983.323 (2)
C6viH6viO21372.571643.330 (2)
metapolymorph-I
C8viiH3viiO11182.771303.318 (2)
C8viiiH3viiiO11482.641013.482 (2)
C4viiiH4viiiO11432.721423.522 (2)
C5ixH5ixO11572.581243.470 (2)
C7xH1xO31502.661543.517 (2)
C2xH2xO31492.641463.485 (2)
C6xiH6xiO31722.65923.595 (2)
metapolymorph-II
C4xiiH4xiiO11582.551413.449 (2)
C5xiiiH5xiiiO11282.671553.337 (2)
C6xiiiH6xiiiO11212.821073.413 (2)
C7xivH1xivO31632.521683.443 (2)
C8xvH3xvO31432.811173.606 (2)
para
C2AH2AO1A1192.811093.395 (2)
C3AH3AO1A1292.621593.312 (2)
C8BH4BO1A1602.671173.580 (2)
C8BH4BO1A1092.791303.226 (2)
C2BH2BO1B1182.891113.457 (2)
C3BH3BO1B1292.621613.327 (2)
C8AH4AO1B1612.581313.521 (2)
C8AH4AO1B1052.881223.279 (2)
All C-H distances were fixed at 0.95 Å. Symmetry codes: (i) -x, 1-y, 1/2+z; (ii) -x, 1-y, -1/2+z; (iii) 1/2-x, 1/2+y, -1/2+z; (iv) 1/2-x, 1/2+y, 1/2+z; (v) x, y, 1+z; (vi) -1/2+x, 3/2-y, 1+z; (vii) -1/2+x, 3/2-y, -1/2+z; (viii) 1/2+x, 3/2-y, -1/2+z; (ix) 1/2-x, -1/2+y, 3/2-z; (x) 2-x, 2-y, 1-z; (xi) -1/2+x, 3/2-y, 1/2+z; (xii) -1/2+x, 1/2-y, -1/2+z; (xiii) 1/2-x, -1/2+y, 3/2-z; (xiv) 1-x, 2-y, 1-z; (xv) 1/2-x, -1/2+y, 1/2-z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds