Download citation
Download citation
link to html
The crystal structures of the first stable α-diol from the α-halogenopyruv­amide series, 3-chloro-2,2-di­hydroxy-3-phenyl­propan­amide, C9H10­ClNO3, and three products [3-(4-chloro­phenyl)-2-cyano-2,3-epoxy­propan­amide, C10H7­ClN2O2, 3-bromo-2-cyano-2-hydroxy-3-p-tolyl­propan­amide, C11H11Br­N2O2, 3-bromo-2-oxo-3-p-tolyl­propan­amide, C10H10­BrNO2] obtained during the systematic synthesis of α-halogenopyruv­amides are reported. The crystal structures are dominated by hydrogen bonds involving an amide group. The stability of the geminal diol could be ascribed to hydrogen bonds which involve both hydroxyl groups.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100008623/gd1105sup1.cif
Contains datablocks I, II, III, IV, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008623/gd1105Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008623/gd1105IIsup3.hkl
Contains datablock 2

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008623/gd1105IIIsup4.hkl
Contains datablock 3

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100008623/gd1105IVsup5.hkl
Contains datablock 4

CCDC references: 150865; 150866; 150867; 150868

Computing details top

Data collection: DIF4 (Stoe, 1992) for (I); CAD-4 Software (Enraf-Nonius, 1994) for (II); COLLECT Software (Nonius BV, 1998) for (III); COLLECT Software (Nonius, 1998) for (IV). Cell refinement: DIF4 for (I); PARAM (Stewart et al., 1976) for (II); DENZO and SCALEPACK (Otwinowski & Minor, 1997) for (III), (IV). Data reduction: REDU4 (Stoe, 1992) for (I); DATRD2 in NRCVAX (Gabe et al., 1989) for (II); DENZO and SCALEPACK for (III), (IV). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: SHELXL97.

(I) '3-(4-chlorophenyl)-2-cyano-2,3-epoxypropanamide' top
Crystal data top
C10H7ClN2O2F(000) = 456
Mr = 222.63Dx = 1.420 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 4.9992 (8) ÅCell parameters from 25 reflections
b = 12.694 (3) Åθ = 10–15°
c = 16.442 (3) ŵ = 0.35 mm1
β = 93.54 (1)°T = 293 K
V = 1041.4 (4) Å3Prismatic, colourless
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
STADI4(STOE)
diffractometer
Rint = 0.025
Radiation source: fine-focus sealed tubeθmax = 28.0°, θmin = 2.0°
Graphite monochromatorh = 66
ω/2θ scansk = 1615
3492 measured reflectionsl = 2221
2533 independent reflections3 standard reflections every 300 reflections
1852 reflections with I > 2σ(I) intensity decay: 0.8%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.152Calculated w = 1/[σ2(Fo2) + (0.0811P)2 + 0.2445P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
2533 reflectionsΔρmax = 0.29 e Å3
147 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.061 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.7265 (3)0.03484 (16)0.41529 (10)0.0612 (5)
H10.72220.03060.46760.068 (7)*
H20.87130.05410.38840.083 (8)*
C10.5113 (3)0.01177 (14)0.37641 (11)0.0460 (4)
O10.2951 (2)0.01638 (12)0.40846 (8)0.0591 (4)
C20.5379 (3)0.02381 (14)0.28500 (10)0.0458 (4)
C100.3935 (4)0.05536 (15)0.24065 (11)0.0534 (4)
N20.2806 (5)0.11797 (15)0.20777 (13)0.0795 (6)
C30.5770 (4)0.13093 (15)0.24897 (12)0.0521 (4)
H30.58570.18890.28820.065 (6)*
O20.7912 (2)0.05587 (13)0.24926 (8)0.0618 (4)
C40.4738 (4)0.15929 (14)0.16894 (11)0.0508 (4)
C50.2670 (4)0.23174 (16)0.16634 (13)0.0577 (5)
H50.19760.26310.21420.054 (5)*
C60.1631 (4)0.25776 (17)0.09257 (15)0.0644 (5)
H60.02190.30520.09070.092 (8)*
C70.2730 (4)0.21197 (17)0.02199 (13)0.0607 (5)
C80.4810 (5)0.14142 (18)0.02315 (12)0.0642 (5)
H80.55320.11180.02510.081 (7)*
C90.5820 (4)0.11482 (17)0.09691 (12)0.0601 (5)
H90.72260.06700.09830.075 (7)*
Cl0.13798 (15)0.24047 (7)0.07086 (4)0.0936 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0338 (7)0.0949 (13)0.0556 (9)0.0122 (7)0.0080 (6)0.0042 (8)
C10.0327 (7)0.0515 (9)0.0544 (9)0.0011 (6)0.0065 (6)0.0012 (7)
O10.0327 (6)0.0863 (10)0.0589 (7)0.0083 (6)0.0072 (5)0.0086 (7)
C20.0344 (7)0.0494 (9)0.0537 (9)0.0004 (6)0.0045 (6)0.0023 (7)
C100.0597 (10)0.0432 (9)0.0586 (10)0.0059 (8)0.0140 (8)0.0004 (8)
N20.1039 (15)0.0507 (10)0.0877 (13)0.0041 (10)0.0376 (11)0.0039 (9)
C30.0487 (9)0.0516 (10)0.0560 (10)0.0070 (7)0.0028 (7)0.0024 (8)
O20.0366 (6)0.0857 (10)0.0626 (7)0.0000 (6)0.0006 (5)0.0085 (7)
C40.0502 (9)0.0456 (9)0.0567 (10)0.0089 (7)0.0044 (7)0.0022 (7)
C50.0561 (10)0.0504 (10)0.0665 (11)0.0034 (8)0.0026 (8)0.0027 (9)
C60.0577 (11)0.0549 (11)0.0815 (14)0.0004 (9)0.0117 (9)0.0070 (10)
C70.0627 (11)0.0571 (11)0.0635 (11)0.0100 (9)0.0119 (9)0.0127 (9)
C80.0729 (13)0.0637 (12)0.0555 (11)0.0009 (10)0.0009 (9)0.0017 (9)
C90.0600 (10)0.0581 (11)0.0618 (11)0.0051 (9)0.0017 (8)0.0028 (9)
Cl0.0949 (5)0.1114 (6)0.0768 (4)0.0013 (4)0.0235 (3)0.0278 (4)
Geometric parameters (Å, º) top
N1—C11.318 (2)C4—C51.386 (3)
N1—H10.8600C4—C91.391 (3)
N1—H20.8600C5—C61.389 (3)
C1—O11.226 (2)C5—H50.9300
C1—C21.508 (2)C6—C71.381 (3)
C2—O21.422 (2)C6—H60.9300
C2—C101.459 (2)C7—C81.373 (3)
C2—C31.491 (3)C7—Cl1.745 (2)
C10—N21.132 (3)C8—C91.384 (3)
C3—O21.434 (2)C8—H80.9300
C3—C41.487 (3)C9—H90.9300
C3—H30.9800
C1—N1—H1120.0C2—O2—C362.96 (11)
C1—N1—H2120.0C5—C4—C9119.63 (18)
H1—N1—H2120.0C5—C4—C3119.20 (17)
O1—C1—N1125.49 (17)C9—C4—C3121.16 (18)
O1—C1—C2118.63 (14)C4—C5—C6120.31 (19)
N1—C1—C2115.87 (15)C4—C5—H5119.8
O2—C2—C10116.49 (15)C6—C5—H5119.8
O2—C2—C358.89 (11)C7—C6—C5118.9 (2)
C10—C2—C3119.11 (15)C7—C6—H6120.6
O2—C2—C1117.53 (13)C5—C6—H6120.6
C10—C2—C1114.35 (15)C8—C7—C6121.66 (19)
C3—C2—C1119.31 (15)C8—C7—Cl118.78 (17)
N2—C10—C2178.5 (2)C6—C7—Cl119.51 (17)
O2—C3—C4117.63 (16)C7—C8—C9119.3 (2)
O2—C3—C258.15 (11)C7—C8—H8120.4
C4—C3—C2121.88 (16)C9—C8—H8120.4
O2—C3—H3115.7C8—C9—C4120.2 (2)
C4—C3—H3115.7C8—C9—H9119.9
C2—C3—H3115.7C4—C9—H9119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O20.862.352.742 (2)108
N1—H2···O1i0.862.342.911 (2)124
N1—H1···O1ii0.862.042.903 (2)178
Symmetry codes: (i) x+1, y, z; (ii) x+1, y, z1.
(II) '3-bromo-2-cyano-3-(4-methylphenyl)-2-hydroxypropanamide' top
Crystal data top
C11H11BrN2O2F(000) = 568
Mr = 283.13Dx = 1.595 Mg m3
Monoclinic, P21/aMo Kα radiation, λ = 0.71073 Å
a = 5.934 (3) ÅCell parameters from 25 reflections
b = 33.653 (6) Åθ = 8–16°
c = 6.177 (1) ŵ = 3.47 mm1
β = 107.12 (3)°T = 293 K
V = 1178.9 (7) Å3Prismatic, colourless
Z = 40.12 × 0.10 × 0.05 mm
Data collection top
NONIUS CAD4
diffractometer
1851 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.077
Graphite monochromatorθmax = 27.9°, θmin = 1.2°
ω/2θ scansh = 77
Absorption correction: part of the refinement model (ΔF)
Walker & Stuart, D (1983) Acta. Cryst. A39, 158-166
k = 4444
Tmin = 0.631, Tmax = 0.855l = 88
11169 measured reflections3 standard reflections every 500 reflections
2836 independent reflections intensity decay: 1.9%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H-atom parameters constrained
S = 0.97Calculated w = 1/[σ2(Fo2) + (0.0705P)2 + ]
where P = (Fo2 + 2Fc2)/3
2836 reflections(Δ/σ)max = 0.001
146 parametersΔρmax = 0.54 e Å3
0 restraintsΔρmin = 0.51 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.3428 (5)0.20386 (11)0.0062 (5)0.0629 (9)
H2A0.20060.21020.07990.076*
H2B0.45320.20580.06990.076*
C10.3912 (5)0.19116 (10)0.2027 (6)0.0423 (7)
O10.2511 (4)0.18707 (9)0.3114 (5)0.0628 (7)
C20.6521 (5)0.17985 (9)0.3159 (5)0.0335 (6)
O20.7794 (4)0.18555 (8)0.1622 (4)0.0458 (6)
H10.92090.18530.22950.069*
C100.7393 (5)0.20611 (11)0.5167 (5)0.0430 (7)
N20.8137 (6)0.22568 (11)0.6711 (5)0.0665 (9)
C30.6489 (5)0.13651 (10)0.3992 (5)0.0344 (6)
H40.54520.13590.49680.041*
Br0.96866 (5)0.122066 (11)0.58896 (5)0.04902 (14)
C40.5573 (5)0.10630 (10)0.2155 (5)0.0365 (6)
C50.6653 (6)0.09796 (11)0.0501 (5)0.0476 (8)
H110.80290.11120.05040.057*
C60.5689 (6)0.06988 (11)0.1165 (5)0.0501 (8)
H150.64170.06500.22810.060*
C70.3659 (6)0.04903 (11)0.1195 (6)0.0490 (8)
C80.2618 (6)0.05736 (11)0.0473 (6)0.0528 (9)
H120.12580.04380.04880.063*
C90.3546 (6)0.08542 (11)0.2123 (6)0.0466 (8)
H100.28040.09040.32280.056*
C110.2620 (8)0.01864 (13)0.2993 (6)0.0695 (12)
H17A0.35680.01690.40090.104*
H17B0.10450.02640.38230.104*
H17C0.25820.00680.22960.104*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0498 (15)0.066 (2)0.0641 (18)0.0076 (15)0.0025 (14)0.0218 (17)
C10.0355 (14)0.0292 (19)0.0597 (18)0.0006 (12)0.0101 (13)0.0060 (15)
O10.0347 (10)0.071 (2)0.0892 (18)0.0031 (11)0.0282 (12)0.0118 (15)
C20.0303 (12)0.0346 (18)0.0370 (13)0.0006 (11)0.0119 (10)0.0040 (12)
O20.0402 (10)0.0551 (16)0.0482 (11)0.0055 (11)0.0225 (9)0.0114 (11)
C100.0392 (14)0.039 (2)0.0520 (18)0.0018 (14)0.0150 (13)0.0036 (16)
N20.0647 (18)0.062 (3)0.0671 (18)0.0017 (17)0.0112 (16)0.0132 (18)
C30.0355 (13)0.0327 (17)0.0388 (14)0.0069 (12)0.0168 (11)0.0085 (13)
Br0.04734 (18)0.0540 (3)0.04557 (18)0.01574 (15)0.01338 (13)0.01061 (16)
C40.0400 (14)0.0302 (17)0.0434 (15)0.0054 (12)0.0184 (12)0.0070 (13)
C50.0512 (16)0.045 (2)0.0555 (18)0.0054 (16)0.0291 (15)0.0004 (17)
C60.066 (2)0.041 (2)0.0496 (18)0.0000 (17)0.0272 (16)0.0012 (16)
C70.0592 (18)0.032 (2)0.0503 (17)0.0059 (15)0.0080 (15)0.0051 (15)
C80.0468 (17)0.041 (2)0.071 (2)0.0048 (15)0.0183 (16)0.0024 (18)
C90.0448 (15)0.042 (2)0.0577 (19)0.0010 (14)0.0229 (14)0.0027 (16)
C110.090 (3)0.050 (3)0.060 (2)0.005 (2)0.007 (2)0.0055 (19)
Geometric parameters (Å, º) top
N1—C11.308 (4)C4—C91.388 (4)
N1—H2A0.8600C5—C61.390 (5)
N1—H2B0.8600C5—H110.9300
C1—O11.221 (4)C6—C71.390 (5)
C1—C21.547 (4)C6—H150.9300
C2—O21.390 (3)C7—C81.377 (5)
C2—C101.486 (4)C7—C111.502 (5)
C2—C31.548 (4)C8—C91.380 (5)
O2—H10.8200C8—H120.9300
C10—N21.136 (4)C9—H100.9300
C3—C41.501 (4)C11—H17A0.9600
C3—Br1.975 (3)C11—H17B0.9600
C3—H40.9800C11—H17C0.9600
C4—C51.386 (4)
C1—N1—H2A120.0C9—C4—C3118.2 (2)
C1—N1—H2B120.0C4—C5—C6120.3 (3)
H2A—N1—H2B120.0C4—C5—H11119.8
O1—C1—N1126.3 (3)C6—C5—H11119.8
O1—C1—C2118.4 (3)C7—C6—C5121.3 (3)
N1—C1—C2115.2 (3)C7—C6—H15119.3
O2—C2—C10111.2 (2)C5—C6—H15119.3
O2—C2—C1109.3 (2)C8—C7—C6117.7 (3)
C10—C2—C1106.7 (2)C8—C7—C11121.0 (3)
O2—C2—C3114.8 (2)C6—C7—C11121.3 (3)
C10—C2—C3108.6 (2)C7—C8—C9121.5 (3)
C1—C2—C3105.9 (2)C7—C8—H12119.3
C2—O2—H1109.5C9—C8—H12119.3
N2—C10—C2177.6 (3)C8—C9—C4120.9 (3)
C4—C3—C2115.1 (2)C8—C9—H10119.6
C4—C3—Br110.67 (19)C4—C9—H10119.6
C2—C3—Br108.98 (18)C7—C11—H17A109.5
C4—C3—H4107.3C7—C11—H17B109.5
C2—C3—H4107.3H17A—C11—H17B109.5
Br—C3—H4107.3C7—C11—H17C109.5
C5—C4—C9118.3 (3)H17A—C11—H17C109.5
C5—C4—C3123.5 (3)H17B—C11—H17C109.5
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2B···O20.862.152.567 (4)109
N1—H2A···N2i0.862.413.269 (5)173
O2—H1···O1ii0.821.872.677 (3)166
Symmetry codes: (i) x1, y, z1; (ii) x+1, y, z.
(III) '3-bromo-3-(4-metylphenyl)-2-oxopropanamide' top
Crystal data top
C10H10BrNO2F(000) = 1024
Mr = 256.10Dx = 1.594 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 22.614 (5) ÅCell parameters from 3833 reflections
b = 10.257 (2) Åθ = 2.8–26.0°
c = 10.099 (2) ŵ = 3.83 mm1
β = 114.32 (3)°T = 293 K
V = 2134.6 (8) Å3Prismatic, colourless
Z = 80.22 × 0.20 × 0.20 mm
Data collection top
Nonius-Kappa CCD
diffractometer
1372 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.021
Graphite monochromatorθmax = 26.0°, θmin = 2.8°
φ and ω scansh = 2727
3833 measured reflectionsk = 1212
1966 independent reflectionsl = 1010
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.109Calculated w = 1/[σ2(Fo2) + (0.0678P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1966 reflectionsΔρmax = 0.64 e Å3
139 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (6)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br0.33339 (2)0.18643 (4)0.33990 (4)0.0648 (2)
O20.30305 (12)0.4924 (3)0.4623 (3)0.0706 (8)
O10.42285 (11)0.4607 (3)0.3368 (2)0.0521 (7)
N10.43410 (14)0.5051 (3)0.5646 (3)0.0548 (8)
H10.47490.52130.59510.055 (11)*
H20.41540.51090.62320.072 (13)*
C10.40018 (15)0.4713 (3)0.4276 (3)0.0422 (8)
C20.32834 (16)0.4462 (3)0.3879 (3)0.0433 (8)
C30.29390 (15)0.3588 (4)0.2601 (4)0.0432 (8)
H30.30650.38320.18150.037 (8)*
C40.22207 (16)0.3498 (4)0.2005 (4)0.0458 (9)
C50.18556 (18)0.3691 (4)0.0542 (4)0.0563 (10)
H50.20620.38760.00660.053 (10)*
C60.1187 (2)0.3614 (5)0.0030 (5)0.0701 (12)
H60.09510.37580.10190.086 (14)*
C70.0863 (2)0.3332 (4)0.0816 (5)0.0705 (13)
C80.1225 (2)0.3145 (5)0.2288 (6)0.0780 (14)
H80.10140.29650.28860.098 (16)*
C90.1894 (2)0.3219 (4)0.2885 (5)0.0690 (13)
H90.21280.30830.38760.080 (14)*
C110.0134 (2)0.3201 (6)0.0186 (8)0.103 (2)
H11A0.00400.33330.08460.11 (2)*
H11B0.00420.38420.06160.16 (3)*
H11C0.00200.23450.03880.105 (19)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br0.0559 (3)0.0615 (3)0.0704 (3)0.0063 (2)0.0194 (2)0.0018 (2)
O20.0413 (15)0.107 (2)0.0689 (18)0.0057 (15)0.0278 (13)0.0322 (16)
O10.0370 (13)0.085 (2)0.0362 (12)0.0090 (12)0.0174 (10)0.0044 (11)
N10.0329 (17)0.095 (3)0.0370 (15)0.0141 (16)0.0149 (13)0.0121 (15)
C10.0331 (18)0.054 (2)0.0375 (18)0.0009 (15)0.0129 (14)0.0007 (14)
C20.0336 (18)0.049 (2)0.0448 (18)0.0003 (16)0.0140 (14)0.0004 (15)
C30.0295 (18)0.057 (2)0.0427 (19)0.0011 (15)0.0141 (14)0.0027 (15)
C40.0313 (18)0.056 (2)0.0463 (19)0.0050 (16)0.0120 (15)0.0016 (15)
C50.039 (2)0.069 (3)0.053 (2)0.0091 (19)0.0119 (17)0.0049 (18)
C60.046 (2)0.083 (3)0.060 (3)0.002 (2)0.001 (2)0.003 (2)
C70.036 (2)0.066 (3)0.099 (3)0.0085 (19)0.017 (2)0.007 (2)
C80.046 (2)0.100 (4)0.095 (4)0.014 (2)0.037 (3)0.006 (3)
C90.045 (2)0.100 (4)0.061 (3)0.011 (2)0.021 (2)0.010 (2)
C110.037 (3)0.100 (5)0.152 (6)0.009 (3)0.019 (3)0.005 (4)
Geometric parameters (Å, º) top
Br—C31.995 (4)C5—C61.381 (6)
O2—C21.212 (4)C5—H50.9300
O1—C11.225 (4)C6—C71.366 (6)
N1—C11.322 (4)C6—H60.9300
N1—H10.8600C7—C81.384 (7)
N1—H20.8600C7—C111.510 (6)
C1—C21.526 (5)C8—C91.380 (6)
C2—C31.500 (5)C8—H80.9300
C3—C41.485 (5)C9—H90.9300
C3—H30.9800C11—H11A0.9600
C4—C51.379 (5)C11—H11B0.9600
C4—C91.399 (5)C11—H11C0.9600
C1—N1—H1120.0C6—C5—H5119.7
C1—N1—H2120.0C7—C6—C5121.8 (4)
H1—N1—H2120.0C7—C6—H6119.1
O1—C1—N1124.4 (3)C5—C6—H6119.1
O1—C1—C2121.1 (3)C6—C7—C8118.0 (4)
N1—C1—C2114.5 (3)C6—C7—C11122.0 (5)
O2—C2—C3123.8 (3)C8—C7—C11120.0 (5)
O2—C2—C1119.6 (3)C9—C8—C7121.2 (4)
C3—C2—C1116.5 (3)C9—C8—H8119.4
C4—C3—C2118.7 (3)C7—C8—H8119.4
C4—C3—Br110.0 (3)C8—C9—C4120.3 (4)
C2—C3—Br101.2 (2)C8—C9—H9119.9
C4—C3—H3108.8C4—C9—H9119.9
C2—C3—H3108.8C7—C11—H11A109.5
Br—C3—H3108.8C7—C11—H11B109.5
C5—C4—C9118.0 (3)H11A—C11—H11B109.5
C5—C4—C3119.8 (3)C7—C11—H11C109.5
C9—C4—C3122.1 (3)H11A—C11—H11C109.5
C4—C5—C6120.6 (4)H11B—C11—H11C109.5
C4—C5—H5119.7
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O20.862.392.710 (4)102
N1—H2···O1i0.862.112.885 (4)149
N1—H1···O1ii0.862.132.988 (4)173
Symmetry codes: (i) x, y+1, z+1/2; (ii) x+1, y+1, z+1.
(IV) '3-chloro-3-phenyl-2,2-dihydroxypropanamide' top
Crystal data top
C9H10ClNO3F(000) = 448
Mr = 215.63Dx = 1.515 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
a = 5.526 (1) ÅCell parameters from 1798 reflections
b = 29.989 (6) Åθ = 2.7–26.0°
c = 5.997 (1) ŵ = 0.38 mm1
β = 107.96 (3)°T = 293 K
V = 945.4 (3) Å3Prismatic, colourless
Z = 40.40 × 0.35 × 0.25 mm
Data collection top
Nonius-Kappa CCD
diffractometer
1550 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.023
Graphite monochromatorθmax = 26.0°, θmin = 2.7°
φ and ω scansh = 66
1798 measured reflectionsk = 3636
1781 independent reflectionsl = 77
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.028Calculated w = 1/[σ2(Fo2) + (0.0287P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.063(Δ/σ)max = 0.001
S = 1.01Δρmax = 0.17 e Å3
1781 reflectionsΔρmin = 0.16 e Å3
137 parametersExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.024 (2)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0.50 (5)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.16258 (8)0.124077 (19)0.21761 (8)0.05386 (18)
O20.3113 (2)0.06060 (5)0.03079 (18)0.0496 (4)
H210.23980.06160.17250.073 (9)*
O10.1405 (2)0.05041 (5)0.48339 (19)0.0561 (4)
C40.2056 (4)0.14729 (6)0.1812 (3)0.0384 (4)
O30.0723 (3)0.03416 (5)0.0011 (3)0.0550 (4)
H310.01740.00870.00380.106 (13)*
N10.5146 (4)0.04729 (7)0.4077 (4)0.0606 (5)
H10.59870.04120.55080.091 (10)*
H20.59250.04960.30420.069 (8)*
C30.0171 (4)0.11083 (6)0.0800 (3)0.0386 (5)
H30.10320.10990.17140.052 (6)*
C20.1314 (4)0.06384 (7)0.0872 (3)0.0391 (4)
C90.2038 (4)0.16836 (7)0.3868 (4)0.0468 (5)
H90.08770.15950.46220.047 (6)*
C50.3815 (4)0.16089 (7)0.0730 (4)0.0465 (5)
H50.38590.14700.06430.057 (6)*
C10.2683 (4)0.05304 (6)0.3474 (4)0.0429 (5)
C80.3733 (5)0.20236 (8)0.4799 (4)0.0610 (6)
H80.37110.21630.61770.071 (8)*
C70.5452 (5)0.21557 (8)0.3691 (5)0.0621 (6)
H70.65850.23860.43160.096 (9)*
C60.5500 (4)0.19488 (7)0.1670 (4)0.0564 (6)
H60.66710.20380.09300.075 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0438 (2)0.0725 (4)0.0405 (2)0.0043 (3)0.00592 (19)0.0035 (3)
O20.0480 (8)0.0600 (10)0.0461 (9)0.0068 (7)0.0224 (7)0.0063 (7)
O10.0775 (11)0.0505 (9)0.0483 (8)0.0010 (7)0.0315 (8)0.0006 (7)
C40.0415 (10)0.0366 (11)0.0351 (9)0.0055 (8)0.0087 (9)0.0034 (8)
O30.0460 (9)0.0489 (10)0.0672 (10)0.0082 (7)0.0131 (8)0.0163 (8)
N10.0483 (11)0.0662 (14)0.0605 (13)0.0020 (9)0.0067 (11)0.0141 (10)
C30.0355 (10)0.0451 (12)0.0367 (10)0.0031 (8)0.0134 (9)0.0004 (8)
C20.0330 (9)0.0437 (12)0.0409 (11)0.0019 (8)0.0117 (8)0.0064 (8)
C90.0536 (12)0.0475 (13)0.0410 (11)0.0073 (11)0.0171 (10)0.0031 (9)
C50.0434 (11)0.0500 (12)0.0483 (12)0.0009 (10)0.0176 (10)0.0010 (10)
C10.0513 (12)0.0324 (11)0.0461 (11)0.0011 (8)0.0167 (10)0.0004 (8)
C80.0828 (16)0.0474 (13)0.0422 (11)0.0028 (12)0.0037 (12)0.0060 (10)
C70.0594 (13)0.0495 (14)0.0636 (14)0.0059 (11)0.0015 (11)0.0016 (12)
C60.0492 (12)0.0553 (15)0.0630 (15)0.0058 (10)0.0147 (12)0.0044 (12)
Geometric parameters (Å, º) top
Cl—C31.7987 (19)C3—C21.539 (3)
O2—C21.390 (2)C3—H30.9800
O2—H210.8200C2—C11.544 (3)
O1—C11.235 (2)C9—C81.381 (3)
C4—C51.386 (3)C9—H90.9300
C4—C91.388 (3)C5—C61.378 (3)
C4—C31.503 (3)C5—H50.9300
O3—C21.404 (2)C8—C71.375 (3)
O3—H310.8200C8—H80.9300
N1—C11.308 (3)C7—C61.369 (4)
N1—H10.8600C7—H70.9300
N1—H20.8600C6—H60.9300
C2—O2—H21109.5C3—C2—C1106.81 (15)
C5—C4—C9118.68 (18)C8—C9—C4120.4 (2)
C5—C4—C3121.58 (17)C8—C9—H9119.8
C9—C4—C3119.74 (17)C4—C9—H9119.8
C2—O3—H31109.5C6—C5—C4120.6 (2)
C1—N1—H1120.0C6—C5—H5119.7
C1—N1—H2120.0C4—C5—H5119.7
H1—N1—H2120.0O1—C1—N1124.6 (2)
C4—C3—C2115.30 (17)O1—C1—C2118.62 (17)
C4—C3—Cl109.99 (13)N1—C1—C2116.80 (19)
C2—C3—Cl109.04 (13)C7—C8—C9120.0 (2)
C4—C3—H3107.5C7—C8—H8120.0
C2—C3—H3107.5C9—C8—H8120.0
Cl—C3—H3107.5C6—C7—C8120.1 (2)
O2—C2—O3112.33 (15)C6—C7—H7119.9
O2—C2—C3113.66 (16)C8—C7—H7119.9
O3—C2—C3107.19 (15)C7—C6—C5120.2 (2)
O2—C2—C1107.17 (15)C7—C6—H6119.9
O3—C2—C1109.50 (16)C5—C6—H6119.9
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H2···O20.862.152.552 (3)108
O2—H21···O1i0.821.992.789 (2)163
O3—H31···O1ii0.821.992.809 (2)172
Symmetry codes: (i) x, y, z+1; (ii) x, y, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds