Download citation
Download citation
link to html
The title complex, [Cu3Cl5(C21H17N3F2)2], is the first reported copper trimer including both CuI and CuII ions. The two CuII ions are five-coordinate in a significantly distorted square-pyramidal arrangement, with the bridging Cl atom located in the apical position, and the pyridine (py) N atom, the two imine N atoms and the other Cl atom located in the basal plane. The CuI ion is in a trigonal planar configuration surrounded by three Cl atoms. The structure is stabilized by intra- and inter­molecular C—H...Cl and C—H...π(py) hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270108012237/ga3087sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270108012237/ga3087Isup2.hkl
Contains datablock I

CCDC reference: 692651

Comment top

Multidentate ligands play an important role in transition metal chemistry, enhancing stability of complexes and allowing the manipulation of steric and electronic parameters which control reactivity at the metal center (Togni & Venanzi, 1994). An attractive multidentate ligand is the neutral N,N',N''-tridentate pyridine-2,6-diimine (pydim) ligand, in which the central pyridine-based ring donor contains keto–imine substituents in the ortho positions. Upon coordination to transition metals, the bis-chelate framework may confer on such complexes interesting stoichiometries and catalytic activities (Gibson & Spitzmesser, 2003; Çetinkaya et al., 1999; Dayan & Çetinkaya, 2007).

While their catalytic properties have been examined extensively, reports of the structural properties of these compounds are rare in the literature. We have therefore prepared pyridinediimine complexes of various transition metals (Özdemir et al., 2006a,b). We were attempting to obtain a monomer complex between (I) (Scheme 1) and CuCl2. However, CHN analysis showed that the desired product did not form, but rather a new trimer, (II), between pydim and CuCl2 in a 2:3 ratio. Understanding the shape of the coordination polyhedra in the case of five-coordination is one of the current problems in coordination chemistry. This study of (II) establishes the structural parameters and the coordination geometries about the metal atoms.

The molecular structure of complex (II), together with the atom-labelling scheme, is shown in Fig. 1. Selected geometric parameters are listed in Table 1. The structure of the title trimer is composed of two CuII metal centres bound to one (N,N'Z,N,N'E)-N,N'-[1,1'-(pyridine-2,6-diyl)bis(ethan-1-yl-1-ylidene)] bis(4-fluoroaniline) ligand, (I), and one Cl atom, and a tricholorocopper(I) unit which links the two CuII metal centres. The ligand (I), with its two imino groups in ortho positions with respect to the pyridine N atom, behaves as a symmetrical N,N',N-tridentate chelate. The two CuII ions are therefore five-coordinated by two imine N atoms, one pyridine N atom and two Cl atoms, while the CuI ion is coordinated by three Cl atoms (Fig. 1) in a trigonal–planar configuration. The Cu1/N1/C1/C14/N3, Cu1/N1/C5/C6/N2, Cu3/N4/C22/C35/N6 and Cu3/N4/C26/C27/N5 chelate rings are approximately planar, and the maximum deviations from their planes are 0.024 (3), 0.020 (2), 0.031 (2) and 0.010 (2) Å for atoms C14, N1, N6 and N5, respectively. The Cu1- and Cu3-containing pairs of chelate rings make dihedral angles of, respectively, 3.00 (12) and 1.74 (12)° with one another, indicating that they are nearly coplanar.

Five-coordinate copper(II) complexes have geometries ranging from trigonal–bipyramidal to square–pyramidal. Energetically, these limiting forms are often almost equally favourable, with a low activation barrier to interconversion. Further information can be obtained by determining the structural index, τ, which represents the relative amount of trigonality [for a square pyramid, τ = 0, and for a trigonal bipyramid, τ = 1; τ = (β - α)/60°, α and β being the two largest angles around the central atom (Addison et al., 1984)]. The values of τ for atoms Cu1 and Cu3 in (II) are 0.23 and 0.03, respectively, indicating that the coordination geometry of the CuII ions is closer to a regular square pyramid than to a regular trigonal bipyramid. For both CuII ions, the axial positions are occupied by the Cl atoms coordinated to a CuI ion, while the four basal positions consist of the other chloride ligand and the three N-atom donors of the tridentate ligand (I). The Cu1 and Cu3 atoms lie 0.4210 (4) and 0.2659 (3) Å, respectively, out of the least-squares planes of the pyramid bases. As can be seen in Table 1, the bond lengths and angles at the CuII ions show that the coordination geometries are distorted significantly (from equal lengths and 90° angles). Axial Cu—Cl distances are longer than equatorial Cu—Cl distances, confirming the weaker interactions between the bridging Cl atoms and the Cu atoms. When the Cu—Cl distances in polymeric CuI– or CuII–Cl compounds are surveyed, it is observed that elongation of the bridging Cu—Cl distances in the axial position is common for these types of complexes (Schuitema et al., 2003; Johansson et al., 2004; Rybak-Akimova et al., 1997; Vasilevsky et al., 1989).

A comparison of the appropriate bond distances and angles in (II) indicates that the two CuII ions possess approximate noncrystallographic Cs symmetry about a plane bisecting the central pyridine ring and containing the metal atom and the two halogen atoms. The planes of the benzene rings substituted on the bis(imino)pyridine ligand backbone make dihedral angles of 52.94 (16), 71.88 (15), 56.48 (15) and 81.95 (16)° with the plane of the central pyridine ring for the C8–C13, C16–C21, C29–C34 and C37–C42 rings, respectively. The dihedral angle between the C8–C13 and C16–C21 rings is 86.38 (15)°, while the dihedral angle between the C29–C34 and C37–C42 rings is 84.05 (15)°. The geometries at the Nimino-atom centers are all trigonal–planar, the sums of the three bond angles around these centers being 359.9 (2), 360.0 (2), 359.9 (2) and 359.8 (2)°, and none is more than ca 0.03 Å out of its associated CuC2 plane.

There are several reported structures containing various transition metal complexes of pydim-based ligands (Britovsek et al., 1999; Dias et al., 2000; Nakayama et al., 2005; Humphries et al., 2005). The M—N bond distances in (II) and in these examples indicate that the two M—Nimino bonds are ca 0.1–0.2 Å longer than the corresponding M—Npyridine bond within each metal–tridentate-chelate unit. Furthermore, it is observed that the NiminoM—Npyridine bond angle for the five-membered chelate rings of pydim complexes is inversely related to the magnitude of the M—Npyridine bond; as the M—Npyridine distance increases, the corresponding inner `bite' angle decreases, as shown in Table 3.

The intra- and intermolecular interactions in (II) are given in Table 2. An intramolecular C9—H9···Cl2 interaction leads to the formation of a six-membered ring. In addition, there is also an intramolecular C—H···π contact between atom H7B and the centroid of the N4/C22–C26 ring (entry 2 in Table 2, and Fig. 1). Molecules of the title compound are packed in columns running along the b axis and three C—H···Cl intermolecular interactions are observed (Fig. 2); these type of interaction have been observed previously (Vasilevsky et al., 1989; Özdemir et al., 2006a,b).

Related literature top

For related literature, see: Addison et al. (1984); Britovsek et al. (1999); Dayan & Çetinkaya (2007); Dias et al. (2000); Gibson & Spitzmesser (2003); Humphries et al. (2005); Johansson et al. (2004); Nakayama et al. (2005); Rybak-Akimova, Busch, Kahol, Pinto, Alcock & Clase (1997); Schuitema et al. (2003); Sheldrick (1997); Togni & Venanzi (1994); Vasilevsky et al. (1989); Özdemir et al. (2006a, 2006b); Çetinkaya et al. (1999).

Experimental top

The ligand (I) was prepared by a modification of the method described by Çetinkaya et al. (1999). A solution of CuCl2.2H20 (510 mg, 3 mmol) in EtOH (10 ml) was added dropwise to a solution of (I) (350 mg, 1 mmol) in ethanol (10 ml). The resulting brown solution was refluxed for 4 h and was concentrated (5 ml). Water was added dropwise with stirring to a final volume of 10 ml, causing a brown powder to precipitate. The brown precipitate was filtered off, washed with cold EtOH and Et2O, respectively, and dried. X-ray quality crystals were grown from CH2Cl2–Et2O (30 ml, 1:2 v/v) (yield 420 mg, 39%; m.p. 460–462 K). Analysis calculated for C42H34Cl5Cu3F4N6: C 47.29, H 3.21, N 7.88%; found: C 47.98, H 3.12, N 7.31%. Other experimental data are given in the _exptl_special _details section of the deposited CIF.

Refinement top

H atoms were positioned geometrically and treated using a riding model, fixing the bond lengths at 0.96 and 0.93 Å for CH3 and aromatic CH groups, respectively. The displacement parameters of the H atoms were constrained [Uiso(H) = 1.2Ueq(C) for non-methyl and Uiso(H) = 1.5Ueq(C) for methyl H atoms]. Riding methyl H atoms were allowed to rotate freely during refinement using the AFIX 137 command of SHELXL97 (Sheldrick, 2008).

Computing details top

Data collection: X-AREA (Stoe & Cie, 2002); cell refinement: X-AREA (Stoe & Cie, 2002); data reduction: X-RED32 (Stoe & Cie, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. : A view of (II), with 30% probability displacement ellipsoids and the atom-numbering scheme. For clarity, only H atoms involved in hydrogen bonding (shown by dashed lines) have been included.
[Figure 2] Fig. 2. : A partial cell packing diagram for complex (II), showing the C—H···Cl interactions (dashed lines). For clarity, only H atoms involved in hydrogen bonding have been included. [Symmetry codes: (i) -x + 1, y - 1/2, -z + 1/2; (ii) -x + 1, y + 1/2, -z + 1/2.]
Bis{2,6-bis[1-(4-fluorophenylimino)ethyl]pyridine}- 1κ3N,N',N'';3κ3N,N',N''-di-µ-chlorido-trichlorido-1λCl,2κCl,3κCl- copper(I)dicopper(II) top
Crystal data top
[Cu3Cl5(C21H17N3F2)2]F(000) = 2144
Mr = 1066.62Dx = 1.629 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 43031 reflections
a = 18.4646 (9) Åθ = 1.6–26.1°
b = 9.0930 (3) ŵ = 1.82 mm1
c = 28.0986 (14) ÅT = 296 K
β = 112.774 (4)°Prismatic stick, dark red
V = 4349.9 (4) Å30.62 × 0.31 × 0.10 mm
Z = 4
Data collection top
Stoe IPDS-II
diffractometer
8530 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus6353 reflections with I > 2σ(I)
Plane graphite monochromatorRint = 0.057
Detector resolution: 6.67 pixels mm-1θmax = 26.1°, θmin = 1.6°
ω scansh = 2222
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
k = 1111
Tmin = 0.595, Tmax = 0.883l = 3434
39069 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.0361P)2]
where P = (Fo2 + 2Fc2)/3
8530 reflections(Δ/σ)max = 0.001
545 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.60 e Å3
Crystal data top
[Cu3Cl5(C21H17N3F2)2]V = 4349.9 (4) Å3
Mr = 1066.62Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.4646 (9) ŵ = 1.82 mm1
b = 9.0930 (3) ÅT = 296 K
c = 28.0986 (14) Å0.62 × 0.31 × 0.10 mm
β = 112.774 (4)°
Data collection top
Stoe IPDS-II
diffractometer
8530 independent reflections
Absorption correction: integration
(X-RED32; Stoe & Cie, 2002)
6353 reflections with I > 2σ(I)
Tmin = 0.595, Tmax = 0.883Rint = 0.057
39069 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.072H-atom parameters constrained
S = 1.01Δρmax = 0.31 e Å3
8530 reflectionsΔρmin = 0.60 e Å3
545 parameters
Special details top

Experimental. Melting points were determined in open capillary tubes on a digital Electrothermal 9100 melting point apparatus. IR spectra (KBr pellets) were recorded in the range 400–4000 cm-1 on an ATI UNICAM 2000 spectrophotometer. Elemental analyses were carried out by the analytical service of TÜBİTAK (the Scientific and Technical Research Council of Turkey) using a Carlo Erba 1106 apparatus. CuCl2.2H20 (Merck), diacetylpyridine (Fluka), 4-flouroaniline (Acros) were used as received. Solvents were of analytical grade. IR (KBr): 1614 (νCN) cm-1.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.454008 (18)0.04742 (4)0.124655 (12)0.03725 (8)
Cu20.66881 (2)0.24990 (4)0.140867 (14)0.05292 (10)
Cu30.874668 (18)0.01527 (3)0.247785 (12)0.03684 (8)
Cl10.36684 (4)0.10107 (8)0.15922 (3)0.04491 (16)
Cl20.53127 (4)0.26183 (8)0.11538 (3)0.04861 (17)
Cl30.70269 (4)0.40568 (9)0.09265 (3)0.05511 (18)
Cl40.73171 (4)0.08096 (9)0.19944 (3)0.0576 (2)
Cl50.94597 (5)0.18490 (8)0.26228 (3)0.05492 (19)
F10.62302 (12)0.1957 (2)0.38307 (7)0.0723 (5)
F20.13067 (14)0.4540 (3)0.00803 (10)0.0991 (8)
F30.97175 (13)0.2763 (2)0.05611 (8)0.0757 (6)
F40.88227 (14)0.4128 (2)0.45593 (9)0.0877 (7)
N10.49090 (12)0.1095 (2)0.09283 (8)0.0387 (5)
N20.54149 (12)0.0425 (2)0.18838 (8)0.0368 (5)
N30.37827 (12)0.0651 (2)0.04839 (8)0.0392 (5)
N40.85086 (12)0.2221 (2)0.24975 (8)0.0356 (5)
N50.88536 (12)0.0907 (2)0.18149 (8)0.0376 (5)
N60.85987 (12)0.0315 (2)0.31773 (8)0.0382 (5)
C10.45585 (16)0.1304 (3)0.04205 (10)0.0425 (6)
C20.47901 (19)0.2453 (3)0.01874 (12)0.0576 (8)
H20.45570.25990.01670.069*
C30.5375 (2)0.3367 (4)0.04964 (14)0.0670 (9)
H30.55430.41400.03480.080*
C40.57178 (19)0.3161 (3)0.10245 (13)0.0569 (8)
H40.61050.37960.12330.068*
C50.54686 (15)0.1979 (3)0.12344 (11)0.0411 (6)
C60.57556 (15)0.1557 (3)0.17872 (10)0.0399 (6)
C70.63983 (18)0.2438 (4)0.21706 (12)0.0558 (8)
H7A0.66410.18770.24820.084*
H7B0.67830.26750.20310.084*
H7C0.61850.33280.22470.084*
C80.56327 (14)0.0157 (3)0.23947 (9)0.0370 (6)
C90.58153 (16)0.1628 (3)0.24735 (11)0.0449 (6)
H90.58040.22140.21990.054*
C100.60145 (17)0.2238 (3)0.29567 (11)0.0497 (7)
H100.61410.32300.30130.060*
C110.60226 (17)0.1351 (4)0.33512 (11)0.0503 (7)
C120.58305 (19)0.0093 (4)0.32853 (11)0.0580 (8)
H120.58300.06600.35610.070*
C130.56341 (17)0.0712 (3)0.28003 (11)0.0507 (7)
H130.55040.17040.27470.061*
C140.39145 (16)0.0227 (3)0.01699 (10)0.0415 (6)
C150.34862 (19)0.0256 (4)0.04010 (11)0.0583 (8)
H15A0.31740.06180.05110.087*
H15B0.31510.11050.04970.087*
H15C0.38580.03010.05630.087*
C160.31398 (15)0.1671 (3)0.03098 (9)0.0412 (6)
C170.32809 (19)0.3149 (4)0.03133 (12)0.0554 (8)
H170.37910.34950.04060.066*
C180.2652 (2)0.4132 (4)0.01760 (13)0.0652 (9)
H180.27340.51390.01700.078*
C190.1916 (2)0.3579 (5)0.00510 (12)0.0636 (9)
C200.17698 (18)0.2125 (5)0.00554 (12)0.0638 (9)
H200.12610.17860.00250.077*
C210.23855 (17)0.1159 (4)0.01801 (12)0.0544 (7)
H210.22930.01530.01770.065*
C220.83411 (15)0.2745 (3)0.28869 (10)0.0384 (6)
C230.81603 (17)0.4203 (3)0.29051 (11)0.0484 (7)
H230.80320.45600.31730.058*
C240.81714 (19)0.5129 (3)0.25190 (12)0.0533 (7)
H240.80570.61230.25270.064*
C250.83526 (17)0.4577 (3)0.21198 (12)0.0501 (7)
H250.83660.51920.18590.060*
C260.85139 (15)0.3087 (3)0.21155 (10)0.0390 (6)
C270.87070 (15)0.2285 (3)0.17218 (10)0.0409 (6)
C280.8681 (2)0.3106 (4)0.12565 (12)0.0631 (9)
H28A0.87100.24240.10040.095*
H28B0.81990.36510.11140.095*
H28C0.91180.37730.13520.095*
C290.90714 (15)0.0017 (3)0.14770 (9)0.0375 (6)
C300.86428 (17)0.1262 (3)0.12785 (11)0.0501 (7)
H300.82090.14810.13560.060*
C310.88493 (19)0.2195 (4)0.09642 (12)0.0559 (8)
H310.85570.30350.08250.067*
C320.94935 (18)0.1848 (3)0.08645 (11)0.0513 (7)
C330.99451 (18)0.0630 (4)0.10636 (12)0.0540 (7)
H331.03850.04330.09900.065*
C340.97315 (17)0.0301 (3)0.13758 (11)0.0481 (7)
H341.00290.11340.15170.058*
C350.83813 (15)0.1586 (3)0.32710 (10)0.0394 (6)
C360.81738 (19)0.1960 (4)0.37175 (11)0.0545 (8)
H36A0.81730.10810.39070.082*
H36B0.85530.26390.39390.082*
H36C0.76620.24010.35950.082*
C370.86643 (15)0.0868 (3)0.35315 (10)0.0387 (6)
C380.80436 (17)0.1819 (3)0.34349 (12)0.0510 (7)
H380.75940.17250.31350.061*
C390.8093 (2)0.2919 (4)0.37887 (13)0.0577 (8)
H390.76760.35600.37340.069*
C400.8765 (2)0.3034 (4)0.42149 (13)0.0566 (8)
C410.93883 (19)0.2123 (4)0.43157 (12)0.0586 (8)
H410.98390.22400.46130.070*
C420.93393 (17)0.1018 (4)0.39671 (11)0.0510 (7)
H420.97590.03810.40270.061*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.03682 (16)0.04031 (18)0.03284 (16)0.00851 (13)0.01154 (13)0.00051 (13)
Cu20.0620 (2)0.0475 (2)0.0485 (2)0.00086 (18)0.02058 (18)0.00043 (17)
Cu30.04182 (17)0.03449 (17)0.03585 (16)0.00376 (13)0.01683 (14)0.00150 (13)
Cl10.0445 (4)0.0472 (4)0.0470 (4)0.0091 (3)0.0221 (3)0.0006 (3)
Cl20.0401 (3)0.0534 (4)0.0515 (4)0.0014 (3)0.0168 (3)0.0093 (3)
Cl30.0510 (4)0.0498 (4)0.0663 (5)0.0001 (3)0.0246 (4)0.0089 (4)
Cl40.0405 (4)0.0693 (5)0.0630 (5)0.0116 (3)0.0199 (3)0.0226 (4)
Cl50.0602 (4)0.0485 (4)0.0595 (4)0.0197 (3)0.0269 (4)0.0124 (3)
F10.0872 (14)0.0847 (14)0.0428 (10)0.0020 (11)0.0229 (10)0.0168 (9)
F20.0801 (15)0.1068 (19)0.1000 (17)0.0570 (14)0.0235 (13)0.0195 (14)
F30.0946 (14)0.0693 (13)0.0774 (13)0.0027 (11)0.0490 (12)0.0249 (11)
F40.1060 (17)0.0773 (15)0.0915 (16)0.0025 (13)0.0510 (14)0.0407 (12)
N10.0372 (11)0.0384 (12)0.0396 (12)0.0047 (10)0.0137 (10)0.0025 (10)
N20.0336 (10)0.0382 (12)0.0363 (11)0.0015 (9)0.0110 (9)0.0008 (9)
N30.0373 (11)0.0436 (13)0.0333 (11)0.0038 (10)0.0098 (9)0.0002 (10)
N40.0350 (11)0.0365 (12)0.0333 (11)0.0012 (9)0.0109 (9)0.0009 (9)
N50.0396 (11)0.0378 (13)0.0355 (11)0.0000 (9)0.0146 (9)0.0014 (9)
N60.0407 (11)0.0403 (13)0.0345 (11)0.0008 (10)0.0155 (9)0.0002 (9)
C10.0430 (14)0.0440 (16)0.0402 (15)0.0007 (12)0.0159 (12)0.0047 (12)
C20.066 (2)0.0548 (19)0.0482 (17)0.0094 (16)0.0179 (15)0.0171 (15)
C30.075 (2)0.055 (2)0.068 (2)0.0180 (18)0.0250 (18)0.0192 (17)
C40.0580 (18)0.0441 (17)0.065 (2)0.0172 (15)0.0202 (16)0.0029 (15)
C50.0380 (14)0.0381 (14)0.0465 (15)0.0044 (11)0.0155 (12)0.0012 (12)
C60.0334 (13)0.0398 (15)0.0451 (15)0.0019 (11)0.0136 (11)0.0029 (12)
C70.0528 (17)0.0554 (19)0.0545 (18)0.0194 (15)0.0155 (14)0.0096 (15)
C80.0318 (12)0.0417 (15)0.0337 (13)0.0039 (11)0.0087 (10)0.0013 (11)
C90.0494 (16)0.0435 (16)0.0427 (15)0.0040 (13)0.0190 (13)0.0042 (12)
C100.0528 (17)0.0433 (16)0.0514 (17)0.0035 (13)0.0184 (14)0.0039 (13)
C110.0454 (15)0.064 (2)0.0398 (16)0.0036 (14)0.0152 (13)0.0092 (14)
C120.064 (2)0.070 (2)0.0393 (16)0.0073 (17)0.0194 (15)0.0053 (15)
C130.0531 (17)0.0502 (18)0.0428 (16)0.0109 (14)0.0118 (13)0.0012 (13)
C140.0430 (14)0.0438 (16)0.0355 (14)0.0019 (12)0.0127 (11)0.0034 (12)
C150.066 (2)0.064 (2)0.0379 (15)0.0075 (16)0.0121 (14)0.0072 (14)
C160.0415 (14)0.0504 (17)0.0287 (13)0.0095 (12)0.0104 (11)0.0022 (12)
C170.0548 (18)0.0514 (19)0.0546 (18)0.0082 (15)0.0154 (15)0.0035 (15)
C180.080 (2)0.0497 (19)0.058 (2)0.0189 (18)0.0186 (18)0.0077 (15)
C190.057 (2)0.086 (3)0.0440 (17)0.0338 (19)0.0146 (15)0.0117 (17)
C200.0421 (16)0.092 (3)0.0536 (19)0.0168 (17)0.0146 (14)0.0160 (18)
C210.0487 (17)0.062 (2)0.0493 (17)0.0058 (15)0.0158 (14)0.0081 (15)
C220.0365 (13)0.0412 (15)0.0345 (13)0.0008 (11)0.0105 (11)0.0036 (11)
C230.0555 (17)0.0427 (17)0.0446 (16)0.0086 (13)0.0166 (14)0.0063 (13)
C240.0647 (19)0.0338 (15)0.0567 (18)0.0068 (14)0.0183 (15)0.0032 (13)
C250.0580 (17)0.0391 (16)0.0516 (17)0.0048 (13)0.0195 (14)0.0088 (13)
C260.0382 (13)0.0364 (14)0.0394 (14)0.0020 (11)0.0117 (11)0.0022 (11)
C270.0382 (14)0.0468 (17)0.0351 (13)0.0013 (12)0.0115 (11)0.0018 (12)
C280.086 (2)0.064 (2)0.0481 (18)0.0190 (18)0.0357 (17)0.0182 (16)
C290.0397 (13)0.0406 (15)0.0314 (13)0.0011 (11)0.0129 (11)0.0007 (11)
C300.0487 (16)0.0550 (18)0.0502 (17)0.0077 (14)0.0230 (14)0.0083 (14)
C310.0610 (19)0.0506 (18)0.0579 (19)0.0108 (15)0.0249 (16)0.0159 (15)
C320.0616 (18)0.0499 (18)0.0470 (16)0.0018 (15)0.0260 (15)0.0095 (14)
C330.0544 (17)0.0577 (19)0.0597 (19)0.0002 (15)0.0331 (15)0.0055 (15)
C340.0483 (16)0.0495 (17)0.0510 (16)0.0095 (13)0.0241 (13)0.0113 (13)
C350.0358 (13)0.0461 (16)0.0344 (13)0.0034 (12)0.0113 (11)0.0017 (12)
C360.067 (2)0.0589 (19)0.0473 (17)0.0127 (16)0.0330 (15)0.0019 (14)
C370.0451 (14)0.0398 (15)0.0361 (14)0.0031 (12)0.0213 (12)0.0011 (11)
C380.0483 (16)0.0551 (19)0.0484 (16)0.0072 (14)0.0172 (13)0.0009 (14)
C390.067 (2)0.0528 (19)0.062 (2)0.0141 (16)0.0345 (17)0.0030 (15)
C400.073 (2)0.0507 (18)0.0585 (19)0.0048 (16)0.0394 (18)0.0125 (15)
C410.0527 (18)0.071 (2)0.0503 (18)0.0085 (16)0.0184 (15)0.0183 (16)
C420.0460 (16)0.0569 (19)0.0505 (17)0.0023 (14)0.0192 (14)0.0080 (14)
Geometric parameters (Å, º) top
Cu1—N11.942 (2)C14—C151.489 (4)
Cu1—N22.060 (2)C15—H15A0.9600
Cu1—N32.063 (2)C15—H15B0.9600
Cu1—Cl12.2320 (7)C15—H15C0.9600
Cu1—Cl22.4884 (8)C16—C171.368 (4)
Cu2—Cl32.2111 (8)C16—C211.377 (4)
Cu2—Cl42.2221 (8)C17—C181.396 (4)
Cu2—Cl22.3594 (8)C17—H170.9300
Cu3—N41.937 (2)C18—C191.361 (5)
Cu3—N52.065 (2)C18—H180.9300
Cu3—N62.092 (2)C19—C201.351 (5)
Cu3—Cl52.1903 (8)C20—C211.371 (4)
Cu3—Cl42.6082 (8)C20—H200.9300
F1—C111.366 (3)C21—H210.9300
F2—C191.358 (4)C22—C231.373 (4)
F3—C321.365 (3)C22—C351.490 (4)
F4—C401.363 (4)C23—C241.380 (4)
N1—C51.329 (3)C23—H230.9300
N1—C11.333 (3)C24—C251.383 (4)
N2—C61.289 (3)C24—H240.9300
N2—C81.434 (3)C25—C261.387 (4)
N3—C141.281 (3)C25—H250.9300
N3—C161.435 (3)C26—C271.479 (4)
N4—C261.335 (3)C27—C281.491 (4)
N4—C221.335 (3)C28—H28A0.9600
N5—C271.287 (3)C28—H28B0.9600
N5—C291.437 (3)C28—H28C0.9600
N6—C351.283 (3)C29—C301.370 (4)
N6—C371.439 (3)C29—C341.385 (4)
C1—C21.385 (4)C30—C311.380 (4)
C1—C141.490 (4)C30—H300.9300
C2—C31.373 (5)C31—C321.360 (4)
C2—H20.9300C31—H310.9300
C3—C41.382 (5)C32—C331.369 (4)
C3—H30.9300C33—C341.381 (4)
C4—C51.387 (4)C33—H330.9300
C4—H40.9300C34—H340.9300
C5—C61.484 (4)C35—C361.486 (4)
C6—C71.490 (4)C36—H36A0.9600
C7—H7A0.9600C36—H36B0.9600
C7—H7B0.9600C36—H36C0.9600
C7—H7C0.9600C37—C421.374 (4)
C8—C91.376 (4)C37—C381.376 (4)
C8—C131.386 (4)C38—C391.388 (4)
C9—C101.378 (4)C38—H380.9300
C9—H90.9300C39—C401.354 (5)
C10—C111.366 (4)C39—H390.9300
C10—H100.9300C40—C411.357 (5)
C11—C121.354 (5)C41—C421.382 (4)
C12—C131.387 (4)C41—H410.9300
C12—H120.9300C42—H420.9300
C13—H130.9300
N1—Cu1—N279.16 (9)C14—C15—H15C109.5
N1—Cu1—N378.25 (9)H15A—C15—H15C109.5
N2—Cu1—N3157.24 (8)H15B—C15—H15C109.5
N1—Cu1—Cl1143.28 (7)C17—C16—C21120.3 (3)
N2—Cu1—Cl199.40 (6)C17—C16—N3120.2 (3)
N3—Cu1—Cl197.00 (6)C21—C16—N3119.4 (3)
N1—Cu1—Cl2102.11 (7)C16—C17—C18119.4 (3)
N2—Cu1—Cl296.52 (6)C16—C17—H17120.3
N3—Cu1—Cl290.90 (7)C18—C17—H17120.3
Cl1—Cu1—Cl2114.43 (3)C19—C18—C17118.4 (3)
Cl3—Cu2—Cl4134.91 (3)C19—C18—H18120.8
Cl3—Cu2—Cl2108.13 (3)C17—C18—H18120.8
Cl4—Cu2—Cl2116.69 (3)C20—C19—F2119.0 (3)
N4—Cu3—N578.77 (9)C20—C19—C18122.8 (3)
N4—Cu3—N677.93 (9)F2—C19—C18118.2 (4)
N5—Cu3—N6156.49 (9)C19—C20—C21118.7 (3)
N4—Cu3—Cl5158.17 (7)C19—C20—H20120.6
N5—Cu3—Cl5100.56 (6)C21—C20—H20120.6
N6—Cu3—Cl599.90 (6)C20—C21—C16120.3 (3)
N4—Cu3—Cl498.36 (6)C20—C21—H21119.8
N5—Cu3—Cl494.16 (6)C16—C21—H21119.8
N6—Cu3—Cl492.24 (6)N4—C22—C23120.8 (3)
Cl5—Cu3—Cl4103.44 (3)N4—C22—C35112.3 (2)
Cu2—Cl2—Cu1121.71 (3)C23—C22—C35126.9 (2)
Cu2—Cl4—Cu3138.68 (4)C22—C23—C24118.8 (3)
C5—N1—C1122.7 (2)C22—C23—H23120.6
C5—N1—Cu1118.02 (18)C24—C23—H23120.6
C1—N1—Cu1119.13 (18)C23—C24—C25119.8 (3)
C6—N2—C8122.3 (2)C23—C24—H24120.1
C6—N2—Cu1114.60 (17)C25—C24—H24120.1
C8—N2—Cu1123.05 (16)C24—C25—C26118.8 (3)
C14—N3—C16121.4 (2)C24—C25—H25120.6
C14—N3—Cu1115.71 (18)C26—C25—H25120.6
C16—N3—Cu1122.91 (16)N4—C26—C25120.0 (2)
C26—N4—C22121.6 (2)N4—C26—C27112.9 (2)
C26—N4—Cu3118.54 (17)C25—C26—C27127.1 (3)
C22—N4—Cu3119.81 (17)N5—C27—C26114.9 (2)
C27—N5—C29121.7 (2)N5—C27—C28126.8 (3)
C27—N5—Cu3114.88 (17)C26—C27—C28118.3 (3)
C29—N5—Cu3123.41 (17)C27—C28—H28A109.5
C35—N6—C37118.7 (2)C27—C28—H28B109.5
C35—N6—Cu3114.93 (17)H28A—C28—H28B109.5
C37—N6—Cu3126.19 (16)C27—C28—H28C109.5
N1—C1—C2120.2 (3)H28A—C28—H28C109.5
N1—C1—C14112.3 (2)H28B—C28—H28C109.5
C2—C1—C14127.4 (3)C30—C29—C34120.3 (3)
C3—C2—C1117.9 (3)C30—C29—N5119.1 (2)
C3—C2—H2121.0C34—C29—N5120.5 (2)
C1—C2—H2121.0C29—C30—C31120.6 (3)
C2—C3—C4121.2 (3)C29—C30—H30119.7
C2—C3—H3119.4C31—C30—H30119.7
C4—C3—H3119.4C32—C31—C30118.0 (3)
C3—C4—C5118.2 (3)C32—C31—H31121.0
C3—C4—H4120.9C30—C31—H31121.0
C5—C4—H4120.9C31—C32—F3119.2 (3)
N1—C5—C4119.7 (3)C31—C32—C33123.1 (3)
N1—C5—C6113.2 (2)F3—C32—C33117.7 (3)
C4—C5—C6127.0 (3)C32—C33—C34118.5 (3)
N2—C6—C5114.9 (2)C32—C33—H33120.8
N2—C6—C7126.4 (3)C34—C33—H33120.8
C5—C6—C7118.6 (2)C33—C34—C29119.5 (3)
C6—C7—H7A109.5C33—C34—H34120.2
C6—C7—H7B109.5C29—C34—H34120.2
H7A—C7—H7B109.5N6—C35—C36125.6 (3)
C6—C7—H7C109.5N6—C35—C22114.8 (2)
H7A—C7—H7C109.5C36—C35—C22119.5 (2)
H7B—C7—H7C109.5C35—C36—H36A109.5
C9—C8—C13120.0 (3)C35—C36—H36B109.5
C9—C8—N2118.4 (2)H36A—C36—H36B109.5
C13—C8—N2121.5 (2)C35—C36—H36C109.5
C8—C9—C10120.3 (3)H36A—C36—H36C109.5
C8—C9—H9119.8H36B—C36—H36C109.5
C10—C9—H9119.8C42—C37—C38120.8 (3)
C11—C10—C9118.5 (3)C42—C37—N6119.7 (2)
C11—C10—H10120.8C38—C37—N6119.5 (2)
C9—C10—H10120.8C37—C38—C39119.5 (3)
C12—C11—F1119.0 (3)C37—C38—H38120.2
C12—C11—C10122.8 (3)C39—C38—H38120.2
F1—C11—C10118.2 (3)C40—C39—C38118.2 (3)
C11—C12—C13118.9 (3)C40—C39—H39120.9
C11—C12—H12120.5C38—C39—H39120.9
C13—C12—H12120.5C39—C40—C41123.4 (3)
C8—C13—C12119.5 (3)C39—C40—F4118.5 (3)
C8—C13—H13120.2C41—C40—F4118.1 (3)
C12—C13—H13120.2C40—C41—C42118.6 (3)
N3—C14—C15126.1 (3)C40—C41—H41120.7
N3—C14—C1114.4 (2)C42—C41—H41120.7
C15—C14—C1119.4 (2)C37—C42—C41119.4 (3)
C14—C15—H15A109.5C37—C42—H42120.3
C14—C15—H15B109.5C41—C42—H42120.3
H15A—C15—H15B109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl20.932.743.572 (3)149
C7—H7B···Cg10.962.813.518 (3)131
C36—H36C···Cl1i0.962.723.666 (3)169
C10—H10···Cl1ii0.932.733.626 (3)162
C13—H13···Cl1i0.932.813.428 (3)125
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu3Cl5(C21H17N3F2)2]
Mr1066.62
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)18.4646 (9), 9.0930 (3), 28.0986 (14)
β (°) 112.774 (4)
V3)4349.9 (4)
Z4
Radiation typeMo Kα
µ (mm1)1.82
Crystal size (mm)0.62 × 0.31 × 0.10
Data collection
DiffractometerStoe IPDS-II
diffractometer
Absorption correctionIntegration
(X-RED32; Stoe & Cie, 2002)
Tmin, Tmax0.595, 0.883
No. of measured, independent and
observed [I > 2σ(I)] reflections
39069, 8530, 6353
Rint0.057
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.032, 0.072, 1.01
No. of reflections8530
No. of parameters545
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.31, 0.60

Computer programs: X-AREA (Stoe & Cie, 2002), X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) top
Cu1—N11.942 (2)Cu3—N52.065 (2)
Cu1—N22.060 (2)Cu3—N62.092 (2)
Cu1—N32.063 (2)Cu3—Cl52.1903 (8)
Cu1—Cl12.2320 (7)Cu3—Cl42.6082 (8)
Cu1—Cl22.4884 (8)N2—C61.289 (3)
Cu2—Cl32.2111 (8)N3—C141.281 (3)
Cu2—Cl42.2221 (8)N5—C271.287 (3)
Cu2—Cl22.3594 (8)N6—C351.283 (3)
Cu3—N41.937 (2)
N1—Cu1—N279.16 (9)N4—Cu3—N578.77 (9)
N1—Cu1—N378.25 (9)N4—Cu3—N677.93 (9)
N2—Cu1—N3157.24 (8)N5—Cu3—N6156.49 (9)
N1—Cu1—Cl1143.28 (7)N4—Cu3—Cl5158.17 (7)
N2—Cu1—Cl199.40 (6)N5—Cu3—Cl5100.56 (6)
N3—Cu1—Cl197.00 (6)N6—Cu3—Cl599.90 (6)
N1—Cu1—Cl2102.11 (7)N4—Cu3—Cl498.36 (6)
N2—Cu1—Cl296.52 (6)N5—Cu3—Cl494.16 (6)
N3—Cu1—Cl290.90 (7)N6—Cu3—Cl492.24 (6)
Cl1—Cu1—Cl2114.43 (3)Cl5—Cu3—Cl4103.44 (3)
Cl3—Cu2—Cl4134.91 (3)Cu2—Cl2—Cu1121.71 (3)
Cl3—Cu2—Cl2108.13 (3)Cu2—Cl4—Cu3138.68 (4)
Cl4—Cu2—Cl2116.69 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C9—H9···Cl20.932.743.572 (3)149
C7—H7B···Cg10.962.813.518 (3)131
C36—H36C···Cl1i0.962.723.666 (3)169
C10—H10···Cl1ii0.932.733.626 (3)162
C13—H13···Cl1i0.932.813.428 (3)125
Symmetry codes: (i) x+1, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2.
M—Npy bond lengths (Å) and Nimino—M—Npy bond angles (°) in (II) and some pydim complexes top
M—NpyNimino—M—Npy (average)
[CoMe(pydim)]a1.833 (3)81.17
[RhMe(pydim)](OTf)2b1.911 (3)79.8
(II)c1.940 (2)(average)78.53
[CrCl3(pydim)]d2.001 (3)76.6
[FeCl2(pydim)]e2.110 (6)72.8
Notes: (a) Humphries et al. (2005) (Ar = 2,6-iPr2C6H3); (b) Dias et al. (2000) (Ar = 2,6-iPr2C6H3, OTf is triflate); (c) this work; (d) Nakayama et al. (2005) (Ar = C6F5); (e) Britovsek et al. (1999) (Ar = 2,4,6-Me3C6H2).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds