
Supporting information
![]() | Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270111021871/ga3165sup1.cif |
![]() | Structure factor file (CIF format) https://doi.org/10.1107/S0108270111021871/ga3165Isup2.hkl |
CCDC reference: 842128
A mixture of CdCl2.2.5H2O (0.1 mmol), 5-nitroisophthalic acid (0.1 mmol), 1,6-bis(1,2,4-triazol-1-yl)hexane (0.1 mmol) and NaOH (0.2 mmol) was dissolved in distilled water (12 ml). The resulting solution was stirred for about 0.5 h at room temperature, sealed in a 25 ml Teflon-lined stainless steel autoclave and heated at 443 K for 3 d under autogenous pressure. Afterwards, the reaction system was cooled slowly to room temperature. Colourless block-shaped crystals of (I) suitable for single-crystal X-ray diffraction analysis were collected from the final reaction system by filtration, washed several times with distilled water and dried in air at ambient temperature (yield 72%, based on CdII).
All C-bound H atoms were placed geometrically and treated as riding on their parent atoms, with C—H = 0.93 Å (triazole and arene) or 0.97 Å (methylene) and Uiso(H) = 1.2Ueq(C). The water H atom was located in a difference Fourier map and initially included in the subsequent refinement using the restraints O—H = 0.85 Å, H···H = 1.39 Å and Uiso(H) = 1.5Ueq(O).
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT (Bruker, 1999); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL-Plus (Sheldrick, 2008); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).
[Cd(C8H3NO6)(C5H8N3)0.5(H2O)] | F(000) = 892 |
Mr = 449.67 | Dx = 1.934 Mg m−3 |
Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
Hall symbol: -P 2ybc | Cell parameters from 5181 reflections |
a = 10.292 (2) Å | θ = 2.4–27.4° |
b = 11.250 (3) Å | µ = 1.46 mm−1 |
c = 13.339 (3) Å | T = 296 K |
β = 90.644 (3)° | Block, colourless |
V = 1544.4 (6) Å3 | 0.26 × 0.21 × 0.19 mm |
Z = 4 |
Bruker–Nonius KappaCCD diffractometer | 3547 independent reflections |
Radiation source: fine-focus sealed tube | 2898 reflections with I > 2σ(I) |
Graphite monochromator | Rint = 0.082 |
ω scan | θmax = 27.5°, θmin = 2.0° |
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 1997) | h = −13→13 |
Tmin = 0.699, Tmax = 0.757 | k = −14→14 |
13260 measured reflections | l = −17→17 |
Refinement on F2 | Primary atom site location: structure-invariant direct methods |
Least-squares matrix: full | Secondary atom site location: difference Fourier map |
R[F2 > 2σ(F2)] = 0.032 | Hydrogen site location: inferred from neighbouring sites |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 0.99 | w = 1/[σ2(Fo2) + (0.0291P)2] where P = (Fo2 + 2Fc2)/3 |
3547 reflections | (Δ/σ)max = 0.001 |
226 parameters | Δρmax = 0.96 e Å−3 |
0 restraints | Δρmin = −0.94 e Å−3 |
[Cd(C8H3NO6)(C5H8N3)0.5(H2O)] | V = 1544.4 (6) Å3 |
Mr = 449.67 | Z = 4 |
Monoclinic, P21/c | Mo Kα radiation |
a = 10.292 (2) Å | µ = 1.46 mm−1 |
b = 11.250 (3) Å | T = 296 K |
c = 13.339 (3) Å | 0.26 × 0.21 × 0.19 mm |
β = 90.644 (3)° |
Bruker–Nonius KappaCCD diffractometer | 3547 independent reflections |
Absorption correction: empirical (using intensity measurements) (SADABS; Bruker, 1997) | 2898 reflections with I > 2σ(I) |
Tmin = 0.699, Tmax = 0.757 | Rint = 0.082 |
13260 measured reflections |
R[F2 > 2σ(F2)] = 0.032 | 0 restraints |
wR(F2) = 0.069 | H-atom parameters constrained |
S = 0.99 | Δρmax = 0.96 e Å−3 |
3547 reflections | Δρmin = −0.94 e Å−3 |
226 parameters |
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. |
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger. |
x | y | z | Uiso*/Ueq | ||
C1 | 0.6988 (3) | 0.3327 (2) | 0.79722 (18) | 0.0233 (6) | |
C2 | 0.5665 (3) | 0.3816 (2) | 0.82080 (18) | 0.0220 (6) | |
C3 | 0.4547 (3) | 0.3118 (3) | 0.81118 (18) | 0.0237 (6) | |
H3 | 0.4614 | 0.2339 | 0.7885 | 0.028* | |
C4 | 0.3332 (3) | 0.3581 (2) | 0.83545 (18) | 0.0232 (6) | |
C5 | 0.3245 (3) | 0.4724 (2) | 0.87323 (19) | 0.0254 (6) | |
H5 | 0.2446 | 0.5036 | 0.8916 | 0.031* | |
C6 | 0.4364 (3) | 0.5394 (2) | 0.88330 (18) | 0.0238 (6) | |
C7 | 0.5570 (3) | 0.4974 (2) | 0.85558 (19) | 0.0246 (6) | |
H7 | 0.6301 | 0.5458 | 0.8601 | 0.030* | |
C8 | 0.2117 (3) | 0.2854 (3) | 0.8158 (2) | 0.0280 (6) | |
C9 | 0.9551 (3) | 0.2301 (3) | 1.01494 (19) | 0.0284 (6) | |
H9 | 0.9976 | 0.3025 | 1.0077 | 0.034* | |
C10 | 0.8673 (3) | 0.0817 (3) | 1.08156 (19) | 0.0269 (6) | |
H10 | 0.8351 | 0.0275 | 1.1277 | 0.032* | |
C11 | 0.7925 (3) | −0.0242 (3) | 0.9249 (2) | 0.0309 (7) | |
H11A | 0.8052 | −0.0998 | 0.9586 | 0.037* | |
H11B | 0.8315 | −0.0299 | 0.8592 | 0.037* | |
C12 | 0.6489 (3) | −0.0015 (3) | 0.9123 (2) | 0.0306 (6) | |
H12A | 0.6132 | −0.0602 | 0.8664 | 0.037* | |
H12B | 0.6368 | 0.0761 | 0.8820 | 0.037* | |
C13 | 0.5726 (3) | −0.0060 (3) | 1.00951 (19) | 0.0272 (6) | |
H13A | 0.5899 | −0.0809 | 1.0433 | 0.033* | |
H13B | 0.6016 | 0.0577 | 1.0533 | 0.033* | |
Cd1 | 0.934937 (19) | 0.232936 (17) | 0.766421 (13) | 0.02273 (8) | |
N1 | 0.8593 (2) | 0.0692 (2) | 0.98266 (15) | 0.0241 (5) | |
N2 | 0.9162 (2) | 0.1647 (2) | 0.93785 (15) | 0.0267 (5) | |
N3 | 0.9276 (2) | 0.1822 (2) | 1.10526 (15) | 0.0265 (5) | |
N4 | 0.4279 (3) | 0.6597 (2) | 0.92699 (16) | 0.0305 (6) | |
O1 | 0.79671 (18) | 0.39733 (18) | 0.81099 (14) | 0.0309 (5) | |
O2 | 0.7075 (2) | 0.22703 (17) | 0.76492 (15) | 0.0283 (4) | |
O3 | 0.2195 (2) | 0.1788 (2) | 0.7966 (2) | 0.0532 (7) | |
O4 | 0.10397 (19) | 0.34196 (18) | 0.81974 (15) | 0.0335 (5) | |
O5 | 0.3245 (2) | 0.6908 (2) | 0.96308 (16) | 0.0414 (5) | |
O6 | 0.5260 (3) | 0.7215 (2) | 0.9266 (2) | 0.0494 (6) | |
O1W | 0.9971 (2) | 0.06259 (18) | 0.69136 (16) | 0.0402 (5) | |
H1W | 1.0768 | 0.0443 | 0.6986 | 0.060* | |
H2W | 0.9523 | −0.0003 | 0.6863 | 0.060* |
U11 | U22 | U33 | U12 | U13 | U23 | |
C1 | 0.0241 (16) | 0.0285 (15) | 0.0172 (12) | 0.0007 (12) | 0.0008 (10) | 0.0037 (10) |
C2 | 0.0193 (15) | 0.0284 (14) | 0.0182 (12) | 0.0009 (11) | −0.0007 (10) | 0.0029 (10) |
C3 | 0.0251 (15) | 0.0247 (13) | 0.0211 (13) | −0.0003 (11) | −0.0018 (10) | 0.0000 (11) |
C4 | 0.0197 (15) | 0.0293 (15) | 0.0205 (12) | −0.0014 (11) | −0.0014 (10) | 0.0027 (11) |
C5 | 0.0197 (15) | 0.0342 (16) | 0.0224 (13) | 0.0030 (12) | 0.0006 (10) | 0.0033 (11) |
C6 | 0.0268 (16) | 0.0247 (14) | 0.0200 (13) | 0.0026 (11) | −0.0021 (11) | 0.0014 (10) |
C7 | 0.0229 (15) | 0.0279 (14) | 0.0230 (13) | −0.0030 (11) | −0.0021 (11) | 0.0022 (11) |
C8 | 0.0227 (16) | 0.0343 (18) | 0.0269 (14) | −0.0044 (12) | −0.0004 (11) | 0.0029 (12) |
C9 | 0.0271 (17) | 0.0333 (16) | 0.0247 (14) | −0.0037 (12) | 0.0011 (11) | 0.0005 (12) |
C10 | 0.0249 (16) | 0.0345 (16) | 0.0214 (13) | 0.0023 (12) | 0.0016 (11) | 0.0031 (11) |
C11 | 0.0291 (17) | 0.0329 (16) | 0.0307 (14) | −0.0035 (13) | 0.0057 (12) | −0.0095 (12) |
C12 | 0.0285 (17) | 0.0394 (17) | 0.0238 (14) | −0.0075 (13) | 0.0001 (12) | −0.0038 (12) |
C13 | 0.0278 (16) | 0.0298 (15) | 0.0240 (13) | −0.0034 (12) | 0.0009 (11) | −0.0031 (11) |
Cd1 | 0.02165 (12) | 0.02590 (12) | 0.02064 (11) | 0.00008 (8) | 0.00062 (7) | −0.00017 (8) |
N1 | 0.0211 (13) | 0.0293 (13) | 0.0220 (11) | −0.0007 (10) | 0.0025 (9) | −0.0008 (9) |
N2 | 0.0248 (14) | 0.0340 (14) | 0.0214 (11) | −0.0034 (10) | 0.0013 (9) | 0.0021 (9) |
N3 | 0.0250 (14) | 0.0346 (13) | 0.0200 (11) | 0.0004 (11) | 0.0001 (9) | −0.0007 (10) |
N4 | 0.0357 (16) | 0.0304 (14) | 0.0254 (12) | 0.0048 (11) | −0.0032 (10) | −0.0024 (10) |
O1 | 0.0202 (11) | 0.0325 (11) | 0.0401 (11) | −0.0035 (9) | 0.0020 (8) | −0.0029 (9) |
O2 | 0.0251 (12) | 0.0293 (11) | 0.0305 (10) | 0.0014 (8) | 0.0004 (8) | −0.0032 (8) |
O3 | 0.0312 (14) | 0.0384 (14) | 0.0899 (19) | −0.0079 (11) | −0.0043 (12) | −0.0158 (13) |
O4 | 0.0190 (11) | 0.0357 (12) | 0.0458 (12) | −0.0025 (9) | −0.0028 (9) | 0.0055 (9) |
O5 | 0.0409 (15) | 0.0409 (13) | 0.0424 (13) | 0.0126 (11) | 0.0044 (10) | −0.0104 (10) |
O6 | 0.0442 (17) | 0.0346 (13) | 0.0694 (17) | −0.0098 (11) | 0.0026 (13) | −0.0152 (11) |
O1W | 0.0280 (13) | 0.0329 (12) | 0.0594 (14) | 0.0058 (9) | −0.0064 (10) | −0.0101 (10) |
C1—O1 | 1.254 (3) | C11—C12 | 1.508 (4) |
C1—O2 | 1.268 (3) | C11—H11A | 0.9700 |
C1—C2 | 1.505 (4) | C11—H11B | 0.9700 |
C2—C7 | 1.387 (4) | C12—C13 | 1.524 (3) |
C2—C3 | 1.397 (4) | C12—H12A | 0.9700 |
C3—C4 | 1.396 (4) | C12—H12B | 0.9700 |
C3—H3 | 0.9300 | C13—C13i | 1.520 (5) |
C4—C5 | 1.384 (4) | C13—H13A | 0.9700 |
C4—C8 | 1.515 (4) | C13—H13B | 0.9700 |
C5—C6 | 1.382 (4) | Cd1—O4ii | 2.238 (2) |
C5—H5 | 0.9300 | Cd1—O1W | 2.258 (2) |
C6—C7 | 1.382 (4) | Cd1—O2 | 2.342 (2) |
C6—N4 | 1.477 (3) | Cd1—N3iii | 2.353 (2) |
C7—H7 | 0.9300 | Cd1—O1 | 2.412 (2) |
C8—O3 | 1.229 (4) | Cd1—N2 | 2.422 (2) |
C8—O4 | 1.280 (3) | N1—N2 | 1.365 (3) |
C9—N2 | 1.322 (3) | N3—Cd1iv | 2.353 (2) |
C9—N3 | 1.353 (3) | N4—O5 | 1.224 (3) |
C9—H9 | 0.9300 | N4—O6 | 1.226 (3) |
C10—N3 | 1.326 (4) | O4—Cd1v | 2.238 (2) |
C10—N1 | 1.328 (3) | O1W—H1W | 0.8495 |
C10—H10 | 0.9300 | O1W—H2W | 0.8475 |
C11—N1 | 1.468 (3) | ||
O1—C1—O2 | 122.2 (3) | H12A—C12—H12B | 107.6 |
O1—C1—C2 | 119.0 (2) | C13i—C13—C12 | 111.7 (3) |
O2—C1—C2 | 118.7 (2) | C13i—C13—H13A | 109.3 |
C7—C2—C3 | 119.9 (2) | C12—C13—H13A | 109.3 |
C7—C2—C1 | 118.7 (2) | C13i—C13—H13B | 109.3 |
C3—C2—C1 | 121.4 (2) | C12—C13—H13B | 109.3 |
C4—C3—C2 | 120.5 (3) | H13A—C13—H13B | 107.9 |
C4—C3—H3 | 119.7 | O4ii—Cd1—O1W | 112.51 (8) |
C2—C3—H3 | 119.7 | O4ii—Cd1—O2 | 142.34 (7) |
C5—C4—C3 | 119.5 (3) | O1W—Cd1—O2 | 105.10 (7) |
C5—C4—C8 | 120.5 (3) | O4ii—Cd1—N3iii | 94.87 (8) |
C3—C4—C8 | 119.9 (3) | O1W—Cd1—N3iii | 86.89 (8) |
C6—C5—C4 | 119.0 (3) | O2—Cd1—N3iii | 88.96 (7) |
C6—C5—H5 | 120.5 | O4ii—Cd1—O1 | 87.71 (7) |
C4—C5—H5 | 120.5 | O1W—Cd1—O1 | 158.59 (7) |
C5—C6—C7 | 122.5 (3) | O2—Cd1—O1 | 55.35 (6) |
C5—C6—N4 | 119.1 (2) | N3iii—Cd1—O1 | 84.31 (7) |
C7—C6—N4 | 118.4 (2) | O4ii—Cd1—N2 | 86.75 (8) |
C6—C7—C2 | 118.5 (3) | O1W—Cd1—N2 | 100.12 (8) |
C6—C7—H7 | 120.7 | O2—Cd1—N2 | 84.78 (7) |
C2—C7—H7 | 120.7 | N3iii—Cd1—N2 | 171.61 (8) |
O3—C8—O4 | 123.5 (3) | O1—Cd1—N2 | 87.53 (7) |
O3—C8—C4 | 120.5 (3) | C10—N1—N2 | 109.3 (2) |
O4—C8—C4 | 116.0 (3) | C10—N1—C11 | 128.3 (2) |
N2—C9—N3 | 114.0 (3) | N2—N1—C11 | 122.3 (2) |
N2—C9—H9 | 123.0 | C9—N2—N1 | 103.0 (2) |
N3—C9—H9 | 123.0 | C9—N2—Cd1 | 122.11 (19) |
N3—C10—N1 | 110.5 (2) | N1—N2—Cd1 | 134.58 (17) |
N3—C10—H10 | 124.7 | C10—N3—C9 | 103.3 (2) |
N1—C10—H10 | 124.7 | C10—N3—Cd1iv | 125.03 (17) |
N1—C11—C12 | 113.0 (2) | C9—N3—Cd1iv | 130.33 (19) |
N1—C11—H11A | 109.0 | O5—N4—O6 | 124.0 (3) |
C12—C11—H11A | 109.0 | O5—N4—C6 | 118.2 (3) |
N1—C11—H11B | 109.0 | O6—N4—C6 | 117.8 (2) |
C12—C11—H11B | 109.0 | C1—O1—Cd1 | 89.70 (17) |
H11A—C11—H11B | 107.8 | C1—O2—Cd1 | 92.56 (16) |
C11—C12—C13 | 114.4 (2) | C8—O4—Cd1v | 112.63 (18) |
C11—C12—H12A | 108.7 | Cd1—O1W—H1W | 115.6 |
C13—C12—H12A | 108.7 | Cd1—O1W—H2W | 126.0 |
C11—C12—H12B | 108.7 | H1W—O1W—H2W | 109.4 |
C13—C12—H12B | 108.7 | ||
O1—C1—C2—C7 | 1.0 (4) | O4ii—Cd1—N2—C9 | 27.7 (2) |
O2—C1—C2—C7 | −179.6 (2) | O1W—Cd1—N2—C9 | 140.0 (2) |
O1—C1—C2—C3 | −177.1 (2) | O2—Cd1—N2—C9 | −115.6 (2) |
O2—C1—C2—C3 | 2.3 (4) | O1—Cd1—N2—C9 | −60.2 (2) |
C7—C2—C3—C4 | 0.6 (4) | O4ii—Cd1—N2—N1 | −160.0 (2) |
C1—C2—C3—C4 | 178.7 (2) | O1W—Cd1—N2—N1 | −47.7 (2) |
C2—C3—C4—C5 | −2.7 (4) | O2—Cd1—N2—N1 | 56.7 (2) |
C2—C3—C4—C8 | 174.4 (2) | O1—Cd1—N2—N1 | 112.2 (2) |
C3—C4—C5—C6 | 1.9 (4) | N1—C10—N3—C9 | 0.2 (3) |
C8—C4—C5—C6 | −175.2 (2) | N1—C10—N3—Cd1iv | 168.00 (17) |
C4—C5—C6—C7 | 1.0 (4) | N2—C9—N3—C10 | −0.4 (3) |
C4—C5—C6—N4 | −177.8 (2) | N2—C9—N3—Cd1iv | −167.28 (19) |
C5—C6—C7—C2 | −3.1 (4) | C5—C6—N4—O5 | 8.0 (4) |
N4—C6—C7—C2 | 175.7 (2) | C7—C6—N4—O5 | −170.9 (2) |
C3—C2—C7—C6 | 2.2 (4) | C5—C6—N4—O6 | −173.4 (3) |
C1—C2—C7—C6 | −175.9 (2) | C7—C6—N4—O6 | 7.7 (4) |
C5—C4—C8—O3 | −169.2 (3) | O2—C1—O1—Cd1 | −3.8 (2) |
C3—C4—C8—O3 | 13.7 (4) | C2—C1—O1—Cd1 | 175.5 (2) |
C5—C4—C8—O4 | 11.4 (4) | O4ii—Cd1—O1—C1 | −170.08 (15) |
C3—C4—C8—O4 | −165.7 (2) | O1W—Cd1—O1—C1 | 28.6 (3) |
N1—C11—C12—C13 | −66.0 (3) | O2—Cd1—O1—C1 | 2.13 (14) |
C11—C12—C13—C13i | −174.7 (3) | N3iii—Cd1—O1—C1 | 94.80 (15) |
N3—C10—N1—N2 | 0.0 (3) | N2—Cd1—O1—C1 | −83.23 (15) |
N3—C10—N1—C11 | −175.3 (3) | O1—C1—O2—Cd1 | 3.9 (3) |
C12—C11—N1—C10 | 82.1 (4) | C2—C1—O2—Cd1 | −175.38 (19) |
C12—C11—N1—N2 | −92.6 (3) | O4ii—Cd1—O2—C1 | 10.7 (2) |
N3—C9—N2—N1 | 0.4 (3) | O1W—Cd1—O2—C1 | −172.41 (15) |
N3—C9—N2—Cd1 | 174.86 (18) | N3iii—Cd1—O2—C1 | −85.92 (15) |
C10—N1—N2—C9 | −0.3 (3) | O1—Cd1—O2—C1 | −2.11 (14) |
C11—N1—N2—C9 | 175.4 (2) | N2—Cd1—O2—C1 | 88.49 (15) |
C10—N1—N2—Cd1 | −173.63 (19) | O3—C8—O4—Cd1v | −8.3 (4) |
C11—N1—N2—Cd1 | 2.0 (4) | C4—C8—O4—Cd1v | 171.09 (17) |
Symmetry codes: (i) −x+1, −y, −z+2; (ii) x+1, y, z; (iii) x, −y+1/2, z−1/2; (iv) x, −y+1/2, z+1/2; (v) x−1, y, z. |
Experimental details
Crystal data | |
Chemical formula | [Cd(C8H3NO6)(C5H8N3)0.5(H2O)] |
Mr | 449.67 |
Crystal system, space group | Monoclinic, P21/c |
Temperature (K) | 296 |
a, b, c (Å) | 10.292 (2), 11.250 (3), 13.339 (3) |
β (°) | 90.644 (3) |
V (Å3) | 1544.4 (6) |
Z | 4 |
Radiation type | Mo Kα |
µ (mm−1) | 1.46 |
Crystal size (mm) | 0.26 × 0.21 × 0.19 |
Data collection | |
Diffractometer | Bruker–Nonius KappaCCD diffractometer |
Absorption correction | Empirical (using intensity measurements) (SADABS; Bruker, 1997) |
Tmin, Tmax | 0.699, 0.757 |
No. of measured, independent and observed [I > 2σ(I)] reflections | 13260, 3547, 2898 |
Rint | 0.082 |
(sin θ/λ)max (Å−1) | 0.650 |
Refinement | |
R[F2 > 2σ(F2)], wR(F2), S | 0.032, 0.069, 0.99 |
No. of reflections | 3547 |
No. of parameters | 226 |
H-atom treatment | H-atom parameters constrained |
Δρmax, Δρmin (e Å−3) | 0.96, −0.94 |
Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1999), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), SHELXTL-Plus (Sheldrick, 2008).
Cd1—O4i | 2.238 (2) | Cd1—N3ii | 2.353 (2) |
Cd1—O1W | 2.258 (2) | Cd1—O1 | 2.412 (2) |
Cd1—O2 | 2.342 (2) | Cd1—N2 | 2.422 (2) |
O4i—Cd1—O1W | 112.51 (8) | O2—Cd1—O1 | 55.35 (6) |
O4i—Cd1—O2 | 142.34 (7) | N3ii—Cd1—O1 | 84.31 (7) |
O1W—Cd1—O2 | 105.10 (7) | O4i—Cd1—N2 | 86.75 (8) |
O4i—Cd1—N3ii | 94.87 (8) | O1W—Cd1—N2 | 100.12 (8) |
O1W—Cd1—N3ii | 86.89 (8) | O2—Cd1—N2 | 84.78 (7) |
O2—Cd1—N3ii | 88.96 (7) | N3ii—Cd1—N2 | 171.61 (8) |
O4i—Cd1—O1 | 87.71 (7) | O1—Cd1—N2 | 87.53 (7) |
O1W—Cd1—O1 | 158.59 (7) |
Symmetry codes: (i) x+1, y, z; (ii) x, −y+1/2, z−1/2. |
The rational design and synthesis of metal–organic frameworks (MOFs) constructed from organic ligands and metal ions through a self-assembly route has undergone rapid development in recent years owing to their fascinating structural topologies and potential applications as functional materials (Abrahams et al., 1999; Eddaoudi et al., 2001; Farha et al., 2010). The topologies of MOFs can often be controlled and modified by properly selecting the coordination geometry preferred by the metal ion and the chemical structure of the organic ligand chosen. Organic carboxylate ligands have been extensively used to construct MOFs with various properties and topologies (Li et al., 2005; Eddaoudi, Kim, Rosi et al., 2002). 5-Nitroisophthalate (5-NIP2-), as one type of bridging aromatic dicarboxylate ligand, has been widely studied (Liu et al., 2010; Huang et al., 2011; Sarma et al., 2011). The nitro group (–NO2) which can act as a hydrogen-bond acceptor or coordinate to the metal centers influences the final coordination structure (Du et al., 2008; Ye et al., 2008).
The selection of the second ligand is also significant. By comparison with pyridine-containing ligands, imidazole- or triazole-containing ligands have seldom been used (Ma et al., 2003; Tian et al., 2008). Structures with 1,6-bis(1,2,4-triazol-1-yl)hexane (bth) and CdII are really rare with only a few reported (Liu et al., 2007; Liang et al., 2009). Mot net (mot = mesh of trees) is a well known topology, first introduced to crystal design by Batten et al. (2009). Reported crystal structures with a mot net are rare (Wen et al., 2009). Here we report the synthesis and structure of Cd(C8H3NO6)(C5H8N3)0.5(H2O), (I), which crystallizes in this topology.
Selected bond lengths and angles for (I) are given in Table 1. As shown in Fig. 1, the asymmetric unit of (I) contains one CdII atom, one 5-NIP2-, one half bth ligand and one coordinated water molecule. A centre of symmetry falls on the mid-point of the C13—C13iii bond of the bth [symmetry code: (iii) -x + 1,-y,-z + 2]. Each CdII atom is six-coordinated in a distorted octahedral environment surrounded by three carboxylate oxygen atoms from two different 5-NIP2- anions, two nitrogen atoms from two distinct bth ligands and one water molecule, with average Cd—Ocarboxylate and Cd—N distances of 2.330 (9) and 2.387 (7) Å, respectively. The N2—Cd1—N3 angle, which is close to 180° (Table 1), and the N—Cd—O angle range of 84.31 (7) to 100.12 (8)° are consistent with a distorted octahedral coordination environment about the Cd. The CdII atoms are bridged by the bth ligands to form a honeycomb-like two-dimensional layer structure (Fig. 2) in which the bth ligands act as µ4-bridging ligands with two nitrogen atoms in each triazoyl coordinated to the different CdII atoms. This µ4-bridging mode has not been reported before and may be rationalized through the weaker coordination ability of the 2-position nitrogen atom because of the stereo-hindrance from the adjacent hexane carbon chain. The two-dimensional layers are further connected by the bridging 5-NIP2- ligands with the (κ2)-(κ1)-µ3 coordination mode to generate the final three-dimensional structure (Fig. 3).
It is noteworthy that (I) possesses a three-dimensional net while the CdII structure [{Cd4(D-ca)4(bth)4}3.2H2O]n (D-H2ca = D-camphor acid) reported by Liang et al. (2009) exists only as a two- dimensional sheet although the bond lengths and angles of the coordination bonds in the two structures have no significant difference. This indicates that the 5-NIP2-, which is spatially different from the D-ca2-, influences the final structure of (I).
Using the simplification principle (Natarajan et al., 2009; Tranchemontagne et al., 2009), the CdII centre and the bth ligands are defined as different four-connected nodes, while the 5-NIP2- serve as linkers. On the basis of this concept of chemical topology, the overall structure is a three-dimensional mot net with the Schäfli symbol of (66)(64.82)2 (Fig. 4) (Wen et al., 2009). However, as a four-connected net, this mot net, which is named after MOF-112 (Batten et al., 2009; Eddaoudi, Kim, Vodak et al., 2002), is related to the NbO and CdSO4 nets (Bai et al., 2010; Friedrichs et al., 2003) although it contains two different square-planar nodes. For one node all its connected neighbours are mutually perpendicular, whereas for the other node half are perpendicular and half are coplanar. Thus we have constructed an unusual mot net based on both 5-NIP2- and bth ligands.